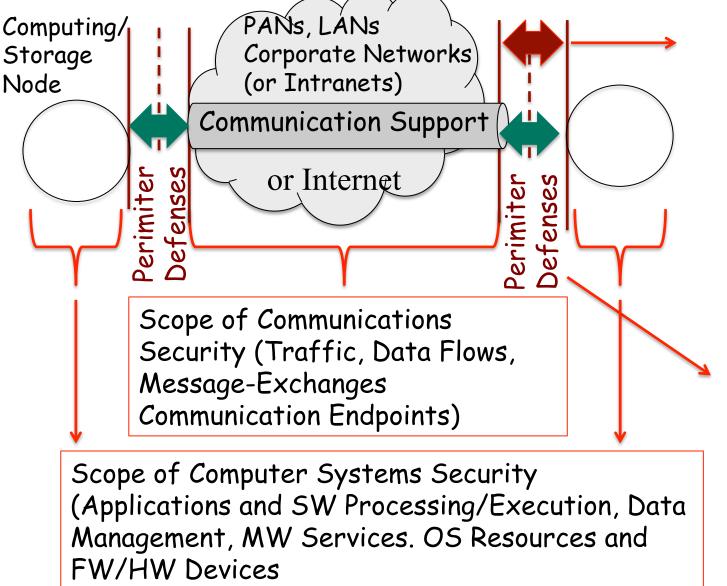
DI-FCT-UNL Segurança de Redes e Sistemas de Computadores *Network and Computer Systems Security*

Mestrado Integrado em Engenharia Informática MSc Course: Informatics Engineering

1° Sem, 2019/2020


Introduction (Part II) Concepts, Terminology Frameworks

Introduction: complementary questions ...

- How to address Security in Distributed Systems?
- Typology of defenses for distributed systems security?
- What is the OSI X.800 Framework ? What are the main features and orientations in the OSI X800 framework ?
- What is a secure communication channel ? How to define a secure communication channel, how to address its security properties and threats, and what are the level of abstraction?
- What are the security services and standards in the TCP/IP security Stack ?
- What is a layered secure channel ? What is tunneling security modes and security transport modes established for end-to-end communication security

Computer Systems and Networks Security (A Distributed Systems Security Approach)

Distributed Systems Security Dimensions

Access Networks: LAN, WLAN PAN, WPAN Net. Technology, and Network Gateways Perimeter Defenses: (Switches, Routers, Traffic Filters, FWs, IPSs and IDSs: NIDS

- HIDS

Protection of involved dimensions

2 dimensions involved

(Distributed System Approach):

Computer Systems Security (Computing Nodes)

- Computer Security Services and Mechanisms
- "In Deep Security Protection"
- Network (Communication Security)
 - Secure Communication Channels
 - Point-to-Point (Data-Link) vs. End-to-End (Internetworking/Internet) Security Arguments

In this dimension is particularly relevant the approach of **Internet Security and TCP/IP Security Services**

- Security Stack, with different layers of approach

Computer Systems and Network Security

Computer Systems Security Level

- Computer Systems (Computing Nodes)
 - Private/Dedicated/Shared/Public/Outsourced Computing
 - Stationary, Mobile, Supervised, Non-Supervised ...
 - Physical Level (Phys. Environment)
 - HW Level (HW Devices, FW/HW)
 - OS Level (SW Services)
 - MW / Runtime Libraries' Level Application-Support Level

Secure Data Storage Software and OS Security + Software Attestation + **Isolation and Containment** Trusted Execution

Computer Systems and Network Security

Network (or Internetwork) Security Level

- Communications' Protection
 - Private/Dedicated/Shared/Public/Outsourced
 - Wired, Wireless, Supervised, Non-Supervised ...
 - Internet Communication
 - Physical Level (Physical Resources)
 - Access Level (Data Link)
 - Traffic Flow Level (Net Level)
 - Transport Level
 - Session/Representation Level
 - Application-Protocol Level

Secure Com. Channels PtP vs. End-to-End Secure Protocols Secure Endpoints TCP/IP Security Stack (and Related Standards)

Communication Security Services and Protocols

- Ex. TCP/IP Security Stack
- 4 Application / Application Support Level
- 3 Transport Layer

- 2 Network Layer
- 1 Data-Link and Physical Layer

User Interaction, Applications

Application Layer Protocols: HTTP, Telnet, FTP, TFTP, RTS, Apple HLS, Adobe RTMP & RTSP, MPEG-DASH, WebRTC, H323

TCP, UDP

IP + ICMP, ARP, RARP

Data-Link (Net. Access) Layer) IEEE 802.3, 802.11, 802.15, 802.16, Zigbee, BT / BLS, NFC

Physical Security

© DI/FCT/UNL, Henrique João L. Domingos

Communication Security Services and Protocols

- Ex. TCP/IP Security Stack
- 4 Application / Application Support Level Security
- 3 Session + Transport Layer Security

- 2 Network-Level Security
- 1 Data-Link / Net Access Layer Security

FW/HW and HW Physical Security

© DI/FCT/UNL, Henrique João L. Domingos

User Interaction, Applications

PGP, S/MIME, Kerberos, X509 PKIs, SSH, HTTPS, DNSSEC, Email Security (POP3/4S, IMAPS, DKIM, DMARC ...

TLS, DTLS, SSH Transport vs. Tunneling Based

TCP, UDP

IPSec, Sec VPNs/Ipsec Transport vs. Tunneling Base

Link-Layer/Net. Access Control EAP, 802.1x, 802.11i (other ex.: BT, BLE Security, NFC Security, 802.15.4 and Zigbee Security)

Physical Security

Some examples of countermeasures

Ex. TCP/IP Security Stack

DNS Poisoning / Spoofing Personification, Fake Identifiers User-Authentication Disclosures Data Leakage Attacks

Breaks on Transport-Endpoints Attacks against Authentication, Confidentiality, Integrity (messagetampering) and Replaying-Attacks on UDP Datagrams and TCP Segments

Protection against IP-Spoofing, and IP Packets' Authentication, Confidentiality and Integrity and IP-Packet's Illicit Replaying Base protection for Routing Attacks

ARP / RARP Spoofing Attacks MAC-Level Address Spoofing Authenticity, Confidentiality and Integrity of Frames

User Interaction, Applications

PGP, S/MIME, Kerberos, X509 PKIs, SSH, HTTPS, DNSSEC, Emil Security (POP3/4S, IMAPS, DKIM, DMARC) ...

