
Sistemas de Bases de Dados 2020/21
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapters 21-23 : Distributed Databases

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Databases

§ Homogeneous distributed databases
• Same software/schema on all sites, data may be partitioned among

sites
• The goal is to provide a view of a single database, hiding details of

distribution
• Done for improving (local) efficiency, improving availability, …

§ Heterogeneous distributed databases
• Different software/schema on different sites
• The goal is to integrate existing databases to provide useful

functionality
• The various databases may already exist.

§ In distributed databases two types of transactions exist:
• A local transaction accesses data in the single site at which the

transaction was initiated.
• A global transaction either accesses data in a site different from the

one at which the transaction was initiated or accesses data in several
different sites.

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Data Storage

§ Data Storage can be distributed by replicating data or be fragmenting data.

§ Replication
• System maintains multiple copies of data, stored in different sites, for

faster retrieval and fault tolerance.
§ Fragmentation

• Relation is partitioned into several fragments stored in distinct sites
§ Replication and fragmentation can be combined

• Relation is partitioned into several fragments: system maintains
several identical replicas of each such fragment.

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Data Replication

§ A relation or fragment of a relation is replicated if it is stored redundantly
in two or more sites.

§ Full replication of a relation is the case where the relation is stored at all
sites.

§ Fully redundant databases are those in which every site contains a copy of
the entire database.

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Geographically Distributed Storage

§ Many storage systems today support geographical distribution of storage
• Motivations: Fault tolerance, latency (closer to user), governmental

regulations
§ Latency of replication across geographically distributed data centers is

much higher than within data center
• Some key-value stores support synchronous replication

§ Must wait for replicas to be updated before committing an update
• Others support asynchronous replication

§ update is committed in one data center, but sent subsequently (in a
fault-tolerant way) to remote data centers

§ Must deal with small risk of data loss if data center fails.

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Data Replication

§ Advantages of Replication
• Availability: failure of site containing relation r does not result in

unavailability of r if replicas exist.
• Parallelism: queries on r may be processed by several nodes in

parallel.
• Reduced data transfer: relation r is available locally at each site

containing a replica of r.
§ Disadvantages of Replication

• Increased cost of updates: each replica of relation r must be updated.
• Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.
§ One solution: choose one copy as primary copy and apply

concurrency control operations on primary copy

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Data Fragmentation

§ Division of relation r into fragments r1, r2, …, rn which contain sufficient
information to reconstruct relation r.

§ Horizontal fragmentation: each tuple of r is assigned to one or more
fragments
• The original relation is obtained by the union of the fragments

§ Vertical fragmentation: the schema for relation r is split into several
smaller schemas
• All schema must contain a common candidate key (or superkey) to

ensure lossless join property
§ A special attribute, the tuple-id attribute may be added to each

schema to serve as a candidate key
• The original relation is obtained by the join of the fragments

§ Examples:
• Horizontal fragmentation of an account relation, by branches
• Vertical fragmentation of an employer relation, to separate the data for

e.g. salaries, functions, etc

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Advantages of Fragmentation

§ Horizontal:
• allows parallel processing on fragments of a relation
• allows a relation to be split so that tuples are located where they are

most frequently accessed
§ Vertical:

• allows tuples to be split so that each part of the tuple is stored where it
is most frequently accessed

• tuple-id attribute allows efficient joining of vertical fragments
• allows parallel processing on a relation

§ Vertical and horizontal fragmentation can be mixed
• Fragments may be successively fragmented to an arbitrary depth
• An examples is to horizontally fragment an account relation by

branches, and vertically fragment it to hide balances

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Query Processing

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Data Integration From Multiple Sources

§ Many database applications require data from multiple databases
§ A federated database system is a software layer on top of existing

database systems, which is designed to manipulate information in
heterogeneous databases
• Creates an illusion of logical database integration without any

physical database integration
• Each database has its local schema
• Global schema integrates all the local schema

