
Sistemas de Bases de Dados 2020/21
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 16: Query Optimization

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Outline

§ Introduction
§ Transformation of Relational Expressions
§ Catalog Information for Cost Estimation
§ Statistical Information for Cost Estimation
§ Cost-based optimization
§ Dynamic Programming for Choosing Evaluation Plans
§ Join minimization, Materialized views and nested subqueries

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Introduction

§ An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Introduction (Cont.)

§ Cost difference between evaluation plans for a query can be enormous
• E.g., seconds vs. days in some cases

§ Steps in cost-based query optimization
1. Generate logically equivalent expressions using equivalence rules
2. Annotate resultant expressions to get alternative query plans
3. Choose the cheapest plan based on estimated cost

§ Estimation of plan cost based on:
• Statistical information about relations. Examples:

§ number of tuples, number of distinct values for an attribute
• Statistics estimation for intermediate results

§ to compute cost of complex expressions
• Cost formulae for algorithms, computed using statistics

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Ordering Example

§ For all relations r1, r2, and r3,
(r1 ⨝ r2) ⨝ r3 = r1 ⨝ (r2 ⨝ r3)

(Join Associativity) ⨝
§ If r2 ⨝ r3 is quite large and r1 ⨝ r2 is small, we choose

(r1 ⨝ r2) ⨝ r3

so that the computed and stored temporary relation (in case no pipelining
is used) is smaller

§ Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

§ Must consider the interaction of evaluation techniques when choosing
evaluation plans
• choosing the cheapest algorithm for each operation independently

may not yield the best overall algorithm. E.g.
§ merge-join may be costlier than hash-join but may provide a

sorted output which reduces the cost for an outer level
aggregation (or a following join)

§ nested-loop join may provide opportunity for pipelining

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Ordering Example (Cont.)

§ Consider the expression
Pname, title(sdept_name= “Music” (instructor) ⨝ teaches)

⨝ Pcourse_id, title (course))))
§ Could compute teaches ⨝ Pcourse_id, title (course) first, and join result with

sdept_name= “Music” (instructor)
but the result of the first join is likely to be a large relation.

§ Only a small fraction of the university’s instructors are likely to be from
the Music department
• it is better to compute

sdept_name= “Music” (instructor) ⨝ teaches
first.

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Dynamic Programming & Left Deep Join Trees

§ To deal with the high combinatoric, Dynamic Programming may be
used

§ To trim the combinatoric use left-deep join trees, where the right-
hand-side input for each join is a relation, not the result of an
intermediate join.

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Heuristic Optimization

§ Cost-based optimization is expensive, even with dynamic programming.
§ Systems may use heuristics to reduce the number of choices that must be

made in a cost-based fashion.
§ Heuristic optimization transforms the query-tree by using a set of rules that

typically (but not in all cases) improve execution performance:
• Perform selection early (reduces the number of tuples)
• Perform projection early (reduces the number of attributes)
• Perform most restrictive selection and join operations (i.e., with smallest

result size) before other similar operations.
• Some systems use only heuristics, others combine heuristics with partial

cost-based optimization.

§ Local search (e.g. hill-climbing and genetic algorithms) may also be used for
optimisation

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Structure of Query Optimizers

§ Many optimizers considers only left-deep join orders.
• Plus heuristics to push selections and projections down the query tree
• Reduces optimization complexity and generates plans amenable to

pipelined evaluation.
§ Heuristic optimization used in some versions of Oracle:

• Repeatedly pick “best” relation to join next
§ Starting from each of n starting points. Pick best among these

§ Intricacies of SQL complicate query optimization
• E.g., nested subqueries

§ Even with the use of heuristics, cost-based query optimisation imposes a
substantial overhead.
• But is worth it for expensive queries in large datasets
• Optimisers often use simple heuristics for very cheap queries, and

perform exhaustive enumeration for more expensive queries
• The cost of optimisation is a function of the size of the query,

whilst the gains are a functions of the size of the dataset

Sistemas de Bases de Dados 2020/21
Capítulo refere-se a: Database System Concepts, 7th Ed

Statistics for Cost Estimation

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Statistical Information for Cost Estimation

§ nr: number of tuples in a relation r.
§ br: number of blocks containing tuples of r.
§ lr: size of a tuple of r.
§ fr: blocking factor of r — i.e., the number of tuples of r that fit into one block.
§ V(A, r): number of distinct values that appear in r for attribute A; same as

the size of ÕA(r).
§ If tuples of r are stored together physically in a file, then:

!
!
!