> TLS, DTLS, SSH Secure Transport Tunneling

> > TCP, UDP

IPSec, Sec VPNs/IPsec

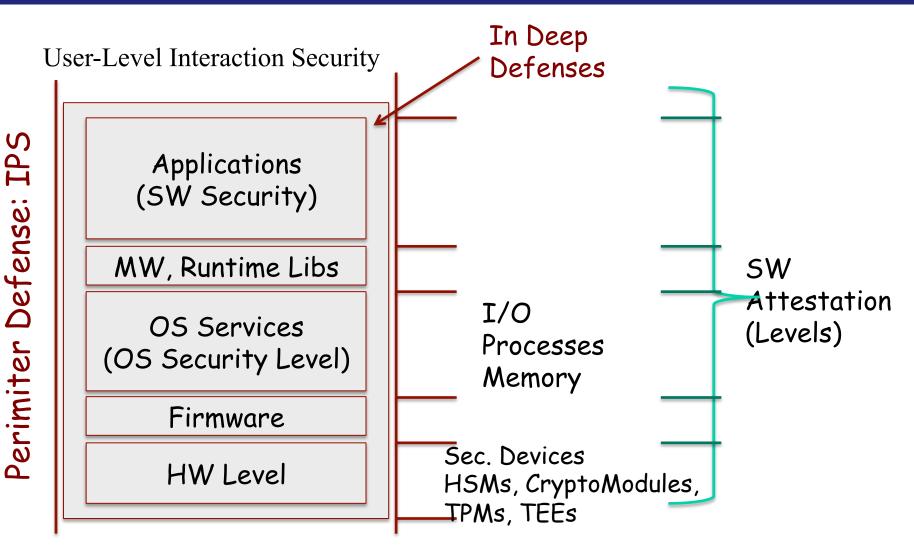
Link-Layer/Net. Access Control EAP, 802.1x, 802.11i (other ex.: BT Security, NFC Security, 802.15.4 and Zigbee Security)

Physical Security

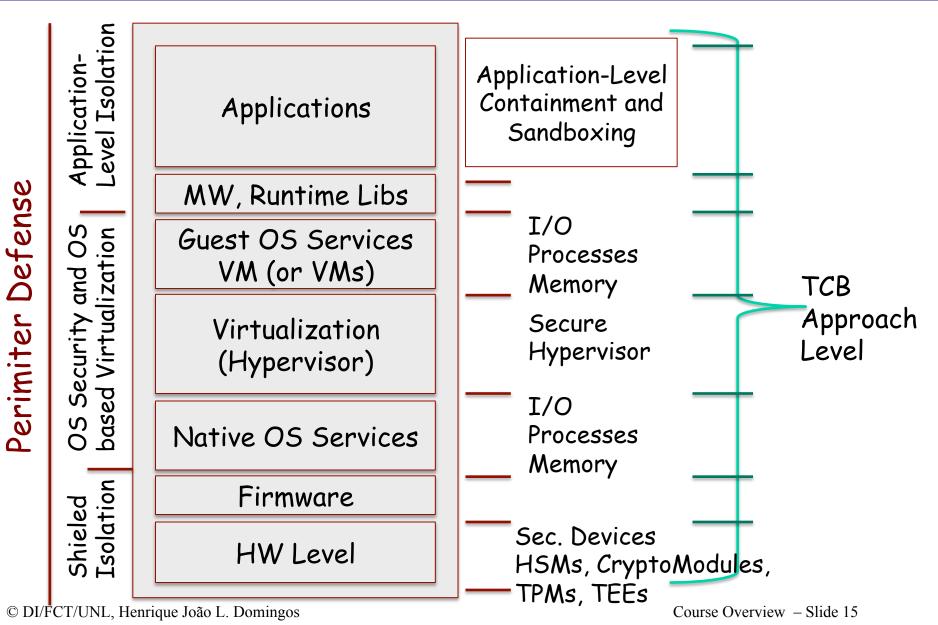
DoS and DDoS Threats and Protection

Mitigation in TCP/IP Stack Implem. and Runtime

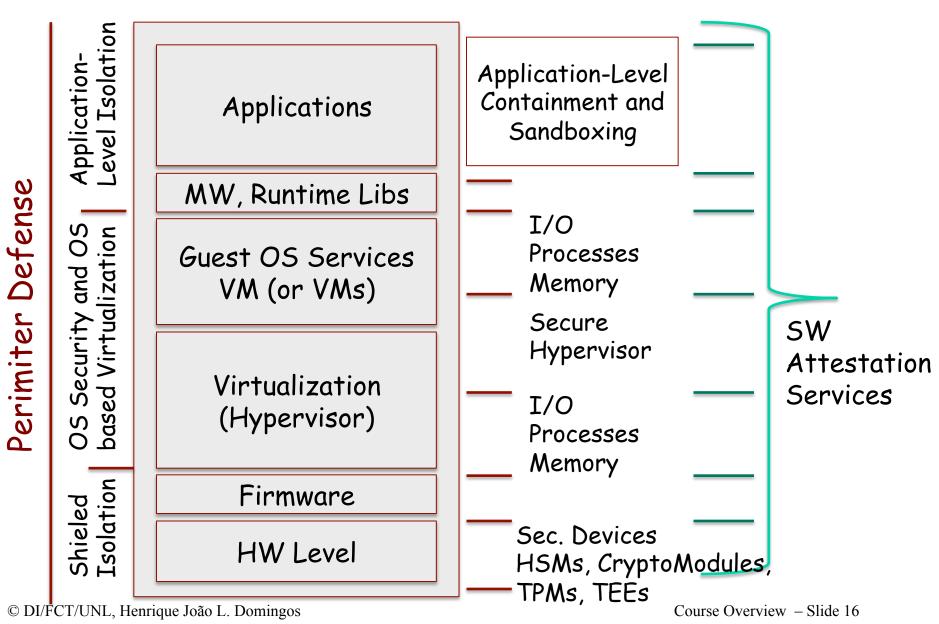
Complex Defenses combining many Defense Types (Ex., Perimeter Defenses, Cloud DDoS Protection)