§ Schema integration
• Queries can be issued against global schema, and translated to

queries on local schemas
§ Databases that support common schema and queries, but not

updates, are referred to as mediator systems

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Data Integration From Multiple Sources

§ Data virtualization
• Allows data access from multiple databases, but without a common

schema
§ External data approach allows database to treat external data as a

database relation (foreign tables)
• Many databases today allow a local table to be defined as a view on

external data
• SQL Management of External Data (SQL MED) standard

§ Wrapper for a data source is a view that translates data from local to a
global schema
• Wrappers must also translate updates on global schema to updates on

local schema

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Schema and Data Integration

§ Schema integration: creating a unified conceptual schema
• Requires creation of global schema, integrating several local

schema
§ Global-as-view approach

• At each site, create a view of local data, mapping it to the global
schema

• Union of local views is the global view
• Good for queries, but not for updates

§ E.g., which local database should an insert go to?
§ Local-as-view approach

• Create a view defining contents of local data as a view of global data
§ Site stores local data as before, the view is for update processing

• Updates on global schema are mapped to updates to the local views

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Unified View of Data

§ Agreement on a common data model
• Typically the relational model

§ Agreement on a common conceptual schema
• Different names for same relation/attribute
• Same relation/attribute name means different things

§ Agreement on a single representation of shared data
• E.g., data types, precision,
• Character sets

§ ASCII vs EBCDIC
§ Sort order variations

§ Agreement on units of measure

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Unified View of Data (Cont.)

§ Variations in names
• E.g., Köln vs Cologne, Mumbai vs Bombay

§ One approach: globally unique naming system
• E.g., GeoNames database (www.geonames.org)

§ Another approach: specification of name equivalences
• E.g., used in the Linked Data project supporting integration of a large

number of databases storing data in RDF data

http://www.geonames.org/

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Query Processing Across Data Sources

§ Several issues in query processing across multiple sources
§ Limited query capabilities

• Some data sources allow only restricted forms of selections
§ E.g., web forms, flat file data sources

• Queries must be broken up and processed partly at the source and partly
at a different site

§ Removal of duplicate information when sites have overlapping information
• Decide which sites to execute query

§ Global query optimization

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Locations and Join Ordering

§ Consider the following relational algebra expression in which the three
relations are neither replicated nor fragmented
r1 ⨝ r2 ⨝ r3

§ r1 is stored at site S1

§ r2 at S2

§ r3 at S3

§ For a query issued at site SI, the system needs to produce the result at
site SI

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Possible Query Processing Strategies

§ Ship copies of all three relations to site SI and choose a strategy for
processing the entire query locally at site SI.

• Ship a copy of the r1 relation to site S2 and compute
temp1 = r1 ⨝ r2 at S2.

• Ship temp1 from S2 to S3, and compute
temp2 = temp1 ⨝ r3 at S3

• Ship the result temp2 to SI.
§ Devise similar strategies, exchanging the roles S1, S2, S3

§ Must consider following factors:
• amount of data being shipped
• cost of transmitting a data block between sites
• relative processing speed at each site

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Semijoin Strategy

§ Let r1 be a relation with schema R1 stores at site S1

Let r2 be a relation with schema R2 stores at site S2

§ Evaluate the expression r1 ⨝ r2 and obtain the result at S1.
1. Compute temp1 ¬ ÕR1 Ç R2 (r1) at S1.
2. Ship temp1 from S1 to S2.
3. Compute temp2 ¬ r2 ⨝ temp1 at S2

4. Ship temp2 from S2 to S1.
5. Compute r1 ⨝ temp2 at S1. This is the same as r1 ⨝ r2.

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Semijoin Reduction

§ The semijoin of r1 with r2, is denoted by:
r1 ⋉ r2 ÕR1 (r1 ⨝ r2)

