
Sistemas de Bases de Dados 2020/21
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 18 : Concurrency Control

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 2

Outline

! Lock-Based Protocols
! Timestamp-Based Protocols
! Validation-Based Protocols
! Multiple Granularity
! Multiversion Schemes
! Insert and Delete Operations
! Concurrency in Index Structures

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 3

ACID Properties - Summary

! Atomicity. Either all operations of the transaction are properly reflected in
the database or none are.

! Consistency. Execution of a transaction preserves the consistency of the
database in the end.

! Isolation. Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently
executed transactions.
• That is, for every pair of transactions Ti and Tj, it appears to Ti that either

Tj, finished execution before Ti started, or Tj started execution after Ti
finished.

! Durability. After a transaction completes successfully, the changes it has
made to the database persist, even if there are system failures.

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 4

Concurrency Control

! A database must provide a mechanism that ensures that all possible
schedules are
• either conflict or view serializable, and
• are recoverable and preferably cascadeless

! A policy in which only one transaction can execute at a time generates serial
schedules, but provides a poor degree of concurrency

! Testing a schedule for serializability after it has executed is a little too late!

! Goal – to develop concurrency control protocols that assure serializability

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 5

Optimistic vs Pessimistic protocols

! What to do now?
• It may well be that the complete transactions are serializable
• But they may also turn out not to be serializable!

Read(A)
Write(A)

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 5

Optimistic vs Pessimistic protocols

! What to do now?
• It may well be that the complete transactions are serializable
• But they may also turn out not to be serializable!

Read(A)
Write(A)

Read(B)
Write(B)

Read(A)

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 5

Optimistic vs Pessimistic protocols

▪ What to do now?
• It may well be that the complete transactions are serializable
• But they may also turn out not to be serializable!

▪ Optimistic protocols do not stop at potential conflicts; if something goes
wrong, rollback!

▪ Pessimistic protocols stop at potential conflicts, until no possible conflict
exists; if in the end no conflict happened, it just lost time!

▪ Let’s start with a pessimistic protocol.

T1 T2

Read(A)
Write(A)

Read(A)

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 6

Lock-Based Protocols

! A lock is a mechanism to control concurrent access to a data item
! Data items can be locked in two modes :
 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.
! Lock requests are made to the concurrency-control manager. The

transaction can proceed only after the request is granted.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 7

Lock-Based Protocols (Cont.)

! Lock-compatibility matrix

! A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

! Any number of transactions can hold shared locks on an item,
• But if any transaction holds an exclusive lock on the item no other

transaction may hold any lock on the item.
! If a lock cannot be granted, the requesting transaction is made to wait until

all incompatible locks held by other transactions have been released. The
lock is then granted.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 8

Schedule With Lock Grants

! Simply having locks does
not guarantee
serializability!
• This schedule is not

serializable.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 8

Schedule With Lock Grants

! Simply having locks does
not guarantee
serializability!
• This schedule is not

serializable.
! A locking protocol is a

set of rules followed by all
transactions while
requesting and releasing
locks.
• Locking protocols

enforce serializability
by restricting the set
of possible schedules.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 9

The Two-Phase Locking Protocol (2-PL)

▪ A protocol which ensures conflict-serializable
schedules.

▪ Phase 1: Growing Phase
• Transaction may obtain locks
• Transaction may not release locks

▪ Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

▪ The protocol assures serializability: it can be
proved that the transactions can be serialized
in the order of their lock points (i.e., the
point where a transaction acquired its final
lock).

Time

Lo
ck

s

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 9

The Two-Phase Locking Protocol (2-PL)

▪ A protocol which ensures conflict-serializable
schedules.

▪ Phase 1: Growing Phase
• Transaction may obtain locks
• Transaction may not release locks

▪ Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

▪ The protocol assures serializability: it can be
proved that the transactions can be serialized
in the order of their lock points (i.e., the
point where a transaction acquired its final
lock).

Time

Lo
ck

s

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 9

The Two-Phase Locking Protocol (2-PL)

▪ A protocol which ensures conflict-serializable
schedules.

