
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   1

CLOUD COMPUTING SYSTEMS

Lecture 3

Nuno Preguiça

(nuno.preguica_at_fct.unl.pt)



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   2

DATES

Test 1 : 13/November (new date)

Test 2 : 8/January

Project 1 : 28/November

Project 2 : 29/December



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   3

PROJECT

The goal of the project is to build the backend of a system 
similar to Discord / Slack.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   4

DATA MANAGED BY THE SYSTEM

Users

• Manages information about users.

• Information for each user: nickname, name, photo.

Media

• Manages photos, videos.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   5

DATA MANAGED BY THE SYSTEM (2)

Channel

• Manages the information about channels.

• Information about channels: public / private, owner, list of 
members (if private).

Channel messages

• Manages the list of messages of a channel – a message has 
a sender, a text and (optionally) an associated photo/video.

• Operations: add message, reply message (reply message 
should include a reference to the original message).



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   6

OPERATIONS TO BE SUPPORTED

Besides the operation to update the previous data, the system 
should support the following endpoint:

• List of channels of a user;

• List of trending channels;

• List of suggested channels.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   7

OUTLINE

Motivation for geo-replicated storages.

Cloud databases: first generation.
• Amazon Dynamo.

Cloud databases: current generation.
• Azure Cosmos DB.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   8

SCALING APP SERVICES

When scaling out (running more instances) the application 
server of a three-tier model application, the data tier becomes 
a bottleneck.

Scaling up (running in more powerful machine) the database 
server has limits.

Client App Data Client DataApp



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   9

THE QUEST OF FASTER DATABASES

SQL databases provides strong consistency.

• Serializability requires that concurrent transactions execute 
as if they were executed serially.

• Common implementations use locks for achieving this.

Replicated databases with strong consistency provide the 
illusion that there is a single database.

• Require coordination among multiple servers.
Challenging in a single data center;
Too high latency in geo-replicated data centers.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   10

OUTLINE

Motivation for geo-replicated storages.

Cloud databases: first generation.
• Amazon Dynamo.

Cloud databases: current generation.
• Azure Cosmos DB.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   11

CLOUD DATABASES: FIRST GENERATION

Dynamo database from Amazon [2007].

Goal:

• Geo-replication with high availability and performance.

Highly influential in other cloud databases.

Dynamo: Amazon’s Highly Available Key-value Store 
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,  
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall  

and Werner Vogels 
Amazon.com 

 

ABSTRACT 
Reliability at massive scale is one of the biggest challenges we 
face at Amazon.com, one of the largest e-commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of Amazon’s 
core services use to provide an “always-on” experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management; D.4.5 
[Operating Systems]: Reliability; D.4.2 [Operating Systems]: 
Performance; 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Reliability. 

1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on Amazon’s platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
Amazon’s platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such Amazon’s software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for Amazon’s platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. Amazon’s platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on Amazon’s platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  

Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 

 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA. 
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00. 

195205



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   12

DYNAMO FEATURES: DATA MODEL

Simple data model: key-value pairs.

Simple API: 

• get( key) -> (list of values, 
context)

• put( key, value, context)

Why?

Easy to scale.

Consistent hashing

K58



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   13

DYNAMO FEATURES: EVENTUAL CONSISTENCY

High availability and low latency require accepting operations 
without coordinating with other replicas.

Consequence: concurrent updates. How to handle?

Eventual consistency model:

• Replicas can always accept updates;

• Updates are eventually propagated to all replicas;

• Replicas converge to the same state (after receiving the 
same set of updates).



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   14

DYNAMO FEATURES: EVENTUAL CONSISTENCY (2)

When concurrent updates occur, the system keeps the multiple 
versions. The application must merge versions by applying a 
new update. 

E.g. Shopping cart.

Apples

Apples
Oranges

(basket,ctx) := get(“cart”)
basket.add(“Oranges”)
put(“cart”,basket,ctx)

Apples
Pears

(basket,ctx) := get(“cart”)
basket.add(“Pears”)
put(“cart”,basket,ctx)

Apples
Oranges

Apples
Pears

Sy
nc

Apples
Oranges

Apples
Pears Apples

Oranges
Pears

(basket,ctx) := get(“cart”)
put(“cart”,basket[0] U basket[1],ctx)



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   15

DYNAMO FEATURES: EVENTUAL CONSISTENCY (3)

get( key) -> (list of values, context)
• Get will return all values associated with a key.

