
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 1

CLOUD COMPUTING SYSTEMS

Lecture 9-10

Nuno Preguiça

(nuno.preguica_at_fct.unl.pt)

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 2

OUTLINE

Containers

• Introduction

• Under the hood
• Kernel namespaces
• Cgroups
• Copy-on-write File system

• Docker

• Docker compose

• Docker swarm

• Kuebernetes

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 3

VIRTUAL MACHINES: PROS

Efficiency. A virtual machine allows to efficiently use resource
and provides isolation.

Flexibility. Resources can be allocated as needed.

Backup and recovery. Virtual machines can be stored as a
single file that can be easily backed up on another source.

OS freedom. Different guest OSs can exist on the same
hypervisor.

Performance and moving. Hypervisors support moving a
virtual machine from one host to another in case of
performance degradation on the host machine.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 4

VIRTUAL MACHINES: CONS

Performance overhead. A VM stack includes the guest OS,
the hypervisor and potentially the host OS (for type 2
hypervisors).

Efficient resource utilization. Using multiple OSs in the
same hypervisor duplicates the used resources.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 5

WHY NOT USING SIMPLE PROCESSES INSTEAD OF
VMS?

Isolation. We want that an application does not affect other
applications in any way.

• E.g.: be sure that a malicious user in a web application cannot gain
access to the entire server.

Manage application dependencies. Different applications
have different dependencies – libraries, library versions, etc.
Sometimes it is complex to install all dependencies of an
application or keep the dependencies of all application in the
same system.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 6

WHAT ARE CONTAINERS?

Containers provide OS-level
virtualization.

Provides private namespace,
network interface and IP
address, file systems, etc.

Unlike VMs, containers share
the host system’s kernel with
other containers.

)LJXUH� ���� %DVLF� FRQWDLQHU� DUFKLWHFWXUH�� 'HSHQGHQFLHV�� GLUHFWRU\� VWUXFWXUH�
OLEUDULHV��SURFHVV�VSDFH��DQG�VR�RQ

$V�\RX�FDQ�VHH��FRQWDLQHUV�FOHDUO\�SURYLGH�WKH�DSSOLFDWLRQ�DQG�SURFHVV�LVRODWLRQ
ZKHUH� RQH� DSSOLFDWLRQ� LV� FRPSOHWHO\� XQDZDUH� RI� WKH� H[LVWHQFH� RI� DQRWKHU
DSSOLFDWLRQ��%XW�DOO�WKH�SURFHVVHV�UXQ�RQ�DQG�VKDUH�WKH�VDPH�NHUQHO�XVHG�E\�26�
+RZ�GRHV� WKLV�KDSSHQ"�&RQWDLQHUV�XVH�UHVRXUFH� LVRODWLRQ�IHDWXUHV�RI� WKH�/LQX[
NHUQHO��VXFK�DV�FRQWURO�JURXSV�DQG�QDPHVSDFHV�� WR�DOORZ�LQGHSHQGHQW�SURFHVVHV
WR� UXQ�ZLWKLQ�D� VLQJOH�/LQX[� LQVWDQFH��7KLV� JRHV�EDFN� WR�ZK\� HDFK� DSSOLFDWLRQ
GRHV� QRW� KDYH� LWV� RZQ�26�� DV�90V�GR��7KLV� DOVR�PHDQV� WKDW� YLUWXDO�PDFKLQHV
SURYLGH� EHWWHU� LVRODWLRQ� WKDQ� FRQWDLQHUV� SURYLGH�� +RZHYHU�� WKDWߞV� ZKDW� PDNHV
FRQWDLQHUV� YHU\� OLJKWZHLJKW�� PDNLQJ� WKHP� HDV\� WR� VKLS� DQG� PRYH� DURXQG�
%HFDXVH�RI�WKLV�OLJKWZHLJKW�QDWXUH�RI�FRQWDLQHUV��\RX�FDQ�UXQ�PRUH�FRQWDLQHUV�RQ
D�JLYHQ� KDUGZDUH� FRPELQDWLRQ� WKDQ� LI� \RX�ZHUH� WR� UXQ�90V��:LWK� FRQWDLQHUV�
\RX�XVH�\RXU�KDUGZDUH�UHVRXUFHV�PXFK�PRUH�HIILFLHQWO\�
7KHVH�FRQWDLQHUV�DUH�DOVR�NQRZQ�DV�/LQX[�FRQWDLQHUV�RU�/;&V��7KH�FRQWDLQHUV