▪ Phase 1: Growing Phase
• Transaction may obtain locks
• Transaction may not release locks

▪ Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

▪ The protocol assures serializability: it can be
proved that the transactions can be serialized
in the order of their lock points (i.e., the
point where a transaction acquired its final
lock).

Time

Lo
ck

s

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 10

The Two-Phase Locking Protocol (Cont.)

! Extensions to basic two-phase locking are needed to ensure recoverability
of freedom from cascading roll-back
• Strict two-phase locking: a transaction must hold all its exclusive

locks until it commits or aborts.
! Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all locks until
commit or abort.
! Transactions can be serialized in the order in which they commit.

! Most databases implement rigorous two-phase locking, but refer to it as
simply two-phase locking

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 11

Lock Conversions

! Two-phase locking protocol with lock conversions:
 – Growing Phase:

• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

 – Shrinking Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

! This protocol still ensures serializability

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 12

Automatic Acquisition of Locks

! A transaction Ti issues the standard read/write instruction, without explicit
locking calls.

! The operation read(D) is processed as:
 if Ti has a lock on D
 then
 read(D)
 else begin
 if necessary, wait until no other
 transaction has a lock-X on D
 grant Ti a lock-S on D;
 read(D)
 end

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 13

Automatic Acquisition of Locks (Cont.)

! The operation write(D) is processed as:
 if Ti has a lock-X on D

 then
 write(D)
 else begin
 if necessary, wait until no other trans. has any lock on D,
 if Ti has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D
 write(D)
 end;
! All locks are released after commit or abort

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 14

Implementation of Locking

! A lock manager can be implemented as a separate process
! Transactions can send lock and unlock requests as messages
! The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case of a
deadlock– to be seen in a few minutes)
• The requesting transaction waits until its request is answered

! The lock manager maintains an in-memory data-structure called a lock
table to record granted locks and pending requests

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 15

Lock Table
! Dark rectangles indicate granted locks,

light colored ones indicate waiting
requests

! Lock table also records the type of lock
granted or requested

! New request is added to the end of the
queue of requests for the data item,
and granted if it is compatible with all
earlier locks

! Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted

! If a transaction aborts, all waiting or
granted requests of the transaction are
deleted
• lock manager may keep a list of

locks held by each transaction, to
implement this efficiently

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 16

Deadlock

! Consider the partial schedule

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 16

Deadlock

! Consider the partial schedule

! Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to
wait for T3 to release its lock on B, while executing lock-X(A) causes T3 to
wait for T4 to release its lock on A.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 16

Deadlock

! Consider the partial schedule

! Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to
wait for T3 to release its lock on B, while executing lock-X(A) causes T3 to
wait for T4 to release its lock on A.

! Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 17

Deadlock (Cont.)

! The potential for deadlock exists in most locking protocols.
• E.g. (all versions so far of) 2-PL may have deadlocks

! Deadlocks are a necessary evil when using lock-protocols

! Starvation is also possible if concurrency control manager is badly
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock on
the same item.

• The same transaction is repeatedly rolled back due to deadlocks.
! Concurrency control manager can be designed to prevent starvation.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 18

Deadlock Handling

! Deadlock prevention protocols ensure that the system will never enter a
deadlock state. Some prevention strategies:
• Require that each transaction locks all its data items before it begins

execution (pre-declaration).
• Impose partial ordering of all data items and require that a transaction

can lock data items only in the order specified by the partial order
(graph-based protocol).

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 19

More Deadlock Prevention Strategies

! wait-die scheme — non-preemptive
• Older transaction may wait for younger one to release data item.
• Younger transactions never wait for older ones; they are rolled back

instead.
• A transaction may die several times before acquiring a lock

! wound-wait scheme — preemptive
• Older transaction wounds (forces rollback) of younger transaction

instead of waiting for it.
• Younger transactions may wait for older ones.
• Fewer rollbacks than wait-die scheme.