Apples

Apples
Oranges

(basket,ctx) := get(“cart”)
basket.add(“Oranges”)
put(“cart”,basket,ctx)

Apples
Oranges

Apples
Pears

Sy
nc

Apples
Oranges

Apples
Pears Apples

Oranges
Pears

(basket,ctx) := get(“cart”)
put(“cart”,basket[0] U basket[1],ctx)

Apples
Pears

(basket,ctx) := get(“cart”)
basket.add(“Pears”)
put(“cart”,basket,ctx)



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   16

DYNAMO FEATURES: EVENTUAL CONSISTENCY (4)

put( key, value, context)
• Put replaces the values of the version specified by context with a new value. 

From what you have studied in Distributed Systems course, what is the 
context?

• NOTE: this approach guarantees that if between a get and a put from a 
client, another client modifies the value of the key, both version will be kep.

Apples

Apples
Oranges

(basket,ctx) := get(“cart”)
basket.add(“Oranges”)
put(“cart”,basket,ctx)

Apples
Oranges

Apples
Pears

Sy
nc

Apples
Oranges

Apples
Pears Apples

Oranges
Pears

(basket,ctx) := get(“cart”)
put(“cart”,basket[0] U basket[1],ctx)

Apples
Pears

(basket,ctx) := get(“cart”)
basket.add(“Pears”)
put(“cart”,basket,ctx)



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   17

EVENTUAL CONSISTENCY: PROBLEMS

Not all applications/data work correctly under eventual 
consistency.

Examples?

Impossible to enforce some invariants – e.g. val >= 0.
• E.g.: stock maintenance.

Need “smart” reconciliation for some data – e.g. counter.
• E.g. number of likes in social networks.

More on algorithms used in eventual consistency systems in 
Algorithms and Distributed Systems course.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   18

AMAZON DYNAMODB

Cloud database available at AWS.

Extends the initial design of Dynamo in several directions.

• Data model supports documents (like JSON documents).

• Geo-replication: possible to select regions to replicate data.

• Stronger consistency with conditional update operation.
• Execute update if some condition on the state holds.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   19

OUTLINE

Motivation for geo-replicated storages.

Cloud databases: first generation.
• Amazon Dynamo.

Cloud databases: current generation.
• Azure Cosmos DB, Amazon DynamoDB.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   20

AZURE COSMOS DB

Azure Cosmos DB is Microsoft's globally distributed, multi-
model database service. 

Easy to scale throughput and storage across any number of 
Azure regions worldwide.

Single-digit-millisecond data access using APIs that include 
SQL, MongoDB, Cassandra, Tables, etc. 

Provides comprehensive service level agreements (SLAs) for 
throughput, latency, availability, and consistency guarantees.

Built heavily on research results previously published…



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   21

DATABASE API

Cosmos DB provides different API, providing different models:

1. Relational data model.
• Database composed by tables and documents.

2. Document data model.
• A document can be any JSON object.

3. Graph data model.
• Represent data that can be modelled as a graph (e.g. social network 

relations, etc.)

…

How to support all these APIs in the same database?



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   22

DATA MODEL UNDER THE HOODS

Internally, the core type system of Azure Cosmos DB’s 
database engine is atom-record-sequence (ARS) based. 

Atoms consist of a small set of primitive types e.g. string, 
bool, number etc.

Records are structs (pairs key, value).

Sequences are arrays consisting of atoms, records or 
sequences.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   23

GLOBAL DISTRIBUTION

Possible to configure a 
database to be globally 
distributed and available in 
any of the Azure regions. 

How to decide where to  
locate replicas?

Depends on global reach and 
location of clients.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   24

SUPPORT FOR GLOBAL DISTRIBUTION

Multi-master replication.
• Multiple replicas will accept update operations (without coordinating 

to other replicas). 

Well defined consistency-level.

Scalable read and write throughput with SLAs.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   25

CONSISTENCY MODEL

Consistency as a spectrum, from stronger to  weaker 
consistency.

Applications can select the consistency level appropriate for 
each database / operation.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   26

CONSISTENCY LEVEL: STRONG CONSISTENCY
(INTUITION)

Strong consistency gives the illusion that there is a single 
database (despite the fact that the implementation is replicated 
and partitioned).



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   27

CONSISTENCY LEVEL: STRONG CONSISTENCY

Strong consistency offers linearizability.