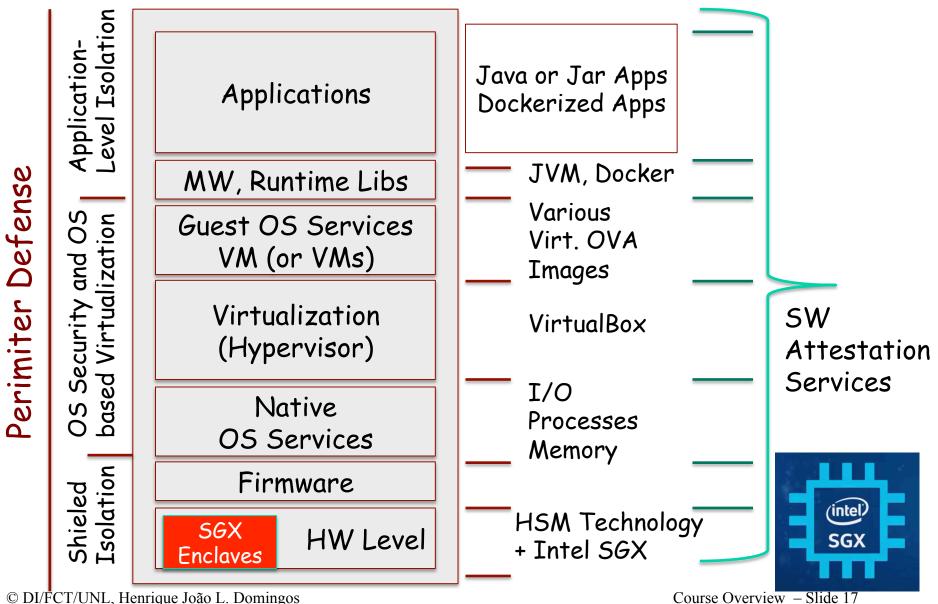

- What about not included countermeasures on TCP/IP Security Stack Standards ? Discussion
 - Simple (common) examples
 - Land Attacks, Teardrop Attacks
 - ECHO-CHARGEN and SYN Flooding Attacks
 - IP Ping-of-Death Attacks
 - Stack Smashing Attacks
 - Format/Data Representation Formats and Endpoints' Processing
 - More complex ...:
 - Large-Scale DDoS / Cloud-Based DDoS
 Vectors of Communication Overloads (3)
 - Need Specific Network Perimeter Defense and In-Deep Defense Mechanisms
 - OR Cloud-Enabled Defenses ;-)

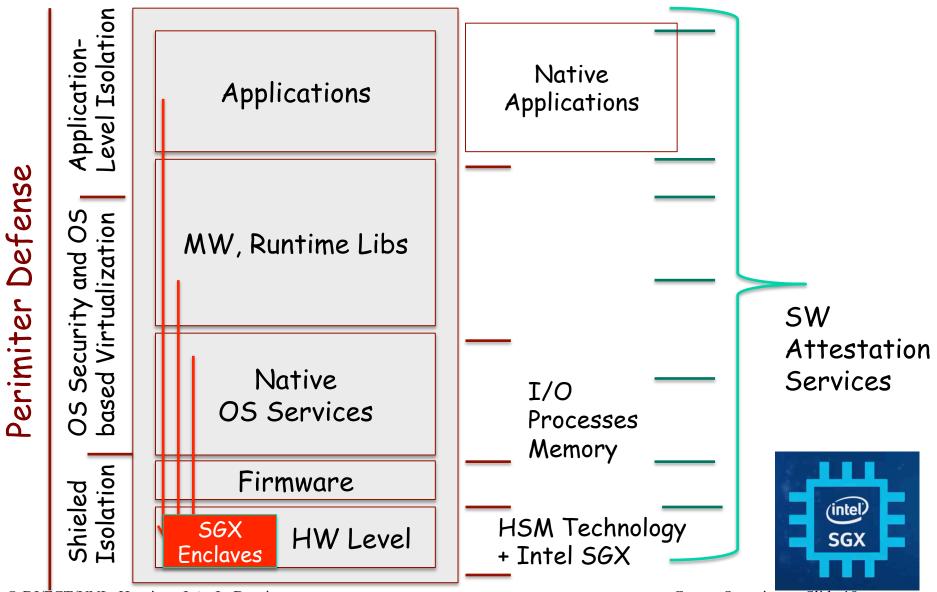
© DI/FCT/UNL, Henrique João L. Domingos


Computer Security Services and Mechanisms

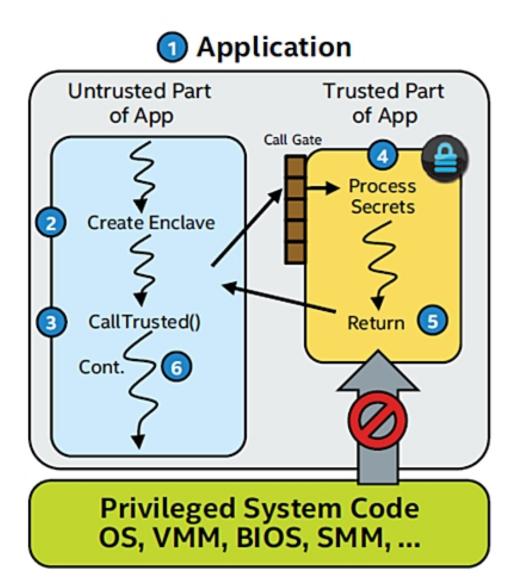
© DI/FCT/UNL, Henrique João L. Domingos


Scope of Computer Security (involving SW, FW and HW services and mechanisms)