FRQFHSW� KDV� EHHQ� DURXQG� IRUHYHU� EXW� KDV� RQO\� UHFHQWO\� JDLQHG� VLJQLILFDQW
SRSXODULW\�GXH�WR�'RFNHU��$V�ZH�GLVFXVVHG��'RFNHU�LV�DQ�RSHQ�VRXUFH�LQLWLDWLYH
WKDW� LQWURGXFHG� VHYHUDO� FKDQJHV� WR�/LQX[�EDVHG� FRQWDLQHUV� WR�PDNH� WKHP�PRUH
SRUWDEOH��HDV\�WR�XVH��DQG�IOH[LEOH��,W�GLG�WKDW�E\�LPSOHPHQWLQJ�VHW�RI�XWLOLWLHV�WKDW
HQDEOH� WKH� FRQWDLQHUV� SRUWDELOLW\� DQG� IOH[LELOLW\�� 7KHVH� XWLOLWLHV� DOORZ� \RX� WR

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 7

CONTAINERS PROMISES

Build once, run anywhere

• Faster deployment

• Portability across machines

• Version control

• Simplified dependency management

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 8

BEFORE CONTAINERS

Isolating applications is problem that exists for years.

chroot – Allows to specify a directory as the root directory for
an application. This makes it impossible for an application to
access other application files (and other resources, depending
on the systems).

Chroot isolation not perfect. The process can still access the
underlying IO devices, it can execute a second chroot if it has
enough privileges.

All application dependencies need to be copied into the chroot
directory.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 9

OUTLINE

Containers

• Introduction

• Under the hood
• Kernel namespaces
• Cgroups
• Copy-on-write File system

• Docker

• Docker compose

• Docker swarm

• Kuebernetes

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 10

DOCKER

Docker is the most popular container technology.

It builds on the following technologies:

• Kernel namespaces

• Cgroups

• Copy-on-write File system

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 11

DOCKER

Docker is the most popular container technology.

It builds on the following technologies:

• Kernel namespaces

• Cgroups

• Copy-on-write File system

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 12

KERNEL NAMESPACES

Kernel namespaces split kernel resources (processes, users,
network stacks, etc.) into one instance per namespace.

A process only views the resources in its namespace.

There are currently 6 namespaces:
• mnt (mount points, filesystems)
• pid (processes)
• net (network stack)
• ipc (System V IPC)
• uts (hostname)
• user (UIDs)

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 13

KERNEL NAMESPACES: IMPLEMENTATION

Support for kernel namespaces added to the kernel.

New system calls:

• clone() - creates a new process and a new namespace;
• The process is associated to the new namespace.

• unshare() - creates a new namespace and attaches the
current process to it.

• setns() - allows for joining an existing namespace.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 14

USE OF KERNEL NAMESPACES

Kernel namespaces are used to create isolated containers that
have no visibility to objects outside the container.

The processes running inside a container share the underlying
kernel with other containers.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 15

SOME MORE INFO

UTS Namespace:
• Provides namespace-specific hostname and domain name.

Network Namespace:
• A network namespace is logically a copy of the network stack, with

its own routes, firewall rules, and network devices.
• Each network namespace has its own IP addresses.
• A network device belongs to exactly one network namespace. A

socket belongs to exactly one network namespace.
• Communicating between two network namespaces:

• Veth (virtual ethernet) is used like a pipe between two namespaces
• Sockets also work

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 16

SOME MORE INFO (2)

Mount Namespace:
• On creation, the file system tree is copied to new space, with all

previous mounts visible.
• Future mounts/unmounts invisible to the rest of the system.

PID Namespace:
• Processes in different PID namespaces can have the same process

ID.

User Namespace:
• A process will have distinct set of UIDs, GIDs and capabilities.

IPC Namespace:
• Each namespace gets its own IPC objects and POSIX message

queues.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 17

DOCKER

Docker is the most popular container technology.

It builds on the following technologies:

• Kernel namespaces

• Cgroups

• Copy-on-write File system

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 18

CONTROL GROUPS (CGROUPS)

Cgroups are a mechanism for applying hardware resource
limits and access controls to a process or collection of
processes.

The cgroup mechanism and the related subsystems provide a
tree-based hierarchical, inheritable and optionally nested
mechanism of resource control.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 19

CGROUPS UNDER THE HOOD

The implementation of cgroups requires a few, simple hooks
into the rest of the kernel: in boot phase, process creation and
destroy.

All operations on cgroups are executed using operations on a
VFS (virtual file system).