! In both schemes, a rolled back transactions is restarted with its original
timestamp.
• Ensures that older transactions have precedence over newer ones,

and starvation is thus avoided.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 20

Deadlock prevention (Cont.)

! Timeout-Based Schemes:
• A transaction waits for a lock only for a specified amount of time. After

that, the wait times-out and the transaction is rolled back.
• Ensures that deadlocks get resolved by timeout if they occur
• Simple to implement
• But may roll back transaction unnecessarily in absence of deadlock

! Difficult to determine good value of the timeout interval.
• Starvation is also possible

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 21

Deadlock Detection

! Wait-for graph
• Vertices: transactions
• Edge from Ti →Tj. : if Ti is waiting for a lock held in conflicting mode byTj

! The system is in a deadlock state if and only if the wait-for graph has a
cycle.

! Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 22

Deadlock Recovery

! When deadlock is detected :
• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.
! Select as victim the transaction that will incur minimum cost

• Rollback – determine how far to roll back transaction
! Total rollback: Abort the transaction and then restart it.
! Partial rollback: Roll back victim transaction only as far as

necessary to release locks that another transaction in cycle is
waiting for

! Starvation can happen
• One solution: oldest transaction in the deadlock set is never chosen as

victim

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 23

Multiple Granularity

! Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger ones

! Can be represented graphically as a tree
! When a transaction explicitly locks a node in the tree, it implicitly locks all

the node's descendants in the same mode.
! Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high locking
overhead

• Coarse granularity (higher in tree): low locking overhead, low
concurrency

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 24

Example of Granularity Hierarchy

! The levels, starting from the coarsest (top) level are
• database
• area
• file
• record

! The corresponding tree

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 25

Insert/Delete Operations and Predicate Reads

! Locking rules for insert/delete operations
• An exclusive lock must be obtained on an item before it is deleted
• A transaction that inserts a new tuple into the database is automatically

given an X-mode lock on the tuple
! Ensures that

• reads/writes conflict with deletes
• Inserted tuple is not accessible by other transactions until the

transaction that inserts the tuple commits

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 26

Phantom Phenomenon

! Example of phantom phenomenon.
• A transaction T1 that performs predicate read (or scan) of a relation

! select count(*)
 from instructor
 where dept_name = 'Physics'

• and a transaction T2 that inserts a tuple while T1 is active but after
predicate read
! insert into instructor values ('11111', 'Feynman', 'Physics', 94000)
(conceptually) conflict despite not accessing any tuple in common.

! If only tuple locks are used, non-serializable schedules can be obtained
• E.g. the scan transaction does not see the new instructor, but may read

some other tuple written by the update transaction
! Can also occur with updates

• E.g. update Wu’s department from Finance to Physics

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 27

Handling Phantoms

! There is a conflict at the data level
• The transaction performing predicate read or scanning the relation is

reading information that indicates what tuples the relation contains
• The transaction inserting/deleting/updating a tuple updates the same

information.
• The conflict should be detected, e.g. by locking the information.

! One solution:
• Associate a data item with the relation, to represent the information

about what tuples the relation contains.
• Transactions scanning the relation acquire a shared lock in the data

item,
• Transactions inserting or deleting a tuple acquire an exclusive lock on

the data item. (Note: locks on the data item do not conflict with locks on
individual tuples.)

! This protocol provides very low concurrency for insertions/deletions.

FCT NOVAJosé Alferes – Adaptado de Database System Concepts - 7th Edition 28

Index Locking To Prevent Phantoms

! Index locking protocol to prevent phantoms
• Every relation must have at least one index.
• A transaction can access tuples only after finding them through one or

more indices on the relation
• A transaction Ti that performs a lookup must lock all the index leaf nodes

that it accesses, in S-mode
! Even if the leaf node does not contain any tuple satisfying the index

lookup (e.g. for a range query, no tuple in a leaf is in the range)
• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

! Must update all indices to r
! Must obtain exclusive locks on all index leaf nodes affected by the

insert/update/delete
• The rules of the two-phase locking protocol must be observed

! Guarantees that phantom phenomenon won’t occur