Scope of Computer Security Isolation and TCB Level


Scope of Computer Security Isolation and TCB Level

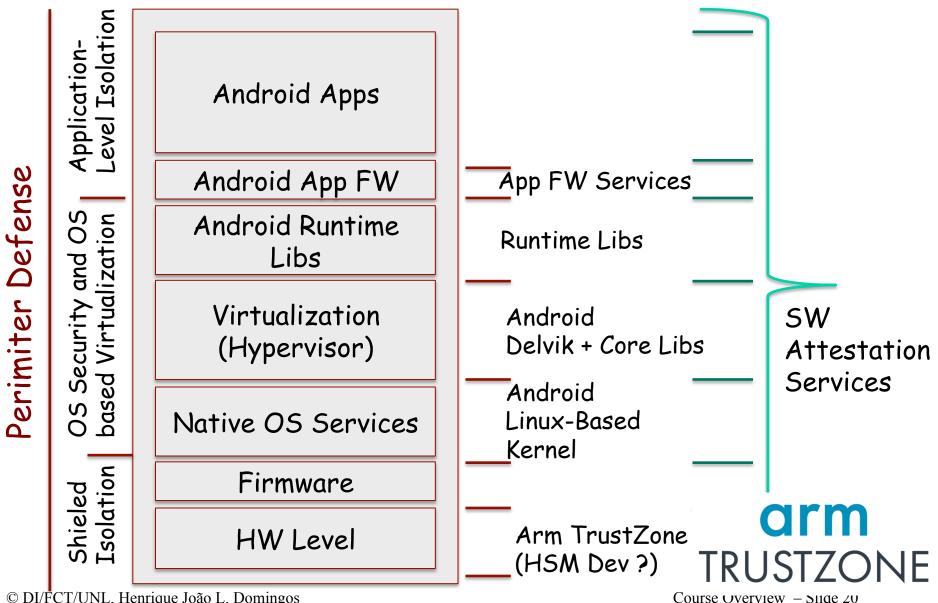
Concrete Implementation

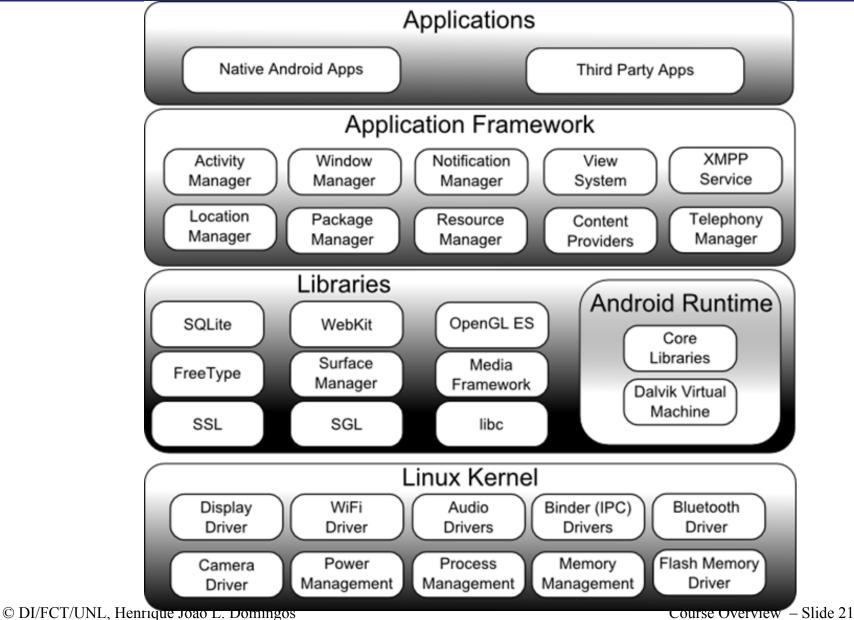


Concrete Implementation

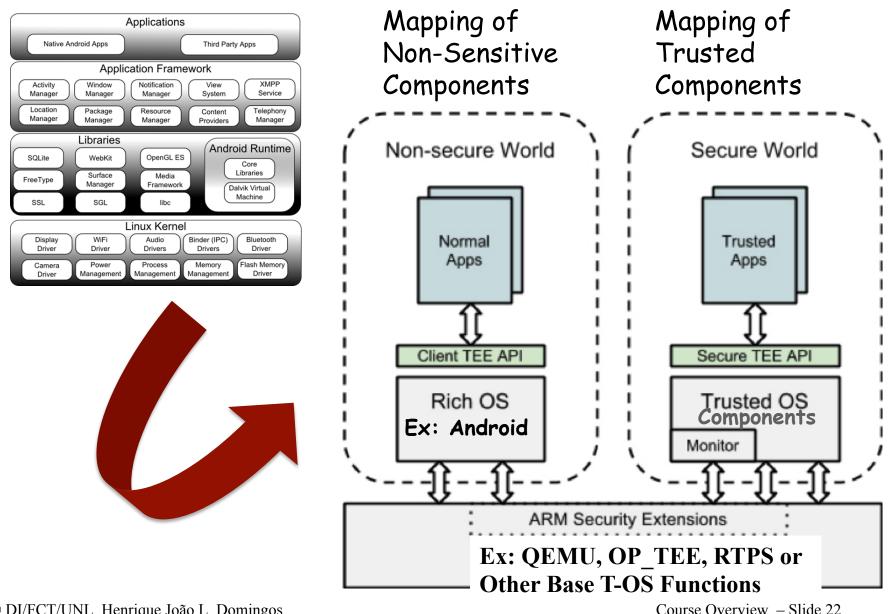
Course Overview – Slide 18

Intel SGX TEE Protection

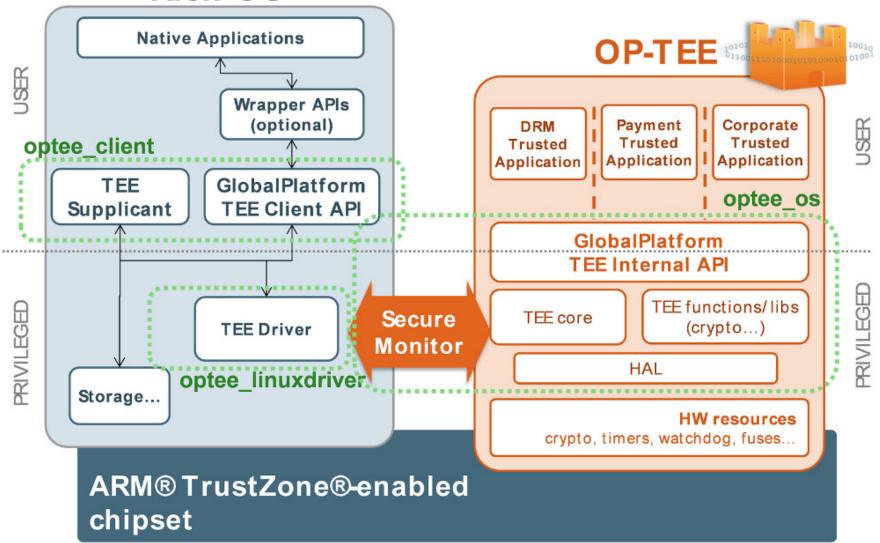




© DI/FC1/UNL, HEILIQUE JOAO L. DOILINGOS

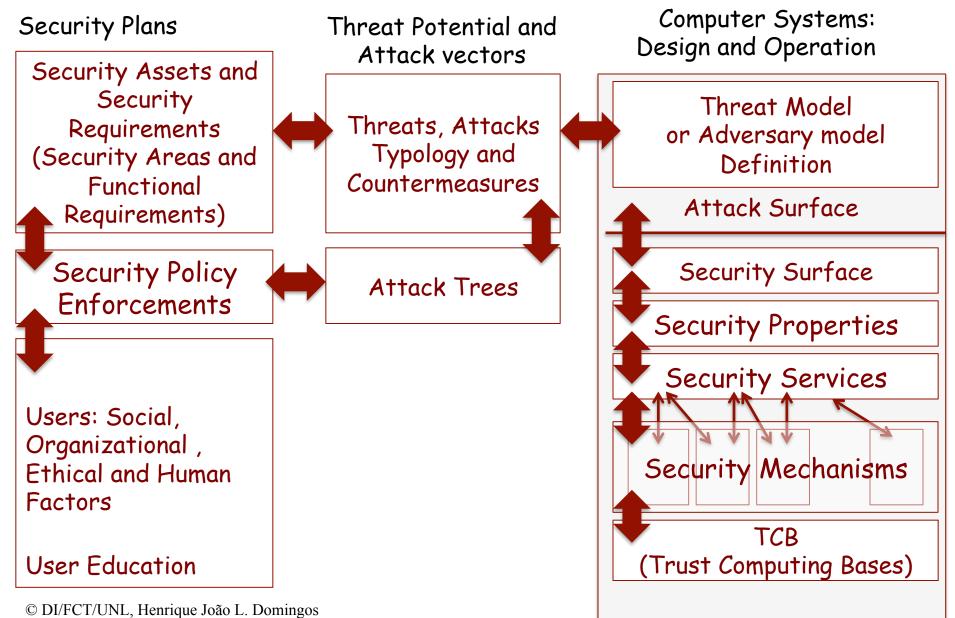

Another concrete Implementation (ARM / Mobile Oses: Exemple w/ Android)

Android Architecture

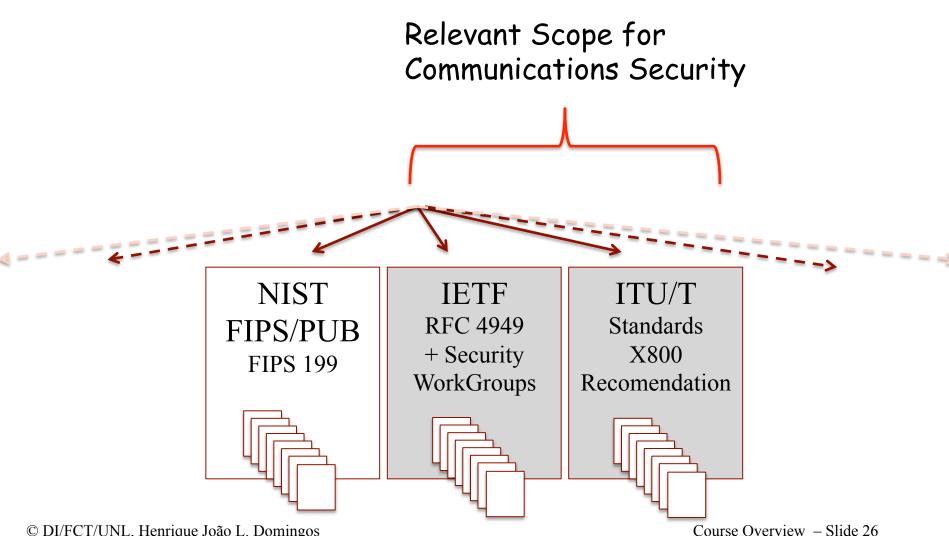


Ex: Android Architecture on HW-Shielded Trust **Execution Environment**

TEE Architecture


Rich OS

OSI X.800 Rec. IETF RFC 4949 + IETF Security Standards (RFC)


© DI/FCT/UNL, Henrique João L. Domingos

Remembering our initial (conceptual) Security Framework

Instantiation of standard frameworks

Technical Security Standardization Frameworks

Threats vs. Attacks (OSI X.800)

- Threat: Potential of security violation, when there is circumstances, vulnerabilities, capabilities, actions or events that could breach security and cause harm
 - Possible danger that might exploit a vulnerability
 - Potential exploits in the attack surface
- Attack: Assault/Break on Security, as a concrete manifestation of threats