There are 11 cgroup subsystems: cpuset, freezer, mem, blkio,
net_cls, net_prio, devices, perf, hugetlb, cpu_cgroup, cpuacct.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 20

CGROUPS UNDER THE HOOD (2)

cpu, cpuacct, cpuset – allows to control the minimum and
maximum CPU time of the processes in a cgroup, and to assign
processes to a cgroup.

memory – allows to limit the memory used by a cgroup.

devices – allows to control which processes may create
devices and open them for eeading and writing.

freezer – allows to suspend and restore all processes in a
cgroup.

net_cls, net_prio – allows to give priorities, per network
interface, and to place a classid on packets created in a
cgroup; this classid can be used in firewall rules, shape traffic,
etc. (does not apply to incoming traffic)

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 21

CGROUPS UNDER THE HOOD (2)

blkio – controls and limits access to specified block devices.

perf_event – allows perf monitoring of the set of processes in
a cgroup.

hugetlb - supports limiting the use of huge pages by cgroups.

pids – allows limiting the number of process that may be
created in a cgroup (and its descendants).

rdma - permits limiting the use of RDMA/IB-specific resources
per cgroup.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 22

USE OF CGROUPS

Cgroups are used to limit the memory and CPU consumption of
containers. A container can be resized by simply changing the
limits of its corresponding cgroup.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 23

DOCKER

Docker is the most popular container technology.

It builds on the following technologies:

• Kernel namespaces

• Cgroups

• Copy-on-write File system

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 24

UNIONFS

UnionFS is a copy-on-write file system that is the union of
existing file systems.

Gives a unified view of the file system, that combines all
stacked file systems.

On write to the UnionFS, the overwritten data is saved to a
new path, specific to that container.

• Thus, writes of one container do not affect reads of another
container

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 25

USE OF UNIONFS

UnionFS allows several containers to share common data. Each
layer is only stored once.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 26

OUTLINE

Containers

• Introduction

• Under the hood
• Kernel namespaces
• Cgroups
• Copy-on-write File system

• Docker

• Docker compose

• Docker swarm

• Kuebernetes

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 27

DOCKER

Built on top of kernel namespaces, cgroups, unionFS, and
capabilities.

Each container gets its own set of namespaces and cgroups.

Namespaces isolate containers from each other: one container
cannot even see the list of processes in another container.

Cgroups allow the admin to isolate the resources used by each
container and its children.

Running the docker daemon requires root privileges.

Docker provides a whitelist of capabilities to root users inside a
container.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 28

DOCKER ENGINE

• Docker daemon (dockerd)
manages Docker objects
such as images, containers,
networks, and volumes.

• The docker client sends
requests to docker daemon.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 29

DOCKER ENGINE (2)

A Docker registry stores
Docker images. Docker is
configured to search in Docker
Hub by default.

An image is a read-only
template with instructions for
creating a Docker container.
Often, an image is based
on another image, with some
additional customization.

A Docker image can be
created from the specification
in a Dockerfile.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 30

CREATING DOCKER IMAGE

FROM <image>[:<tag>] [AS <name>]

Initializes a new build stage and sets
the Base Image.

ADD <src>... <dest>

COPY <src>... <dest>

Copies new files, directories from
<src> and adds them to the filesystem
of the image at the path <dest>.

ADD allows to use URL as src and
unpacks (tar, bzip) archives.

This creates a new layer.

FROM jboss/wildfly:14.0.1.Final

COPY *.war
/opt/jboss/wildfly/standalone/deploymen
ts/

RUN /opt/jboss/wildfly/bin/add-user.sh
admin Admin#70365 --silent

EXPOSE 9990

CMD
["/opt/jboss/wildfly/bin/standalone.sh"
, "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 31

CREATING DOCKER IMAGE (2)

RUN <command>

RUN ["exec","param1","param2"]

Execute a commands in a new layer
on top of the current image and
commit the results.

As a RUN creates a new layer, cleanup
should be made in the same
command.
RUN apt-get update && \
apt-get install -y \
--no-install-recommends \
g++ \
gcc \
libc6-dev \
make \
&& rm -rf /var/lib/apt/lists/*

FROM jboss/wildfly:14.0.1.Final

COPY *.war
/opt/jboss/wildfly/standalone/deploymen
ts/

RUN /opt/jboss/wildfly/bin/add-user.sh
admin Admin#70365 --silent

EXPOSE 9990

CMD
["/opt/jboss/wildfly/bin/standalone.sh"
, "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 32

CREATING DOCKER IMAGE (3)

EXPOSE <port>
[<port>/<protocol>...]

Informs Docker that the container
listens on the specified network ports
at runtime. By default, protocol is
assumed to be TCP.