!

"

#
#
#

#

$
=
rf
rnrb

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Histograms

§ Histogram on attribute age of relation person

§ Equi-width histograms
§ Equi-depth histograms break up range such that each range has

(approximately) the same number of tuples
• E.g. (4, 8, 14, 19)

§ Many databases also store n most-frequent values and their counts
• Histogram is built on remaining values only

value

fre
qu

en
cy

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Histograms (cont.)

§ Histograms and other statistics are usually computed based on a random
sample

§ Statistics may be out of date
• Some database require an analyze command to be executed to

update statistics
• Others automatically recompute statistics

§ e.g., when number of tuples in a relation changes by some
percentage

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Estimating Statistical Information

§ Statistical information about exiting tables (and indices) can be used to
estimate the cost of the algorithms for relational algebra operators
• (we’ve seen that working in practice)

§ But what if an operator in an execution plan takes as input the result of
another operation (rather than a table that directly belongs to the
database)?
• In this case, we need to have statistics about the “intermediate table”
• How can we obtain such statistics?

§ Estimate those statistics, based on the operator and the statistics stored
for the original tables.

§ I.e. besides estimating the costs, for each operator estimate also:
• Number of tuples of the result of the operation
• Size of tuples, number of distinct value per attribute, histograms, etc,

of the result of the operation

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

§ sA=v(r)
• nr / V(A,r) : number of records that will satisfy the selection
• Equality condition on a key attribute: size estimate = 1

§ sA£V(r) (case of sA ³ V(r) is symmetric)
• Let c denote the estimated number of tuples satisfying the condition.
• If min(A,r) and max(A,r) are available in catalog

§ c = 0 if v < min(A,r)

§ c =

• If histograms available, can refine above estimate
• In absence of statistical information c is assumed to be nr / 2.

Selection Size Estimation

),min(),max(
),min(

.
rArA

rAvnr −

−

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Size Estimation of Complex Selections

§ The selectivity of a condition qi is the probability that a tuple in the relation
r satisfies qi .

• If si is the number of satisfying tuples in r, the selectivity of qi is given
by si /nr.

§ Conjunction: sq1Ù q2Ù. . . Ù qn (r). Assuming independence, estimate of

tuples in the result is:

§ Disjunction:sq1Ú q2 Ú. . . Ú qn (r). Estimated number of tuples:

§ Negation: s¬q(r). Estimated number of tuples:
nr – size(sq(r))

n
r

n
r n

sssn ∗∗∗
∗

 . . . 21

!!
"

#
$$
%

&
−∗∗−∗−−∗)1(...)1()1(1 21

r

n

rr
r n

s
n
s

n
sn

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Operation: Running Example

Running example:
student ⨝ takes

Catalog information for join examples:
§ nstudent = 5,000.
§ fstudent = 50, which implies that

bstudent =5000/50 = 100.
§ ntakes = 10000.
§ ftakes = 25, which implies that

btakes = 10000/25 = 400.
§ V(ID, takes) = 2500, which implies that on average, each student who has

taken a course has taken 4 courses.
• Attribute ID in takes is a foreign key referencing student.
• V(ID, student) = 5000 (primary key!)

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Estimation of the Size of Joins

§ The Cartesian product r x s contains nr .ns tuples; each tuple occupies sr +
ss bytes.

§ If R Ç S = Æ, then r ⋈ s is the same as r x s.
§ If R Ç S is a key for R, then a tuple of s will join with at most one tuple from

r
• therefore, the number of tuples in r ⋈ s is no greater than the number

of tuples in s.
§ If R Ç S in S is a foreign key in S referencing R, then the number of tuples

in r ⋈ s is exactly the same as the number of tuples in s.
§ The case for R Ç S being a foreign key referencing S is symmetric.

§ In the example query student ⋈ takes, ID in takes is a foreign key
referencing student
• hence, the result has exactly ntakes tuples, which is 10000

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Estimation of the Size of Joins (Cont.)

§ If R Ç S = {A} is not a key for R or S.
If we assume that every tuple t in R produces tuples in R S, the number
of tuples in R ⨝ S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.
§ We can improve on above if histograms are available

• Use formula like above, for each cell of histograms on the two
relations

),(sAV
nn sr ∗

),(rAV
nn sr ∗

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Estimation of the Size of Joins (Cont.)