- Intelligent action as a deliberate attempt (method, technique, use of attack tool) to evade security services and violate security policy (and related security properties) of a system
 - Induction of incorrect (non-secure) behaviour

Typology of Attacks

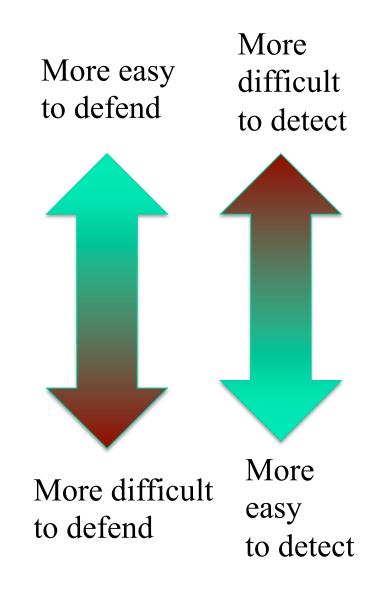
Communication Attack Typology

Passive Attacks

- Release of Message Contents (Payload Data Leakage)
- Packet Analysis (Frame/Datagrams/Packet Sniffing)
 - Specific Targeted Data Packets
- Traffic Analysis (at different stack layers)
 - Traffic Flow Inspection and Reconnaissance

Active Attacks

- Masquerade (Message Forgery)
- Replay (or Illicit Message-Replay)
- Modification of Messages (Message Tampering)
 - Can Include Attacks against Message Ordering
- DoS (Message Discarding, Message Dropping, Overloading and Net. Congestion and/or Saturation)
- Attacks inducing end-point incorrect processing


© DI/FCT/UNL, Henrique João L. Domingos

OSI X.800: Attacks

Communication Attack Typology

Passive Attacks

• Active Attacks

© DI/FCT/UNL, Henrique João L. Domingos

OSI X.800: Security Services

Authentication

- Peer-Entity Authentication (or Principal Authentication)
- Data Origin Authentication

Access Control

 Prevention of access to unauthorized (nor permissioned) resources

Data Confidentiality

- Connection-Oriented
 Confidentiality
- Connectionless Confidentiality
- Selective-Field
 Confidentiality
- Traffic Flow Confidentiality