FROM jboss/wildfly:14.0.1.Final

COPY *.war
/opt/jboss/wildfly/standalone/deploymen
ts/

RUN /opt/jboss/wildfly/bin/add-user.sh
admin Admin#70365 --silent

EXPOSE 9990

CMD
["/opt/jboss/wildfly/bin/standalone.sh"
, "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 33

CREATING DOCKER IMAGE (4)

CMD command param1 param2

CMD ["exec","param1","param2"]

Sets the command to be executed
when running the image.

Only one command per image is
allowed. If more than one command is
specified, only the last one is
executed. When running the docker,
the command can be overridden.

FROM jboss/wildfly:14.0.1.Final

COPY *.war
/opt/jboss/wildfly/standalone/deploymen
ts/

RUN /opt/jboss/wildfly/bin/add-user.sh
admin Admin#70365 --silent

EXPOSE 9990

CMD
["/opt/jboss/wildfly/bin/standalone.sh"
, "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 34

CREATING DOCKER IMAGE (5)

ENTRYPOINT command param1
param2

ENTRYPOINT
["exec","param1","param2"]

Sets the command to be executed
when running the image. This cannot
be overridden when starting the
image.

Parameters specified when starting the
image will be passed as parameters.

FROM jboss/wildfly:14.0.1.Final

COPY *.war
/opt/jboss/wildfly/standalone/deploymen
ts/

RUN /opt/jboss/wildfly/bin/add-user.sh
admin Admin#70365 --silent

EXPOSE 9990

CMD
["/opt/jboss/wildfly/bin/standalone.sh"
, "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 35

CREATING DOCKER IMAGE (6)

WORKDIR /path/to/workdir

Sets the environment variable <key>
to the value <value>, for both the
build process and when the container
runs.

FROM jboss/wildfly:14.0.1.Final

WORKDIR /opt/jboss/wildfly

ADD scc-backend-aula4-0.1.war
standalone/deployments/

RUN bin/add-user.sh admin Admin#70365 -
-silent

EXPOSE 9990

CMD ["bin/standalone.sh", "-b",
"0.0.0.0", "-bmanagement", "0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 36

CREATING DOCKER IMAGE (7)

ENV <key> <value>

ENV <key>=<value> ...

Sets the environment variable <key>
to the value <value>, for both the
build process and when the container
runs.

USER <user>

Sets the user name (or UID) and
optionally the user group (or GID) to
use when running the image and for
any RUN, CMD and ENTRYPOINT
instructions that follow it in the
Dockerfile.

FROM jboss/wildfly:14.0.1.Final

COPY *.war
/opt/jboss/wildfly/standalone/deploymen
ts/

RUN /opt/jboss/wildfly/bin/add-user.sh
admin Admin#70365 --silent

EXPOSE 9990

CMD
["/opt/jboss/wildfly/bin/standalone.sh"
, "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 37

CREATING DOCKER IMAGE (8)

VOLUME ["/data"]

Creates a mount point with the
specified name and marks it as holding
externally mounted volumes from
native host or other containers.

FROM jboss/wildfly:14.0.1.Final

COPY *.war
/opt/jboss/wildfly/standalone/deploymen
ts/

RUN /opt/jboss/wildfly/bin/add-user.sh
admin Admin#70365 --silent

EXPOSE 9990

CMD
["/opt/jboss/wildfly/bin/standalone.sh"
, "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 38

BUILD DOCKER IMAGE

docker build [OPTIONS] PATH

Builds a docker image. PATH should specify a directory containing a
Dockerfile and all resources to be copied.

Some options:

-t tag: specifies the tag for the built image.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 39

BUILD DOCKER IMAGE (9)
nmp$ docker build -t nunopreguica/ccs1920-app container
Sending build context to Docker daemon 20.94MB
Step 1/6 : FROM jboss/wildfly:14.0.1.Final
---> 8c9bcba630f0
Step 2/6 : WORKDIR /opt/jboss/wildfly
---> Using cache
---> d6992eeae570
Step 3/6 : ADD scc-backend-aula4-0.1.war standalone/deployments/
---> Using cache
---> 46f3931aff1a
Step 4/6 : RUN bin/add-user.sh admin Admin#70365 --silent
---> Using cache
---> 24fd2f62ab29
Step 5/6 : EXPOSE 9990
---> Using cache
---> 025cf1e0321b
Step 6/6 : CMD ["bin/standalone.sh", "-b", "0.0.0.0", "-bmanagement",
"0.0.0.0"]
---> Using cache
---> 4a7f4c112ff0
Successfully built 4a7f4c112ff0
Successfully tagged nunopreguica/ccs1920-app:latest

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 40

DOCKER RUN

docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

Runs an image, downloading it if necessary.

