
Sistemas de Bases de Dados, 2nd Test 2020/21 22.05.2021

Página 1 de 2 DI, FCT-NOVA

DI, FCT-NOVA May 22, 2021
Sistemas de Bases de Dados

2nd Test, 2020/21
Duration: 1 Hour and 30 Minutes

Group 1
Consider a (simplified) database for managing occurrences of a proctoring systems for tests done by
students, with the following tables (where attributes that form the primary keys are underlined):

courses(idC,nameC,idP) students(idS,nameS,idP,sex,age,photo)
programmes(idP,nameP,coordinator) tests(IdC,dateT,NameT)
testResults(idS,IdC,dateT,results) occurrences(idS,idC,dateT,Moment,Type,Probability)

Each of these tables has a B+ tree clustered index over the primary key, where the order by which the
attributes are concatenated is the one shown above. Moreover, assume that all the relevant foreign key
are defined: viz. for idP both in courses and students, referencing programmes; for idC in tests,
testResults and occurrences, referencing courses; for idS in testResults and in occurrences, referencing
students; for (idC,dateT) in both testResults and occurrences, referencing tests.
For each student, the database stores her id, name, sex, age, the id of the programme in which the student
is enrolled, and her photo. There is a table for storing the various programmes, where each programme
has an id, a name, and the name of the programme’s coordinator, and a table for storing course (i.e.
curricular units), where each course has an id, a name and the id of the programme in which the course
is taught (note that, this way, a course may only be taught in one programme).
Each course may have several tests, and this is stored in the tests table. Each test, in this simplified
database, only has the id of the course to which the test belongs, the date in which it occurs, and the name
of the test (e.g. ‘1st test’, ‘midterm teste’, etc). The table testResults stores information about which
students made which test (with the id of the student, and the identification of the test – i.e. the id of the
course and the date of the test) and the result/grade of each student in the test.
Finally, the occurrences table stores the various events that the proctoring system flagged while each
student was doing each test. For example, an occurrence (1,’A’,10.04.2021,600,’Stranger in
room’,’High’) means that in the test of course ‘A’ made by student 1 on April 10, 2021, 600 seconds
after the test started the system detected a stranger in the room with High probability.
Tuples of all these tables are of variable size. Furthermore, at a given moment the courses table has 500
tuples and each tuple occupies 25 bytes, the programmes table has 50 tuples each with 50 bytes on
average, the tests table has 5.000 tuples each with 20 bytes, the testResults 1,000,000 tuples, each with
10 bytes, and occurrences table has 10,000,000 tuples each with 30 bytes (i.e. the occurrences table is
about 300MB). Finally, the students table has 50,000 tuples and each tuple occupies 3MB on average
but if one excludes the photo attribute, the remaining attributes only occupy 25 bytes.
The database is implemented in a system using 4KB blocks and a memory of just 100 block.
Note: In this group, whenever an example is asked for, the example must be in terms of the database
above. Moreover, all your answers must include a brief justification.

1 a) Show two execution plans for the following query (what are the names of the students from
the Computer Science programme that had at least one high probability occurrence of
‘Stranger in room’ in a test), and justify which one should have the lowest cost:

 select distinct nameS
 from occurences natural inner join students natural inner join programmes
 where nameP = ‘Computer Science’ and Type = ‘Stranger in room’ and Probability = ‘High’

 Note: Since drawing a tree can be quite challenging in the browser, you may opt either by
writing some (pseudo) relational algebra expressions annotated with the algorithms, or by
explaining the way the query might be executed in English (e.g. starts by executing this
algorithm over this table with that condition, then takes the result as input for this other
algorithm… etc).

Sistemas de Bases de Dados, 2nd Test 2020/21 22.05.2021

Página 2 de 2 DI, FCT-NOVA

1 b) Assume that the DBMS only has the “block nested loop join” algorithm for joins, eventually
using index files when available. For each of the join queries below, which is the best join
order?

1. courses occurences

2. occurrences tests students

1 c) Give an example of a join of two or more of the above tables in which the merge-join algorithm
is clearly the most adequate.

1 d) Give an example of a query involving two or more tables that would benefit from the usage
of histograms by the query optimiser.

1 e) Considering now that the system implements all the algorithms that we’ve studied during the
course, what is the best execution plan for the following query:

select A.name
from (select * from students where sex = ‘F’) A
where A.idade < 30 and

exists (select * from programmes B where A.idP = B.idP and A.idade < 25)

Group 2

2 a) Integrity constraints defined over the database (such as primary keys, foreign key, domain
restrictions, assertions, etc) are meant to guarantee the consistency of the data. But, the mere
definition of these constraints, even without any data structures for making their
implementation more efficient, can help significantly in query optimisation.

 List two different ways by which the query optimiser may benefit from the definition of
foreign keys, explaining why that is so and giving, for each of them, an example of a situation
(e.g. database and query) in which the benefit is clear.

2 b) Which of the algorithms, block-nested loop join or hash join, is more amenable for adjusting
to intra-operation parallelism? Why?

2 c) We’ve studied two different ways of combining the execution of operations/algorithms in an
execution plan: pipelining and materialisation. Materialisation can always be used, but some
algorithms cannot be combined using pipelining.

 Given an example of algorithms that cannot be combined by pipelining and explain why that
is so.