§ Thus, r1 ⋉ r2 selects those tuples of r1 that contributed to r1 ⨝ r2.
§ In step 3 above, temp2=r2 ⋉ r1.
§ For joins of several relations, the above strategy can be extended to a

series of semijoin steps.
§ Semijoin can be computed approximately by using a Bloom filter

• For each tuple of r2 compute hash value on join attribute; if hash value
is i, and set bit i of the bitmap

• Send bitmap to site containing r1

• Fetch only tuples of r1 whose join attribute value hashes to a bit that is
set to 1 in the bitmap

• Bloom filter is an optimized bitmap filter structure

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Query Optimization

§ New physical property for each relation: location of data
§ Operators also need to be annotated with the site where they are executed

• Operators typically operate only on local data
• Remote data is typically fetched locally before operator is executed

§ Optimizer needs to find best plan taking data location and operator
execution location into account.

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Transactions

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Transactions

§ Local transactions
• Access/update data at only one database

§ Global transactions
• Access/update data at more than one database

§ Key issue: how to ensure ACID properties for transactions in a system
with global transactions spanning multiple database

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Transactions

§ Transaction may access data at several sites.
• Each site has a local transaction manager
• Each site has a transaction coordinator

§ Global transactions submitted to any transaction coordinator

TM1 TMn

computer 1 computer n

TC1 TCn transaction
coordinator

transaction
manager

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Transactions

§ Each transaction coordinator is responsible for:
• Starting the execution of transactions that originate at the site.
• Distributing subtransactions at appropriate sites for execution.
• Coordinating the termination of each transaction that originates at the

site
§ transaction must be committed at all sites or aborted at all sites.

§ Each local transaction manager is responsible for:
• Maintaining a log for recovery purposes
• Coordinating the execution

and commit/abort of the
transactions executing
at that site.

TM1 TMn

computer 1 computer n

TC1 TCn transaction
coordinator

transaction
manager

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

System Failure Modes

§ Failures unique to distributed systems:
• Failure of a site.
• Loss of massages

§ Handled by network transmission control protocols such as TCP-IP
• Failure of a communication link

§ Handled by network protocols, by routing messages via alternative
links

• Network partition
§ A network is said to be partitioned when it has been split into two

or more subsystems that lack any connection between them
• Note: a subsystem may consist of a single node

§ Network partitioning and site failures are generally indistinguishable.

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Commit Protocols

§ Commit protocols are used to ensure atomicity across sites
• a transaction which executes at multiple sites must either be

committed at all the sites or aborted at all the sites.
§ cannot have transaction committed at one site and aborted at

another
§ The two-phase commit (2PC) protocol is widely used
§ Three-phase commit (3PC) protocol avoids some drawbacks of 2PC, but is

more complex
§ Consensus protocols solve a more general problem, but can be used for

atomic commit
• More on these later

§ These protocols assume fail-stop model – failed sites simply stop
working, and do not cause any other harm, such as sending incorrect
messages to other sites.

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Two Phase Commit Protocol (2PC)

§ Execution of the protocol is initiated by the coordinator after the last step
of the transaction has been reached.

§ The protocol involves all the local sites at which the transaction executed
§ Protocol has two phases
§ Let T be a transaction initiated at site Si, and let the transaction

coordinator at Si be Ci

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Phase 1: Obtaining a Decision

§ Coordinator asks all participants to prepare to commit transaction Ti.
• Ci adds the records <prepare T> to the log and forces log to stable

storage
• sends prepare T messages to all sites at which T executed

§ Upon receiving this message, the transaction manager at site determines
if it can commit the transaction
• if not, add a record <no T> to the log and send abort T message to Ci

• if the transaction can be committed, then:
§ add the record <ready T> to the log
§ force all records for T to stable storage
§ send ready T message to Ci

Transaction is now in ready state at the site

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Phase 2: Recording the Decision

§ T can be committed if Ci received a ready T message from all the
participating sites: otherwise, T must be aborted.