Some options:

-P : Publish all exposed ports to the host interfaces

-p local_port:container_port

-p=[] : Publish a container's port or a range of ports to the host
$ docker run -p 9990:9990 -p 8080:8080 nunopreguica/ccs1920-
app

-it : Runs the image in interactive mode.
$ docker run -it ubuntu:14.04 /bin/bash

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 41

DOCKER RUN (2)

docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

Runs an image, downloading it if necessary.

Some options:

-v, --volume=[host-src:]container-dest[:<options>]:
Bind mount a volume.
$ docker run -v $(pwd):/config -t nunopreguica/ccs1920-
test artillery run create-posts.yml

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 42

DOCKER RUN (3)
-c, --cpu-shares=0 CPU shares (relative weight)

--cpus=0.000 Number of CPUs. Number is a fractional number. 0.000 means no limit.

--cpu-period=0 Limit the CPU CFS (Completely Fair Scheduler) period

--cpuset-cpus="" CPUs in which to allow execution (0-3, 0,1)

--cpuset-mems="" Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only
effective on NUMA systems.

--cpu-quota=0 Limit the CPU CFS (Completely Fair Scheduler) quota

--cpu-rt-period=0
Limit the CPU real-time period. In microseconds. Requires parent
cgroups be set and cannot be higher than parent. Also check rtprio
ulimits.

--cpu-rt-runtime=0
Limit the CPU real-time runtime. In microseconds. Requires parent
cgroups be set and cannot be higher than parent. Also check rtprio
ulimits.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 43

DOCKER RUN (4)

-m, --memory=""
Memory limit (format: <number>[<unit>]). Number is a
positive integer. Unit can be one of b, k, m, or g.
Minimum is 4M.

--memory-swap=""
Total memory limit (memory + swap,
format: <number>[<unit>]). Number is a positive
integer. Unit can be one of b, k, m, or g.

--memory-reservation="" Memory soft limit (format: <number>[<unit>]). Number
is a positive integer. Unit can be one of b, k, m, or g.

--kernel-memory=""
Kernel memory limit (format: <number>[<unit>]).
Number is a positive integer. Unit can be one of b, k, m,
or g. Minimum is 4M.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 44

OTHER DOCKER COMMANDS

docker ps [OPTIONS]

Lists containers.

docker kill [OPTIONS] CONTAINER [CONTAINER...]

Kills one or more containers.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 45

OTHER DOCKER COMMANDS (2)

docker images [OPTIONS] [REPOSITORY[:TAG]]

Lists images.

docker pull [OPTIONS] NAME[:TAG|@DIGEST]

Pulls an image from a registry.

docker push [OPTIONS] NAME[:TAG]

Push an image or a repository to a registry.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 46

DOCKER NETWORKING

There are several options of networking.

Bridge networking allows to connect several dockers
containers running in the same docker host.

A network can be created using docker network create.
$ docker network create my-net

When running a docker, you can specify it will be in the
network. The following example would allow to run the server
and artillery client in the same network.
$ docker run --network=my-net --name=server
nunopreguica/ccs1920-app
$ docker run --network=my-net -v $(pwd):/config -t
nunopreguica/ccs1920-test artillery run create-posts.yml

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 47

DOCKER NETWORKING

The overlay network driver creates a distributed network
among multiple Docker daemon hosts.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 48

DOCKER STORAGE

By default all files created inside a container are stored on a
writable container layer that is not persisted.

Docker has two options for containers to store files in the host
machine, so that the files are persisted even after the container
stops: volumes, and bind mounts.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 49

DOCKER STORAGE: VOLUMES

Volumes are stored in a part
of the host filesystem which
is managed by Docker.
Non-Docker processes should
not modify this part of the
filesystem. Volumes are the
best way to persist data in
Docker.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 50

DOCKER STORAGE: BIND VOLUMES

Bind mounts may be
stored anywhere on the host
system. They may even be
important system files or
directories.

Non-Docker processes on the
Docker host or a Docker
container can modify them at
any time.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 51

DOCKER STORAGE: TMPFS

tmpfs mounts are stored in
the host system’s memory
only, and are never written to
the host system’s filesystem.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 52

OUTLINE

Containers

• Introduction

• Under the hood
• Kernel namespaces
• Cgroups
• Copy-on-write File system

• Docker

• Docker compose

• Docker swarm

• Kuebernetes

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 53

DOCKER COMPOSE

Docker compose allows to define and run multi-container
Docker applications.