1. A read is guaranteed to return the most recently committed 
version of an item. 

2. A client never sees an uncommitted or partial write. 

How to implement?

Replication algorithm with master replica (e.g. Paxos).



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   28

CONSISTENCY LEVEL: BOUNDED STALENESS
(INTUITION)

The database evolves by applying all updates in a total order.

Bounded staleness allows a client to read from a (bounded) old 
database state, augmented with recent updates that might be 
out of order.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   29

CONSISTENCY LEVEL: BOUNDED STALENESS

Bounded staleness provides the following guarantees:

1. Reads observe a consistent-prefix, i.e., all updates are 
totally ordered except within the “staleness window”.

2. Monotonic read, meaning that clients observe a version 
that is later that the previously read. Why is this interesting?

3. A read might return an old value of the data item, configured 
as:

• The number of versions (K) behind the current version that the 
read can return;
E.g. with K = 5, the client knows that it might miss up to 5 writes.

• The time interval (T) for which it might miss a write. 
E.g. with T = 10ms, the client knows that it might miss updates 
executed in the last 10 ms.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   30

CONSISTENCY LEVEL: BOUNDED STALENESS

How to implement?

• Master region orders and propagates updates to other regions.

• A region can receive operations that propagate to the master 
region to be ordered – while the order is not established by 
the master, these updates are visible out-of-order in the local 
region.

• Read can be performed in the local region, given that the 
bounded conditions can be established locally – e.g. from the 
last message received from the master, a replica know the 
potential staleness.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   31

CONSISTENCY LEVEL: SESSION (INTUITION)

The client has a session, where she sees the database evolving 
as if it was a single replica. Updates from other clients/regions 
are integrated in the view of the session.

Note: different clients with this consistency level may see 
different database states.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   32

CONSISTENCY LEVEL: SESSION

Session consistency level provides the following guarantees:

1. Within a single client session, reads are guaranteed to 
honor the consistent-prefix (assuming a single “writer” 
session), monotonic reads, monotonic writes, read-your-
writes, and write-follows-reads guarantees. 

2. Clients outside of the session performing writes will see 
eventual consistency.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   33

CONSISTENCY LEVEL: SESSION (2)

Monotonic writes: writes are propagated after writes that 
logically precede them. 

• E.g. when creating an account and later changing some property, 
the creation is propagated always first.

• When inserting a post and adding a reference to the post in some 
other object, the insertion is propagated always first.

Write-follows-reads: a write is propagated always after the 
read updates.

• E.g.: if a user sees a post and later replies, the reply will be 
propagated always after the operation that created the original post.

Read your writes: a read always reflects the writes executed 
in the session.

• E.g.: if a user makes a post, the following reads will always return 
that post.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   34

CONSISTENCY LEVEL: SESSION (3)

How to implement?

• Client maintains version vector (token, context) with a 
summary of the operations observed;

• Reads request a state that is at least as recent as the vector.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   35

CONSISTENCY LEVEL: CONSISTENT PREFIX (INTUITION)

The client see a prefix of the updates from every region, but 
might miss recent updates from different regions.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   36

CONSISTENCY LEVEL: CONSISTENT PREFIX

Consistency prefix level provides the following guarantees:

1. Results that are returned contain some prefix of all the 
updates, with no gaps. 

2. Consistent prefix consistency level guarantees that reads 
never see out-of-order writes from a region.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   37

CONSISTENCY LEVEL: CONSISTENT PREFIX

How to implement?

• Region orders updates and propagates them to the replicas;

• Reads sees the updates received by the master (in order) 
more local request.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   38

CONSISTENCY LEVEL: EVENTUAL (INTUITION)

The client might see a state that reflects any subset of the 
updates.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   39

CONSISTENCY LEVEL: EVENTUAL

Under eventual consistency, there is no ordering guarantee for 
reads. In the absence of any further writes, the replicas 
eventually converge.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   40

CONSISTENCY LEVELS EXPLAINED THROUGH BASEBALL

There is a single writer updating the result. Possible returns:

[example from Azure documentation]



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   41

CONSISTENCY LEVELS EXPLAINED THROUGH BASEBALL

There is a single writer updating the result. Possible returns:

[example from Azure documentation]



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   42

CONSISTENCY LEVELS EXPLAINED THROUGH BASEBALL

There is a single writer updating the result. Possible returns:

[example from Azure documentation]



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   43

CONSISTENCY LEVELS EXPLAINED THROUGH BASEBALL

There is a single writer updating the result. Possible returns:

[example from Azure documentation]



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   44

CONSISTENCY LEVELS EXPLAINED THROUGH BASEBALL

There is some writer recording the result. Possible returns:

[example from Azure documentation]



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   50

WHAT CONSISTENCY MODEL TO SELECT (ACCORDING
TO MICROSOFT)

Session consistency is optimal for most applications.

