
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 1

CLOUD COMPUTING SYSTEMS

Lecture 4

Nuno Preguiça

(nuno.preguica_at_fct.unl.pt)

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 2

OUTLINE

Application cache at the data-center.

Content-distribution network.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 3

OUTLINE

Application cache at the data-center.

Content-distribution network.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 4

PROBLEM

Application servers fetch data from the database.

Potential problems?

• Slow… databases store data on disk.

• Cost… cloud platforms pay-per-use model: each access is
charged.

Standard solution?

• Introduce a caching layer.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 5

HOW TO CACHE DATABASE RESULTS?

Cache data in the application server machine. Problems?

• The size of the cache is limited to the memory of each
machine.

• Distributing the load means that the same data will be
cached in multiple machines.

Can we share the cache among multiple machines?

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 6

USEFUL LATENCY NUMBERS (FROM JEFF DEAN,
GOOGLE)

Read 1 MB sequentially from memory 100,000 ns

Round trip within same datacenter 500,000 ns

Read 1 MB sequentially from SSD* 1,000,000 ns

Read 1 MB sequentially from disk 20,000,000 ns

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 7

SHARE CACHE AMONG MULTIPLE MACHINES

Advantages:

• Much larger cache size than caching only in the local memory.

• Pricing: cache access is cheaper than the database access at scale.

Disadvantages:

• Slower when compared to access to the local memory.

Image from: https://memcached.org/about

https://memcached.org/about

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 8

COMMON USES OF (APPLICATION SERVER) CACHES

• Content Caching
Store data that changes infrequently – e.g. page templates, data
modified periodically (e.g. main page in a newspaper), etc.
Reduces the processing time and server load.

• Cache-Aside
Cache part of the database for faster access. Modify the cache when
modifying the backend data.
Reduces the server load.

• User session caching
Store information associated with a user session in cache instead of (or
in addition to) on the database. E.g. store info such as history,
shopping carts, etc.
Allows faster interaction; Client requests can be processed by any
server.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 9

TWO MAIN SOLUTIONS (CURRENTLY)

Memcached

• Basic distributed cache, where objects are treated (mostly)
as BLOBs.

Redis

• Advanced data model, with support for types such as List,
Set, etc.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 10

TWO MAIN SOLUTIONS (CURRENTLY)

Memcached

• Basic distributed cache, where objects are treated
(mostly) as BLOBs.

Redis

• Advanced data model, with support for types such as List,
Set, etc.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 11

MEMCACHED OVERVIEW

Distributed key-value store (hashtable)

Limited size – key,value pairs are discarded when cache is full

• Cache eviction policy: LRU (least-recently used).

• More details: cache divided in HOT, WARM and COLD; new
items enter the HOT; cache eviction moves object to the
lower level.

Designed for:

• High-throughput servers – accessing memory is much faster
than disk.

• High-latency queries – avoid repeating costly queries.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 12

MEMCACHED ARCHITECTURE

One-hop DHT:

• Clients know about all servers.

• Clients know the hash function to assign a key to a server.
Can use consistent hashing.

• Clients send operations to the server that will hold a given
key directly.

• Servers maintain a “key-value” store.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 13

CHANGES IN THE APPLICATION CODE

function get_foo(int userid)
data = db_select(

"SELECT * FROM users WHERE userid = ?",userid)
return data

… should be modified to…

function get_foo(int userid) /* first try the cache */
data = memcached_fetch("userrow:" + userid)
if not data /* not found : request database */

data = db_select(
"SELECT * FROM users WHERE userid = ?", userid)

/* then store in cache until next get */
memcached_add("userrow:" + userid, data)

return data

Example from Wikipedia.

Why is the key userrow:user_id ?
Because we will use the cache to stora all

types of objecys and we cannot risk having
the same id for different types of objects.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 14

CHANGES IN THE APPLICATION CODE (2)

On updates should update the cache.

function update_foo(int userid, string dbUpdateString)
/* first update database */

result = db_execute(dbUpdateString)
if result /* database update successful : fetch

data to be stored in cache (id needed) */
data = db_select(

"SELECT * FROM users WHERE userid = ?", userid)
/* then store in cache until next get */

memcached_set("userrow:" + userid, data)

Example from Wikipedia.

Why is it necessary to read from DB
before setting the value in the database?
Because on concurrent updates, the value
stored in the database is undetermined.