The specification should be defined in a docker-compose.yml
file.

Multi-container application started using:

$ docker-compose up -d

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 54

DOCKER COMPOSE: EXAMPLE

version: "3"
services:
web:
image: webserver
depends_on:
- "db"

ports:
- "8000:8000"

db:
image: postgres

networks:
default:
external:
name: my-pre-existing-network

depends_on : defines the order
for starting up the services.

image : docker image to be used

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 55

OUTLINE

Containers

• Introduction

• Under the hood
• Kernel namespaces
• Cgroups
• Copy-on-write File system

• Docker

• Docker compose

• Docker swarm

• Kuebernetes

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 56

DOCKER SWARM

Swarm orchestrates a cluster of Docker instances.

A swarm consists of multiple Docker hosts which run in swarm
mode and act as managers (to manage membership and
delegation) and workers (which run swarm services).

When creating a service, you define its optimal state (number
of replicas, network and storage resources available to it, ports
the service exposes to the outside world, and more).

Docker works to maintain that desired state. For instance, if a
worker node becomes unavailable, Docker schedules that
node’s tasks on other nodes.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 57

DOCKER SWARM: NODES

A node is an instance of the Docker engine participating in the
swarm. Typically, it consists of Docker nodes distributed across
multiple physical and cloud machines.

The manager node receives service definitions and
dispatches units of work called tasks to worker nodes

Manager nodes also perform the orchestration and cluster
management functions required to maintain the swarm state.

Worker nodes receive and execute tasks dispatched from
manager nodes.

A given Docker host can be a manager, a worker, or both.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 58

DOCKER SWARM: SERVICE

A service is the definition of the tasks to execute on the
manager or worker nodes. A service is the primary root of user
interaction with the swarm.

A service specifies which container image to use and which
commands to execute.

In the replicated services model, the swarm manager
distributes a specific number of replica tasks among the nodes
based on the scale set in the desired state.

For global services, the swarm runs one task for the service on
every available node in the cluster.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 59

DOCKER SWARM: TASK

A task is a running container
which is part of a swarm service.
It is the atomic scheduling unit of
swarm.
• Manager nodes assign tasks to worker

nodes according to the number of
replicas set in the service scale.

• Once a task is assigned to a node, it
cannot move to another node. It can
only run on the assigned node or fail.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 60

LOAD BALANCING

The swarm manager uses ingress load balancing to expose
the services externally to the swarm. The swarm manager can
automatically assign the service a PublishedPort or you can
configure a PublishedPort for the service.

External components, such as cloud load balancers, can access
the service on the PublishedPort of any node in the cluster. All
nodes in the swarm route ingress connections to a running task
instance.

Swarm mode automatically assigns each service in the swarm a
DNS entry. The swarm manager uses internal load
balancing to distribute requests among services within the
cluster based upon the DNS name of the service.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 61

SWARM SERVICES VS. STANDALONE CONTAINERS

It is possible to modify a service’s configuration, including the
networks and volumes it is connected to, without the need to
manually restart the service.

Docker will update the configuration, stop the service tasks
with the out of date configuration, and create new ones
matching the desired configuration.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 62

OUTLINE

Containers

• Introduction

• Under the hood
• Kernel namespaces
• Cgroups
• Copy-on-write File system

• Docker

• Docker compose

• Docker swarm

• Kubernetes

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 63

KUBERNETES

Kubernetes is an open-source platform for automating
deployment, scaling, and operations of application containers.

• Horizontal Scalability

• Self-healing

• Service Discovery

• Automated Rollbacks

From Google projects Borg and Omega.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 64

KUBERNETES OBJECTS

Pod: encapsulates an application’s container (or multiple
containers), storage resources, a unique network IP, and
options that govern how the container(s) should run.

Service: a Service is an abstraction which defines a logical set
of Pods and a policy by which to access them.

Volume: a volume is a directory which is accessible to the
Containers in a Pod. A Kubernetes volume has the same
lifetime of the Pod that encloses it.

Namespace: Namespaces provide a scope for names. Names
of resources need to be unique within a namespace, but not
across namespaces.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 65

KUBERNETES OBJECTS: POD

A Pod is the basic execution unit of a Kubernetes application –
the smallest and simplest unit in the Kubernetes object model
that can be created or deployed.

A Pod encapsulates an application’s container (or multiple
containers), storage resources, a unique network IP, and
options that govern how the container(s) should run.