• Data Integrity

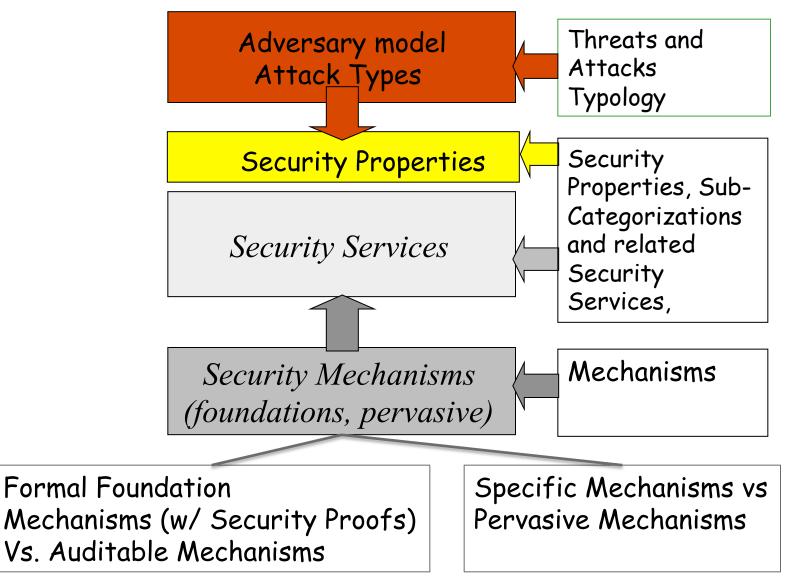
- Connection-Integrity w/ Recovery
- Connection-Integrity without recovery
- Selective-Field Connection Integrity
- Connectionless Integrity
- Selective-Field Connectionless Integrity

Nonrepudiation

- Non-Repudiation of Origin
- Non-Repudtaion of Destination

OSI X.800: Security Mechanisms

Specific Security Mechanisms


- Encipherment
- Digital Signatures
- Data Integrity
- Authentication Exchanges
- Access Control
- Traffic Padding
- Routing Control
- Notarization

Cryptographic Algorithms, Methods and Techniques

Pervasive Security Mechanisms

- Trusted Mechanisms imposed by Security Policy Enforcement
- Security Labels for Security Attributes
- Event Detection
- Security Audit Trails
- Security Recovery

OSI X.800 mappings (in a nutshell)

Mapping Attacks vs. Security Services

Attack Typology

Security Services	Release of message contents	Traffic analysis	Masquerade	Replay	Modification of messages	Denial of service
Peer entity authentication			Y			
Data origin authentication			Y			
Access control			Y			
Confidentiality	Y					
Traffic flow confidentiality		Y				
Data integrity				Y	Y	
Non-repudiation			Y			
Availability						Y

© DI/FCT/UNL, Henrique João L. Domingos

Attacks vs. Security Mechanisms

Attack Typology

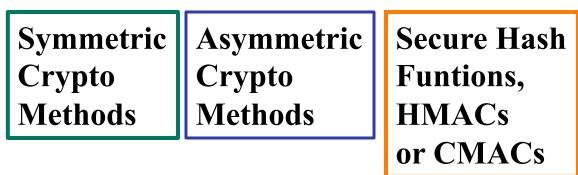
Security Mechanisms	Release of message contents	Traffic analysis	Masquerade	Replay	Modification of messages	Denial of service
Encipherment	Y					
Digital signature			Y	Y	Y	
Access control	Y	Y	Y	Y		Y
Data integrity				Y	Y	
Authentication exchange	Ŷ		Ŷ	Ŷ		Ŷ
Traffic padding		Y				
Routing control	Y	Y				Y
Notarization			Y	Y	Y	

Security services vs. Security Mechanisms

Security Mechanisms

•

Security				Mech	anism		Mechanism											
Services Service	Enciph- erment	Digital signature	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routing control	Notari- zation										
Peer entity authentication	Y	Y			Y													
Data origin authentication	Y	Y																
Access control			Y															
Confidentiality	Y						Y											
Traffic flow confidentiality	Y					Y	Y											
Data integrity	Y	Y		Y														
Non-repudiation		Y		Y				Y										
Availability				Y	Y													

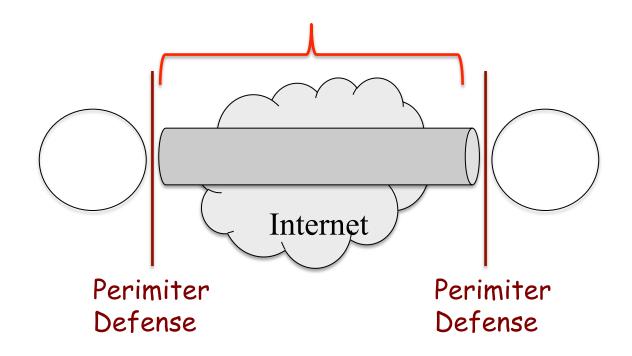

<u>Big F</u>	<u>Pict</u>	ure	2 ()	<u> </u>	00	m	ap	ping	3 2)					
ſ	Release of message contents	Traffic analysis	-1	uerade	Replay	Modific of mess	ation	Denial of service						
Peer entity authentication				Y										
Data origin authentication				Y										
Access control				Y										
Confidentiality	Ŷ													
Traffic flow confidentiality		Y												
Data integrity					Ŷ	Ŷ			Release	Traffic	Masquerade	Replay	Modification	Denial
Non-repudiation				Y					of	analysis	Masqueraue	Керицу	of messages	of
Availability								Ŷ	message	BUM 1				service
				<u>_</u>			Ensin		contents	2				
								herment	Y					
							Digita	l signature			Y	Y	Y	
Cryptography methods,							Acces	s control	Ŷ	Y	Y	Y		Y
							Data i	ntegrity				Y	Y	
							Authe excha	ntication nge	Y		Y	Y		Y
		-	-		-		Traffi	c padding		Y				
							Routi	ng control	Y	Y				Y
				Mech	anism			ization	-	-	Y	Y	Y	-
Service	Encipherment	-	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routing control	Notari- zation			_			
Peer entity authenticatio		Y	control	integrity	Y	padding	control	Lution						
Data origin authenticat		Y												
Access control			Y											
Confidentiality	Y						Y							
Traffic flow confidentia	lity Y					Y	Y							
Data integrity	Y	Y		Y										
Non-repudiation		Y		Y				Y						
Availability				Y	Y									