§ Coordinator adds a decision record, <commit T> or <abort T>, to the log
and forces record onto stable storage. Once the record is in stable storage
it is irrevocable (even if failures occur)

§ Coordinator sends a message to each participant informing it of the
decision (commit or abort)

§ Participants take appropriate action locally.

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

Two-Phase Commit Protocol

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Handling of Failures - Site Failure

When site Sk recovers, it examines its log to determine the fate of
transactions active at the time of the failure.
§ Log contain <commit T> record: site executes redo (T)
§ Log contains <abort T> record: site executes undo (T)
§ Log contains <ready T> record: site must consult Ci to determine the fate

of T.
• If T committed, redo (T)
• If T aborted, undo (T)

§ The log contains no control records concerning T implies that Sk failed
before responding to the prepare T message from Ci

• since the failure of Sk precludes the sending of such a
response Ci must abort T

• Sk must execute undo (T)

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Handling of Failures- Coordinator Failure

§ If coordinator fails while the commit protocol for T is executing, then
participating sites must decide on T’s fate:
1. If an active site contains a <commit T> record in its log, then T must

be committed.
2. If an active site contains an <abort T> record in its log, then T must be

aborted.
3. If some active participating site does not contain a <ready T> record in

its log, then the failed coordinator Ci cannot have decided to commit T.
So, it can abort T.

4. If none of the above cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such
as <abort T> of <commit T>). In this case active sites must wait for Ci
to recover, to find decision.

§ Blocking problem: active sites may have to wait for failed coordinator to
recover.

FCT NOVA33José Alferes – Adaptado de Database System Concepts - 7th Edition

Handling of Failures - Network Partition

§ If the coordinator and all its participants remain in one partition, the failure
has no effect on the commit protocol.

§ If the coordinator and its participants belong to several partitions:
• Sites that are not in the partition containing the coordinator think the

coordinator has failed and execute the protocol to deal with failure of
the coordinator.
§ No harm results, but sites may still have to wait for decision from

coordinator.
§ The coordinator and the sites that are in the same partition as the

coordinator think that the sites in the other partition have failed and follow
the usual commit protocol.

§ Again, no harm results

FCT NOVA34José Alferes – Adaptado de Database System Concepts - 7th Edition

Recovery and Concurrency Control

§ In-doubt transactions have a <ready T>, but neither a
<commit T>, nor an <abort T> log record.

§ The recovering site must determine the commit-abort status of such
transactions by contacting other sites; this can slow and potentially block
recovery.

§ Recovery algorithms can note lock information in the log.
• Instead of <ready T>, write out <ready T, L> L = list of locks held by T

when the log is written (read locks can be omitted).
• For every in-doubt transaction T, all the locks noted in the

<ready T, L> log record are reacquired.
§ After lock reacquisition, transaction processing can resume; the commit or

rollback of in-doubt transactions is performed concurrently with the
execution of new transactions.

FCT NOVA35José Alferes – Adaptado de Database System Concepts - 7th Edition

Avoiding Blocking During Consensus

§ Blocking problem of 2PC is a serious concern
§ Idea: involve multiple nodes in decision process, so failure of a few nodes

does not cause blocking as long as majority don’t fail
§ More general form: distributed consensus problem

• A set of n nodes need to agree on a decision
• Inputs to make the decision are provided to all the nodes, and then

each node votes on the decision
• The decision should be made in such a way that all nodes will “learn”

the same value for the even if some nodes fail during the execution of
the protocol, or there are network partitions.