Is this correct?
Not completely – see next run.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 15

CHANGES IN THE APPLICATION CODE (3)

Example from Wikipedia.

DB

Cache

Clt 1

Clt 2

A

A

Update to B

Update to C

execute(“update
to B”)

B

execute(“update
to C”)

C

C

B

function update_foo(int userid, string dbUpdateString)
result = db_execute(dbUpdateString)

if result
data = db_select("SELECT * FROM users WHERE userid = ?", userid)
memcached_set("userrow:" + userid, data)

How to solve?
No simple way. See next.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 16

MEMCACHED LIMITATIONS: THUNDERING HERDS

On a cache miss, multiple clients may end up trying to set the
value of a cache entry.

For a value updated very frequently, writes may be reordered
and the old value get written in the cache.

Solution [from Facebook]:

• Clients get leases for writing the value of a key. This
guarantees that a single client writes at a time.

More info at: R. Nishtala, et. al. Scaling Memcache at
Facebook. NSDI’13.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 17

ADDITIONAL FEATURES

Support for counter:

• Increment operation available to atomically increment an
integer.

Memcache::increment (string $key [, int $value = 1]) : int

What can this be used for?

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 18

MEMCACHED LIMITATIONS: NO REPLICATION

Designed for volatile data

• Failure: Clients just go to disk.

• Recovery: Cache gets populated as consequence of the
normal execution of clients.

Need redundancy?

• Need to create redundancy above Memcached.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 19

TWO MAIN SOLUTIONS (CURRENTLY)

Memcached

• Basic distributed cache, where objects are treated (mostly)
as BLOBs.

Redis

• Advanced data model, with support for types such as
List, Set, etc.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 20

REDIS OVERVIEW

Distributed key-value store (hashtable)

Values are types:

• List of strings (with insertion on head or tail)

• Set of strings

• Sorted set of strings

• Hashes (similar to a struct/map)

• Bit array

• HyperLogLogs (probabilistic data structure for estimating the
number of elements in a set)

Each data type has a set of operations it supports.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 21

REDIS OVERVIEW (2)

Redis can be used as a database, a cache or a message broker.

When used as a cache:

• it uses a limited amount of memory;

• it uses a LRU algorithm for cache eviction. Possible to control
cache eviction by:

• Set a TTL for eviction;
• Define that only keys with a TTL can be evicted (making some

entries persistent).

Redis supports transactions including a sequence of operations.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 22

REDIS ARCHITECTURE

Each server maintains key-value pairs.

Each server executes operations in the values.

Possible to create a cluster of Redis servers, with data
partitioned. Available partitioning strategies:

• Range partitioning;

• Hashing (some clients implement consistent hashing).
• Tag hashing to control location of data – a tag is a prefix to the

key; only the tag is hashed.
• E.g. {CSS}key1 and {CSS}key2 are hashed to the same server, as

only CSS is hashed.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 23

REDIS ARCHITECTURE (2)

Redis supports replication, but replication typically not used for
caching.

Primary-backup (remember Dist. Sys. course), with
asynchronous replication.

Multi-master replication with automatic conflict-resolution
(based on CRDTs).

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 24

REDIS PERSISTENCE

Several alternatives:

• No persistence.

• RDB persistence: performs point-in-time snapshots of the
database state at specified intervals.

• Append-only fashion: logs every write operation received by
the server, that will be played again at server startup. Log
compressed in background.

• Durability depends on the parameters used for fsync. Remember
the OS course.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 25

REDIS OPERATIONS: EXAMPLES

Set
redis> SADD myset "Hello”

(integer) 1

redis> SADD myset "World”

(integer) 1

redis> SADD myset "World”

(integer) 0

redis> SMEMBERS myset

1) "Hello"

2) "World”

redis>

List
redis> LPUSH mylist "world”

(integer) 1

redis> LPUSH mylist "hello”

(integer) 2

redis> LRANGE mylist 0 -1

1) "hello"

2) "world”

redis>

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 26

EXAMPLES OF USE

Simple caching (as with Memcached).

Advanced caching functionalities, using data types support.

E.g.: maintain a leaderboard, maintain a list of recent topics,
etc.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 27

CACHING AND CONSISTENCY

Using a distributed caching poses consistency problems for
data in the cache and in the database.

Need to control it in the application.
• When updating the database, it is necessary to update the cache

also.
• What happens if multiple clients are modifying the database

concurrently? How to guarantee that the cache is up-to-date with
the database.