Docker is the most common container runtime used in a
Kubernetes Pod, but Pods support other container runtimes.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 66

KUBERNETES OBJECTS: POD (2)

Pods with a single container. In this case, a Pod is a
wrapper around a single container. This is the most common
Kubernetes use case.

Pods that run multiple containers that need to work
together. A Pod might encapsulate an application composed
of multiple co-located containers that are tightly coupled and
need to share resources. Example: one container serving files
from a shared volume to the public, while a separate “sidecar”
container refreshes or updates those files.

Each Pod runs a single instance of a given application. For
scaling horizontally (e.g., run multiple instances), multiple Pods
are used, one for each instance. Replicated Pods are usually
managed as a group by an abstraction called a Controller.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 67

INIT CONTAINERS

Some Pods have init
containers as well as app
containers.

Init containers run and
complete before the app
containers are started. If a init
container fails, the Pod is
reinitialized.

This can be used to make
initializations before staring
the main service.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 68

SHARED RESOURCES OF A POD

Networking

Each Pod is assigned a unique IP address. Every container in a
Pod shares the network namespace, including the IP address
and network ports. Containers inside a Pod communicate using
localhost. When containers in a Pod communicate with entities
outside the Pod, they must coordinate how they use the shared
network resources (such as ports).

Storage

A Pod can specify a set of shared storage Volumes. All
containers in the Pod can access the shared volumes, allowing
those containers to share data. Volumes also allow persistent
data in a Pod to survive in case one of the containers within
needs to be restarted.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 69

POD TEMPLATE

apiVersion: batch/v1
kind: Job
metadata:
name: hello

spec:
template: # This is the pod template
spec:
containers:
- name: hello
image: busybox
command: ['sh', '-c', 'echo "Hello, Kubernetes!"

&& sleep 3600’]
restartPolicy: OnFailure

The pod template ends here

Defines the name of the pod.

Defines what are the containers
running in this pod.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 70

KUBERNETES OBJECTS: SERVICES

Pods can fail and be restarted by the Kubernetes system.

For a given Deployment, the set of Pods running in one
moment in time can be different from the set of Pods running
that application a moment later.

This leads to a problem: if some set of Pods (call them
“backends”) provides functionality to other Pods (call them
“frontends”) inside your cluster, how do the frontends find out
and keep track of which IP address to connect to, so that the
frontend can use the backend part of the workload?

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 71

KUBERNETES OBJECTS: SERVICES (2)

A Service is an abstraction which defines a logical set of Pods
and a policy by which to access them.

For example, consider a stateless image-processing backend
which is running with 3 replicas. Frontends do not care which
backend they use and whether they change.

The Service abstraction enables this decoupling.

Kubernetes APIs for service discovery allows to query
Endpoints, that get updated whenever the set of Pods in a
Service changes.

For non-native applications, Kubernetes offers ways to
place a network port or load balancer in between your
application and the backend Pods.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 72

DEFINING A SERVICE

apiVersion: v1
kind: Service
metadata:
name: my-service

spec:
selector:
app: MyApp

ports:
- name: http
protocol: TCP
port: 80

- name: https
protocol: TCP
port: 443

Defines a service that will be implemented
by pods with the name MyApp.

Ports of the services. Outside applications
will access the service using these ports.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 73

SERVICE TYPE

ClusterIP: Exposes the Service on a cluster-internal IP. This is
the default ServiceType.

NodePort: Exposes the Service on each Node’s IP at a static
port (the NodePort). A ClusterIP Service, to which
the NodePort Service routes, is automatically created.

LoadBalancer: Exposes the Service externally using a cloud
provider’s load balancer. NodePort and ClusterIP Services, to
which the external load balancer routes, are automatically
created.

ExternalName: Maps the Service to the contents of
the externalName field (e.g. foo.bar.example.com).

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 74

KUBERNETES OBJECTS: VOLUMES

On-disk files in a Container are ephemeral. This leads to
problems for applications that are not stateless.

First, when a Container crashes, it will be restarted, but the
files will be lost - the Container starts with a clean state.

Second, when running Containers together in a Pod it is often
necessary to share files between those Containers.

The Kubernetes Volume abstraction solves both of these
problems.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 75

KUBERNETES OBJECTS: VOLUMES (2)

A volume is a directory which is accessible to the Containers
in a Pod.

A Kubernetes volume has the same lifetime of the Pod that
encloses it. Consequently, a volume outlives any Containers
that run within the Pod, and data is preserved across Container
restarts.

When a Pod ceases to exist, the volume will cease to exist, too.