If stronger consistency is necessary, select bounded 
staleness. Bounded staleness is almost as good as strong 
consistency if the bound is small, but reads can be processed 
locally.

If your application requires eventual consistency, it is 
recommended that you use consistent prefix consistency 
level – provide better guarantee with similar cost.

If you need the highest availability and the lowest latency, then 
use eventual consistency level.

What is missing?



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   51

WHAT CONSISTENCY MODEL TO SELECT

Examples.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   52

TRANSACTIONS AND CONDITIONAL UPDATES

CosmosDB supports transactions with snapshot isolation for 
updates executed to a container’s logical partition.

• There is no support for transactions across partitions.

CosmosDB has support for conditional updates.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   53

CONFLICT RESOLUTION

Consistency levels allow for concurrent updates. Conflict occur 
when: 

Insert conflicts: These conflicts can occur when an 
application simultaneously inserts two or more items with the 
same unique index in two or more regions. 

Replace conflicts: These conflicts can occur when an 
application updates the same item simultaneously in two or 
more regions.

Delete conflicts: These conflicts can occur when an 
application simultaneously deletes an item in one region and 
updates it in another region.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   54

CONFLICT RESOLUTION (2)

CosmosDB supports the following conflict resolution policies for 
application programs:

1. Last-Write-Wins (LWW): uses a system-defined timestamp 
to select which version to keep.

2. Application-defined (Custom): possible to define a merge 
procedure to solve conflicts. These procedures get invoked 
upon detection of the write-write conflicts – the procedure 
executes exactly-once.

Cosmos DB uses CRDTs internally to manage concurrent 
updates.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   55

DURABILITY

Service-level agreement, based on:

Recovery time objective (RTO) is the time until an 
application recover from a disruptive event.

Recovery point objective (RPO) is the period of time for 
which updates might get lost in a failure.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   56

DURABILITY (2)



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   57

DURABILITY (3)
What justifies these values?



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   58

DATA ORGANIZATION UNDER THE HOODSA database may include a set of 
containers.
A container can be a collection, 
table, graph, etc.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   59

SHARDING
A container is horizontally partitioned 
across multiple machines according 
to the partition key.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   60

REPLICATION UNDER THE HOODS

Data is horizontally 
partitioned.

Within each region, every 
partition is replicated in a 
replica-set. All writes are 
replicated and durably 
committed by a majority of 
replicas. 

Each partition is replicated 
across regions. Each region 
contains all data partitions of 
a Cosmos container.

For an account distributed 
across N regions, there will be 
at least N x 4 copies of the 
data. 



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   61

CHANGE FEED

Cosmos DB allows to listen for changes in an Azure Cosmos 
container. 

Change feed outputs the sorted list of documents that were 
changed in the order in which they were modified. 

The changes are persisted, can be processed asynchronously 
and incrementally, and the output can be distributed across 
one or more consumers for parallel processing.

What can this be used for?



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   62

GLOBALLY DISTRIBUTED OPERATIONAL ANALYTICS

Azure supports running computations against the local replica 
in each region.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   63

PRICING

The cost of the throughput provisioned and the storage 
consumed on an hourly basis.

• Not cheap if you are not using it.

The request unit is based on the number and type of 
operations and the data transferred.



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   64

OTHER DATABASE SERVICES

Cloud platforms also provide 
other database services –
e.g.:

• Azure SQL database

SQL interface

Primary/backup replication

Sharding with inter-shard 
transactions



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   65

TO KNOW MORE

G. DeCandia, et. Al.. Dynamo: amazon's highly available key-
value store. In SOSP’07.

https://azure.microsoft.com/en-us/blog/a-technical-overview-
of-azure-cosmos-db/

https://docs.microsoft.com/en-us/azure/cosmos-
db/consistency-levels

https://docs.microsoft.com/en-us/azure/cosmos-db/conflict-
resolution-policies

https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/conflict-resolution-policies


Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   66

ACKNOWLEDGMENTS

Some text and images from Microsoft Azure online 
documentation.