With CosmosDB and Redis, a possible solution is to use the
timestamp associated with the document to guarantee that the
latest version is kept in the cache. The value set should include
both the key and the timestamp. When setting the value of the
cache, the old value can be returned, allowing the client to
check if it has overwritten a more recent value.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 28

CLOUD PLATFORMS SUPPORT

Azure

• Redis.

AWS

• ElastiCache with support for Redis and Memcached.

Google

• Memcached.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 29

OUTLINE

Application cache at the data-center.

Content-distribution network / content-delivery
network.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 30

CACHING CLOSER TO END-CLIENTS?

Caching in the servers:

1. does not reduce the latency incurred by client-server
communication;

2. does not reduce the number of request arriving at the
servers.

Can we cache data closer to the client?

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 31

CONTENT DELIVERY NETWORK (CDN)

A content delivery network (CDN) is a distributed network of
edge servers that cache contents in point-of-presence (POP)
locations that are close to end users, to minimize latency.

Google Cloud Cache locations @ google.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 32

CDN BENEFITS

Lower latency for clients, especially for applications in which
multiple round-trips are required to load content.

Large scaling to better handle instantaneous high loads, such
as the start of a product launch event.

Reduce the traffic sent to the origin server, as requests are
handled by the edge servers.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 33

CDN: HOW IT WORKS

1: Request forwarded to the
edge server (DNS returns
server based on the client
location).

2/3: If data is not in the
cache, it is requested to the
origin server.

4: The result is returned to
the client. The data is cached
according to a TTL.

Image and example from: https://docs.microsoft.com/en-us/azure/cdn/cdn-overview

https://docs.microsoft.com/en-us/azure/cdn/cdn-overview

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 34

CACHING RULES

Possible to define caching rules that affect:

• All requests;

• Request for given paths, extensions;

• Requests with given query string.

Possible caching rules include defining whether a page should
be cached or not, and the TTL for caching.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 35

ADVANCED CACHING FEATURES

Route Optimization

Route optimization chooses the most optimal path to the origin
to guarantee that content is delivered to end users via the
fastest and most reliable route possible.

TCP Optimizations

Several optimizations to TCP to speedup communication.

Eliminating TCP slow start.

Leveraging persistent connections.

Tuning TCP packet parameters.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 36

ADVANCED CACHING FEATURES (2)

Object prefetch

Prefetch consists in retrieving images and scripts embedded in
the HTML page while the HTML is served to the browser, and
before the browser even makes these object requests.

When the client makes the requests for the linked assets, the
CDN edge server already has the requested objects and can
serve them immediately without a round trip to the origin

Adaptive image compression

This feature automatically monitors network quality, and
employs standard JPEG compression methods when network
speeds are slower to improve delivery time (e.g. for mobile
users).

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 37

ADVANCED CACHING FEATURES (3)

Zone-based restriction

Allows to restrict access to content by country/region.
With geo-filtering, it is possible to create rules on specific paths
on the CDN endpoint to allow or block content in selected
countries/regions.

DDoS protection

A content delivery network provides DDoS protection by
design, by being able to absorb volumetric attacks. CDN also
include always-on traffic monitoring, and real-time mitigation of
common network-level attacks.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 38

TO KNOW MORE:

https://github.com/memcached/memcached/wiki/Overview

https://github.com/memcached/memcached/wiki/Programming

https://redis.io/topics/data-types-intro (too detailed)

https://docs.microsoft.com/en-us/azure/cdn/cdn-overview

https://docs.microsoft.com/en-us/azure/cdn/cdn-how-caching-
works

https://docs.microsoft.com/pt-pt/azure/cdn/cdn-dynamic-site-
acceleration

https://github.com/memcached/memcached/wiki/Overview
https://github.com/memcached/memcached/wiki/Programming
https://redis.io/topics/data-types-intro
https://docs.microsoft.com/en-us/azure/cdn/cdn-overview
https://docs.microsoft.com/en-us/azure/cdn/cdn-how-caching-works
https://docs.microsoft.com/pt-pt/azure/cdn/cdn-dynamic-site-acceleration

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 39

ACKNOWLEDGMENTS

Some text and images from Microsoft Azure online
documentation.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 40

PROJECT - HOW ALL THIS FITS TOGETHER FOR THE
PROJECT?