Kubernetes supports many types of volumes, and a Pod can
use any number of them simultaneously. Some volumes are
specific to a given cloud.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 76

KUBERNETES OBJECTS: NAMESPACES

Kubernetes supports multiple virtual clusters backed by the
same physical cluster. These virtual clusters are called
namespaces.

Namespaces are intended for use in environments with many
users spread across multiple teams, or projects.

Namespaces provide a scope for names. Names of resources
need to be unique within a namespace, but not across
namespaces. Namespaces can not be nested inside one
another and each Kubernetes resource can only be in one
namespace.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 77

KUBERNETES CONTROLLERS

Deployments: A Deployment provides declarative updates for
Pods and ReplicaSets.

ReplicaSet: A ReplicaSet’s purpose is to maintain a stable set
of replica Pods running at any given time.

DaemonSet: A DaemonSet ensures that all (or some) Nodes
run a copy of a Pod. As nodes are added/removed to the
cluster, Pods are added to/deleted from them.

StatefulSet: StatefulSet is the workload API object used to
manage stateful applications.

Job: A Job creates one or more Pods and ensures that a
specified number of them successfully terminate

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 78

DEPLOYMENT

A Deployment provides declarative updates for Pods and
ReplicaSets.

A Deployment describes the desired state of the system. The
Deployment Controller changes the actual state to the desired
state at a controlled rate.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 79

DEPLOYMENT EXAMPLE
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx

spec:
replicas: 3
selector:
matchLabels:
app: nginx

template:
metadata:
labels:
app: nginx

spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80

Defines a deployment with three
replicas of a container with name nginx.

Definition of the “nginx” container.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 80

REPLICASET

A ReplicaSet ensures that a specified number of pod replicas
are running at any given time. A Deployment manages
ReplicaSets.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 81

DAEMONSET

A DaemonSet ensures that all (or some) Nodes run a copy of
a Pod. As nodes are added to the cluster, Pods are added to
them. As nodes are removed from the cluster, those Pods are
garbage collected. Deleting a DaemonSet will clean up the
Pods it created.

Some typical uses of a DaemonSet are:

• running a cluster storage daemon, such as glusterd, ceph,
on each node.

• running a logs collection daemon on every node, such
as fluentd or logstash.

• running a node monitoring daemon on every node.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 82

STATEFULSETS

StatefulSet is used to manage stateful applications, and is
useful for applications that require one or more of the
following:

• Persistent, unique network identifiers.

• Persistent, persistent storage.

• Ordered, graceful deployment and scaling.

• Ordered, automated rolling updates.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 83

KUBERNETES CONTROL PLANE

The Kubernetes Control
Plane makes the cluster’s
current state match the
desired state, by performing a
variety of tasks automatically
– such as starting or
restarting containers, scaling
the number of replicas of a
given application, and more.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 84

KUBERNETES CONTROL PLANE (2)

The Kubernetes
Master runs on a single node
of a cluster, which is
designated as the master
node.

A Kubernetes Node runs:

• kubelet, which
communicates with the
Kubernetes Master.

• kube-proxy, a network
proxy which reflects
Kubernetes networking
services on each node.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 85

KUBERNETES VS. SWARM

Kubernetes is more sophisticated than Swarm.

Swarm works only with Docker, Kubernetes can work with
other container services also.

Kubernetes is more complex to deploy and manage compared
to Swarm.

Kubernetes is reported to have better scalability.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 86

KUBERNETES VS. SWARM: USAGE? (SOME
INDICATIONS FROM GOOGLE TRENDS)

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 87

OUTLINE

…

Container @ Azure

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 88

CONTAINERS @ AZURE

Azure has a comprehensive offer related to containers.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 89

TO KNOW MORE

Docker: Lightweight Linux Containers for Consistent Development and
Deployment. Petros Koutoupis. Linux Journal 2015.

https://www.linuxjournal.com/content/everything-you-need-know-about-
containers-part-iii-orchestration-kubernetes

Containers and Docker

https://docs.docker.com/engine/docker-overview/

Kubernetes
https://kubernetes.io/docs/concepts/#kubernetes-objects

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

https://kubernetes.io/docs/concepts/services-networking/service/

https://kubernetes.io/docs/concepts/storage/volumes/

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

https://www.linuxjournal.com/content/everything-you-need-know-about-containers-part-iii-orchestration-kubernetes
https://docs.docker.com/engine/docker-overview/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 90

ACKNOWLEDGMENTS

Some text and images from Docker, Kubernetes and Microsoft
online documentation.

Some slides based on a previous version by Paulo Lopes and
Vitor Duarte.