• Further, the distributed consensus protocol should not block, as long
as a majority of the nodes participating remain alive and can
communicate with each other

FCT NOVA36José Alferes – Adaptado de Database System Concepts - 7th Edition

Three-Phase Commit
§ Assumptions:

• No network partitioning
• At any point, at least one site must be up.
• At most K sites (participants as well as coordinator) can fail

§ Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
• Every site is ready to commit if instructed to do so

§ Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC
• In phase 2 coordinator makes a decision as in 2PC (called the pre-

commit decision) and records it in multiple (at least K) sites
• In phase 3, coordinator sends commit/abort message to all

participating sites,
§ Under 3PC, knowledge of pre-commit decision can be used to commit

despite coordinator failure
• Avoids blocking problem as long as < K sites fail

§ Drawbacks:
• higher overheads
• assumptions may not be satisfied in practice

FCT NOVA37José Alferes – Adaptado de Database System Concepts - 7th Edition

Concurrency Control

§ Modify concurrency control schemes for use in distributed environment.
§ We assume that each site participates in the execution of a commit

protocol to ensure global transaction atomicity.
§ We assume all replicas of any item are updated

• Will see how to relax this in case of site failures later

FCT NOVA38José Alferes – Adaptado de Database System Concepts - 7th Edition

Single-Lock-Manager Approach

§ In the single lock-manager approach, lock manager runs on a single
chosen site, say Si

• All lock requests sent to central lock manager
§ The transaction can read the data item from any one of the sites at which a

replica of the data item resides.
§ Writes must be performed on all replicas of a data item
§ Advantages of scheme:

• Simple implementation
• Simple deadlock handling

§ Disadvantages of scheme are:
• Bottleneck: lock manager site becomes a bottleneck
• Vulnerability: system is vulnerable to lock manager site failure.

FCT NOVA39José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Lock Manager

§ In the distributed lock-manager approach, functionality of locking is
implemented by lock managers at each site
• Lock managers control access to local data items
• Locking is performed separately on each site accessed by transaction

§ Every replica must be locked and updated
§ But special protocols may be used for replicas (more on this later)

§ Advantage: work is distributed and can be made robust to failures
§ Disadvantage:

• Possibility of a global deadlock without local deadlock at any single
site

• Lock managers must cooperate for deadlock detection

FCT NOVA40José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock Handling

Consider the following two transactions and history, with item X and
transaction T1 at site 1, and item Y and transaction T2 at site 2:

Result: deadlock which cannot be detected locally at either site

FCT NOVA41José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock Detection

§ In the centralized deadlock-detection approach, a global wait-for graph is
constructed and maintained in a single site; the deadlock-detection
coordinator
• Real graph: Real, but unknown, state of the system.
• Constructed graph: Approximation generated by the controller during

the execution of its algorithm .
§ the global wait-for graph can be constructed when:

• a new edge is inserted in or removed from one of the local wait-for
graphs.

• a number of changes have occurred in a local wait-for graph.
• the coordinator needs to invoke cycle-detection.

§ If the coordinator finds a cycle, it selects a victim and notifies all sites. The
sites roll back the victim transaction.

FCT NOVA42José Alferes – Adaptado de Database System Concepts - 7th Edition

Local and Global Wait-For Graphs

Local

Global

FCT NOVA43José Alferes – Adaptado de Database System Concepts - 7th Edition

Example Wait-For Graph for False Cycles

Initial state:

FCT NOVA44José Alferes – Adaptado de Database System Concepts - 7th Edition

False Cycles (Cont.)

§ Suppose that starting from the state shown in figure,
1. T2 releases resources at S1

§ resulting in a message remove T1 ® T2 message from the
Transaction Manager at site S1 to the coordinator)

2. And then T2 requests a resource held by T3 at site S2

§ resulting in a message insert T2 ® T3 from S2 to the coordinator
§ Suppose further that the insert message reaches before the delete

message
• this can happen due to network delays

§ The coordinator would then find a false cycle
T1 ® T2 ® T3 ® T1

§ The false cycle above never existed in reality.
§ False cycles cannot occur if two-phase locking is used.

FCT NOVA45José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Deadlocks

§ Unnecessary rollbacks may result
• When deadlock has indeed occurred and a victim has been picked,

and meanwhile one of the transactions was aborted for reasons
unrelated to the deadlock.