Cryptographic tools as base mechanisms

Authentication and Key Distribution Protocols

Mechanism

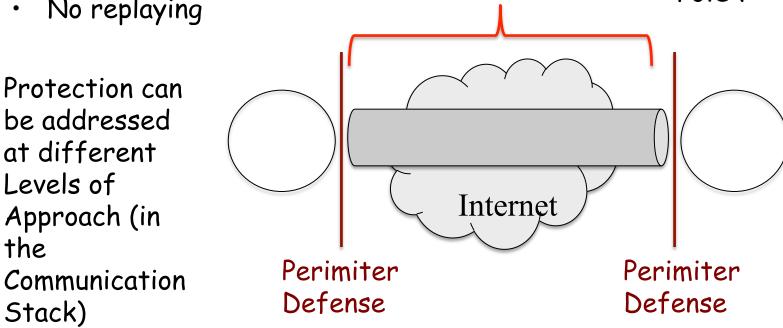
Service	Enciph- erment	Digital signature	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routing control	Notari- zation
Peer entity authentication					Y			
Data origin authentication								
Access control			Y					
Confidentiality							Y	
Traffic flow confidentiality						Y	Y	
Data integrity								
Non-repudiation								Y
Availability					Y			


© DI/FCT/UNL, Henrique João L. Domingos

Security Channel (Definition using the OSI X.800 Reference)

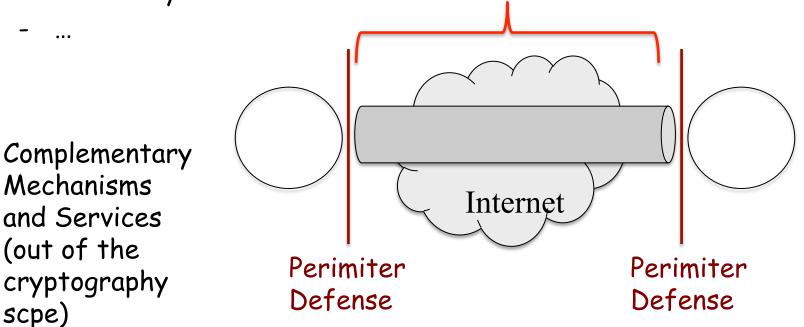
© DI/FCT/UNL, Henrique João L. Domingos

How to define a Secure Channel?


- Definition in the scope of the OSI X.800 framework
 - A communication channel immune to the Attack Typology and MiM threats, according to the OSI X.800 attack typology and OSI X.800 defined services and mechanisms
 - PtP (Point-Point) vs. End-to-End Security Arguments

Properties in a Secure Channel? See the Security properties in the OSI X.800

- Authenticated endpoints (principals, mutual authentication, peer-• authentication and data-authentication)
- Traffic and data flow confidentiality
 - Connection-oriented vs. Connectionless
- Traffic and data flow integrity •
 - Connection-Oriented vs. Connectionless
- No replaying


Cryptography plays an important role!

Properties in a Secure Channel? See the Security properties in the OSI X.800

What about ...

- No Repudiation
- Routing Control
- Availability
- Net Access and Connection control
- Reliability

The Role of Cryptographic Tools, Methods and Techniques

Important:

Cryptography is very important for Computer Systems and Network Security ! but it is not a PANACEA

© DI/FCT/UNL, Henrique João L. Domingos

Cryptosystems: Algorithms and Methods

- Foundation security mechanisms and building blocks for security services
 - Encryption: data blocks, messages
 - Symmetric cryptosystems
 - Stream Ciphers vs. Block ciphers
 - Some asymmetric crypto systems (not all)
 - Digital signatures: authentication of data Authentication blocks, messages
 - Asymmetric cryptosystems
 - Message authentication Codes
 - Sometimes called "Lightweight" Signatures
 - MACs, HMACs or CMACs

Confidentiality

Cryptosystems: Algorithms and Methods

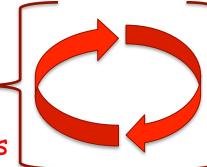
- Foundation security mechanisms and building blocks for security services
 - Integrity protection
 - Examples: MICs, CS, CRCs, MICs, EDCs, ECCs, etc... Weak Integrity Checks ?

- More Secure Methods fopr Integrity Checks:
 - Cryptographic Hash Functions
 - Use of Cryptographic Hash Functions in HMACs

Mappings in the X.800 framework

	Release of message contents	Traffic analysis	Masqu	ierade	Replay	Modific: of messa	ages	Denial of service						
Peer entity authentication				Y										
Data origin authentication				Y										
Access control			7	Y										
Confidentiality	Y													
Traffic flow confidentiality		Y												
Data integrity					Y	Y			Release	Traffic	Masquerade	Replay	Modification	Denial
Non-repudiation			,	Y					of	analysis	in a square state	men.	of messages	of
Availability								Ŷ	message contents	1				service
	Encipherment													
							Digital signature				Y	Y	Y	
							Acces	ss control	Y	Y	Y	Y		Y
/ Cry	otogra	phy r	neth	ods,			Data integrity					Y	Y	
· · -	Algorithms, models, techniques						Authentication exchange		Ŷ		Y	Ŷ		Y
		~)			- L		Traff	ïc padding		Y				
								ing control	Y	Y				Ŷ
				Mech	hanism			rization	-		Y	Y	Y	
		Authenti-									I	1	1	
Service	Enciph- erment	signature	Access control	Data integrity	-	Traffic padding	Routing control							
Peer entity authentication		Y			Y					- 1				
Data origin authenticat	ion Y	Y												
Access control			Y											
Confidentiality	Y						Y							
Traffic flow confidentia	lity Y					Y	Y							
Data integrity	Y	Y		Y										
Non-repudiation		Y		Y				Y						
Availability				Y	Y				1					

Dependable Distributed Systems


© DI/FCT/UNL, Henrique João L. Domingos

Computer Systems and Network Security

- Computer Systems (Computing Nodes)
- Network (Communication Security)
 - Distributed Systems Security Dependable Distributed Systems

Failure Models and Threat Models Security, Intrusion Tolerance and Fault Tolerance

Secure Data Storage Software Security + Software Attestation + — Trusted Execution + Dependability Assumptions

Secure Com. Channels PtP vs. End-to-End Secure Protocols Secure Endpoints Dependability Assumptions

What/Where/How to Identify the Trust Computing Model

© DI/FCT/UNL, Henrique João L. Domingos

Dependable Systems

- Dependable system:
 - a system we can depend on
 - A system is dependable if reliance can justifiably be placed on the service it delivers.
 - dependability as the ability to provide services that can defensibly be trusted within a time-period.