• Due to false cycles in the global wait-for graph; however, likelihood of
false cycles is low.

§ In the distributed deadlock-detection approach, sites exchange wait-for
information and check for deadlocks
• Expensive and not used in practice

FCT NOVA46José Alferes – Adaptado de Database System Concepts - 7th Edition

Leases

§ A lease is a lock that is granted for a specific period of time
§ If a process needs a lock even after expiry of lease, process can renew

the lease
§ But if renewal is not done before end time of lease, the lease expires,

and lock is released
§ Leases can be used if there is only one coordinator for a protocol at any

given time
• Coordinator gets a lease and renews it periodically before expire
• If coordinator dies, lease will not be renewed and can be acquired by

backup coordinator

FCT NOVA47José Alferes – Adaptado de Database System Concepts - 7th Edition

Leases (Cont.)

§ Coordinator must check that it still has lease when performing action
• Due to delay between check and action, must check that expiry is at

least some time t’ into the future
§ t’ includes delay in processing and maximum network delay
§ Old messages must be ignored

§ Leases depend on clock synchronization

FCT NOVA48José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Timestamp-Based Protocols

§ Timestamp based concurrency-control protocols can be used in distributed
systems

§ Each transaction must be given a unique timestamp
§ Main problem: how to generate a timestamp in a distributed fashion

• Each site generates a unique local timestamp using either a logical
counter or the local clock.

• Global unique timestamp is obtained by concatenating the unique local
timestamp with the unique identifier.

site
identifier

global unique
identifier

local unique
timestamp

FCT NOVA49José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Timestamps

§ A node with a slow clock will assign smaller timestamps
• Still logically correct: serializability not affected
• But: “disadvantages” transactions

§ To fix this problem
• Keep clocks synchronized using network time protocol
• Or, define within each node Ni a logical clock (LCi), which generates

the unique local timestamp
§ Require that Ni advance its logical clock whenever a request is

received from a transaction Ti with timestamp < x,y> and x is
greater that the current value of LCi.

§ In this case, site Ni advances its logical clock to the value x + 1

FCT NOVA50José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Timestamp Ordering

§ Centralized TSO and multiversion TSO easily extended to distributed
setting
• Transactions use a globally unique timestamp
• Each site that performs a read or write performs same checks as in

centralized case
§ Clocks at sites should be synchronized

• Otherwise a transaction initiated at a site with a slower clock may get
restarted repeatedly.

FCT NOVA51José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Validation

§ The validation protocol used in centralized systems can be extended to
distributed systems

§ Start/validation/finish timestamp for a transaction Ti may be issued by any
of the participating nodes
• Must ensure StartTS(Ti) < TS(Ti) < FinishTS(Ti)

§ Validation for Ti is done at each node that performed read/write
• Validation checks for transaction Ti are same as in centralized case

§ Ensure that no transaction that committed after Ti started has
updated any data item read by Ti.

• A key difference from centralized case is that may Ti start validation
after a transaction with a higher validation timestamp has already
finished validation
§ In that case Ti is rolled back

FCT NOVA52José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Validation (Cont.)

§ Two-phase commit (2PC) needed to ensure atomic commit across sites
• Transaction is validated, then enters prepared state
• Writes can be performed (and transaction finishes) only after 2PC

makes a commit decision
• If transaction Ti is in prepared state, and another transaction Tk reads

old value of data item written by Ti, Tk will fail if Ti commits
§ Can make the read by Tk wait, or create a commit dependency

for Tk on Ti.

FCT NOVA53José Alferes – Adaptado de Database System Concepts - 7th Edition

Distributed Validation (Cont.)

§ Distributed validation is not widely used, but optimistic concurrency
control without read-validation is widely used in distributed settings
• Version numbers are stored with data items
• Writes performed at commit time ensure that the version number of a

data item is same as when data item was read
• Hbase supports atomic checkAndPut() as well as checkAndMutate()

operations; see book for details