Dependability

- In Systems Engineering: dependability as a measure (metrics) of the provided attributes
- In Software Engineering, dependability as the ability to provide services that can defensibly be trusted within a time-period (a certain life cycle)
- See, for ex: https://en.wikipedia.org/wiki/Dependability

Dependability and Dependable Systems

- Dependable systems are characterized by dependability attributes and metrics of their attributes:
 - Availability: continuity of correct operation
 - Reliability: readiness for correct operation
 - Maintainability and maintenance support: ability and functions for maintenance and repair (recovery)
 - Performance: operation provided in useful time
 - **Durability:** ability to remain functional and usable, with minimal or non-excessive maintenance or repair in a lifetime period
 - Safety: absence of bad / catastrophic consequences on the users and environment
 - and Security: Confidentiality, Integrity, Availability, Authenticity, Access Control, and also more and more ... Privacy (including Data Privacy

Privacy-Enhanced Computation)

© DI/FCT/UNL, Henrique João L. Domingos

Typology of Defenses in Distributed Systems Security for Dependability Criteria

© DI/FCT/UNL, Henrique João L. Domingos

- Physical Defenses: Catastrophes/Disasters
- Prevention Defenses against Systems' Faults or Failures

Prevention defenses against non-authorized activities

© DI/FCT/UNL, Henrique João L. Domingos

- Physical Defenses: Catastrophes/Disasters
 - Ex., Environmental, Political, Material, Natural/Accidental
- Prevention Defenses against Systems' Faults or Failures
 - Energy or Blocking faults causing stop-failures
 - Temporary faults causing intermittent failures in processing and communication (connectivity conditions)
 - Possible arbitrary faults (or byzantine faults)
- Prevention defenses against non-authorized activities
 - Information access, abuse of privileges
 - Tampering, fake information forging or illicit modification
 - Unfairness and abusive use of computational resources (ex., abuses in multi-shared resources
 - Service denial activities

- Complexity Issues
- Realistic Approaches
- Perimeter Defenses vs. "in deep" Defenses

- Complexity Issues
- Realistic Approaches
- Perimeter Defenses vs. "in deep" Defenses
- Perimeter Defenses (ex., IPS or FWs: NIPS, HIPS; IDS: HIDS, NIDS; Hpots and HNets)
 - Separation (no direct interaction) between:
 - Side where threats are originated or where adversaries (or attackers) act

(regarded as "external attackers" on "external perimeters")

- Side of protected resources on "internal perimeters)
- What if adversaries exist in the protected perimeter?
 - Protection of security domains / different security levels
 - Possible Fine-grained granularity

© DI/FCT/UNL, Henrique João L. Domingos

- Complexity Issues
- Realistic Approaches
- Perimeter Defenses vs. "in deep" Defenses
- In Deep Defense:
 - More complex (but can be more effective)
 - Protection of all security levels involved (not only the externalization of systems or interfaces between security domains)

Security Policy Enforcements

• Define security requirements that must be verified

Security Policy Enforcements

- Define security requirements that must be verified
 - Classified information, confidentiality and access-control (permission/deniable models)
 - Protection of sensitive data: privacy guarantees, backup and recovery guarantees
 - Business or organization services' continuity
 - Trustworthy conditions for systems' operation and compliance
 - Proofs of correction, authenticity, attestation, origin, authoring, ownership in information exchanges
 - Logging and auditing of relevant events or retention of evidences for forensics and analysis of occurred actions
 - Authentication factors and proofs to authenticate roles, users and systems' principals, entities or subjects
 - Authorization rules and privileges for roles, users or principals
 - Monitoring/Auditing processes

© DI/FCT/UNL, Henrique João L. Domingos

Correct choice of security mechanisms: Different types => Different Purposes

Problem: How to choose the right mechanism for the right purpose? Classification approach of different types of mechanisms:

Correct choice of security mechanisms: Different types => Different Purposes

Problem: How to choose the right mechanism for the right purpose? Classification approach of different types of mechanisms:

- Containment
- Access-Control
- Privileged Execution
- Filtering
- Registration
- Inspection
- Auditing
- Cryptographic mechanisms
- Secure Channels and Cryptographically Secure Protocols

Correct choice of security mechanisms: Different types => Different Purposes

Problem: How to choose the right mechanism for the right purpose? Classification approach of different types of mechanisms:

- Containment (IPS, Sandboxing, Isolation)
- Access-Control (MAC, DAC. RBAC, ABAC, C-ABAC Models)
- Privileged Execution (Separation of Rights and Duties)
- Filtering (Ex., Filtering Rules, Tainting Analysis and Dynamic Content and Stateful Inspection)
- Registration (Event Logging)
- Inspection (IDS, Static and Dynamic in Runtime and/or Real-Time Anomalous Detection)
- Auditing (Automatic + Semiautomatic
 Verification and Supervision)
- Cryptographic mechanisms (Algs, Construction schemes, Secure Parameterizations, Programming Techniques and Tools)
- Secure Channels and Cryptographically Secure Protocols

Key-Criteria: No Security by Obscurity ...

NO SECURITY BY OBSCURITY !!!!

- We must choose mechanisms ...
 - Well established, well accepted and respectable in the scrutiny of the scientific and research community and relevant venues
 - Published, with information sources (and possibly implementation) allowing for study
 - Correctly implemented with public verification and certification acknowledgement from well-reputable entities
 - Open (published), considered relevant and interesting as object of broad study by the research, scientific and R&D communities
 - From certified standards by relevant entities and organziations (ex., ANSI, NIST, FIPS-PUB, ISO, IEEE, IETF ... IACR,) or Certified Labs (ex., NIST/NVLAP and accreditaded CMTLs, compliant implementations with valid/updated IETF/RFCs, RSA Labs, ...)

Revision: Suggested Readings

Security Objectives and Challenges

Suggested Readings:

W. Stallings, L. Brown, Computer Security – Principles and Practice, Person, Chap. 1

W. Stallings, Network Security Essentials – Applications and Standards, Chap 1

Complementary reading (in Portuguese)

- Targets of Defense
- Vulnerability vs. Risk Management Issues
- Typology of Defenses in CSNS
- Perimeter vs. "in Deep" Defenses
- Security Policy Enforcement
- Types of Security Mechanisms
- Distributed Systems Security Principles and Risks

Suggested Reading (Portuguese Language): A. Zúquete, Segurança em Redes Informáticas, Cap. 1 - Introdução (pp 11-16), FCA, 5° Ed., 2018