§ Compute the size estimates for depositor ⨝ customer without using
information about foreign keys:
• V(ID, takes) = 2500, and

V(ID, student) = 5000
• The two estimates are 5000 * 10000/2500 = 20,000 and 5000 *

10000/5000 = 10000
• We choose the lower estimate, which in this case, is the same as our

earlier computation using foreign keys.

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Size Estimation of Outer Joins

§ Outer join:
• Estimated size of r ⟕ s = size of r ⨝ s + size of r

§ Case of right outer join is symmetric
• Estimated size of r ⟗ s = size of r ⨝ s + size of r + size of s

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Size Estimation for Other Operations

§ Projection: estimated size of ÕA(r) = V(A,r)
§ Aggregation : estimated size of G𝛾A(r) = V(G,r)
§ Set operations

• For unions/intersections of selections on the same relation: rewrite
and use size estimate for selections
§ E.g., sq1 (r) È sq2 (r) can be rewritten as sq1 or q2 (r)

• For operations on different relations:
§ estimated size of r È s = size of r + size of s.
§ estimated size of r Ç s = minimum size of r and size of s.
§ estimated size of r – s = r.
§ All the three estimates may be quite inaccurate but provide upper

bounds on the sizes.

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

Estimation of Number of Distinct Values

Selections: sq (r)
§ If q forces A to take a specified value: V(A,sq (r)) = 1.

§ e.g., A = 3
§ If q forces A to take on one of a specified set of values:

V(A,sq (r)) = number of specified values.
§ (e.g., (A = 1 V A = 3 V A = 4)),

§ If the selection condition q is of the form A op r
estimated V(A,sq (r)) = V(A.r) * s
§ where s is the selectivity of the selection.

§ In all the other cases: use approximate estimate of
min(V(A,r), nsq (r))

• More accurate estimate can be got using probability theory, but this
one works fine generally

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

Estimation of Distinct Values (Cont.)

Joins: r ⨝ s
§ If all attributes in A are from r

estimated V(A, r ⨝ s) = min (V(A,r), n r ⨝ s)
§ If A contains attributes A1 from r and A2 from s, then estimated

V(A,r ⨝ s) =
min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr ⨝ s)

• More accurate estimate can be got using probability theory, but this
one works fine generally

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Estimation of Distinct Values (Cont.)

§ Estimation of distinct values are straightforward for projections.
• They are the same in ÕA (r) as in r.

§ The same holds for grouping attributes of aggregation.
§ For aggregated values

• For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes

• For other aggregates, assume all values are distinct, and use V(G,r)

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Additional Optimisation Techniques

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Minimisation

§ Join minimization
select r.A, r.B
from r, s
where r.B = s.B

§ Check: if join with s is redundant, drop it
• E.g., join condition is on foreign key from r to s, r.B is declared as not

null, and no selection on s
• Other sufficient conditions possible

select r.A, s2.B
from r, s as s1, s as s2
where r.B=s1.B and r.B = s2.B and s1.A < 20 and s2.A < 10
§ join with s1 is redundant and can be dropped (along with selection

on s1)

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Top-K Queries

§ Top-K queries
select *
from r, s
where r.B = s.B
order by r.A ascending
limit 10

• Alternative 1: Indexed nested loops join with r as outer
• Alternative 2: estimate highest r.A value in result and add selection (and

r.A <= H) to where clause
§ If < 10 results, retry with larger H

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

Optimizing Nested Subqueries
§ Nested query example:

select name
from instructor
where exists (select *

from teaches
where instructor.ID = teaches.ID and teaches.year = 2021)

§ SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of values
• Parameters are variables from outer level query that are used in the

nested subquery; such variables are called correlation variables
§ Conceptually, nested subquery is executed once for each tuple in the

cross-product generated by the outer level from clause
• Such evaluation is called correlated evaluation
• Note: other conditions in where clause may be used to compute a join

(instead of a cross-product) before executing the nested subquery

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Optimizing Nested Subqueries (Cont.)

§ Correlated evaluation may be quite inefficient since
• a large number of calls may be made to the nested query
• there may be unnecessary random I/O as a result

§ SQL optimizers attempt to transform nested subqueries to joins where
possible, enabling use of efficient join techniques

§ E.g.: earlier nested query can be rewritten as
select instructor.name
from instructor, teaches
where instructor.ID = teaches.ID and teaches.year = 2021

§ In general, it is not possible/straightforward to move the entire nested
subquery into the outer level query
• A view is created instead, and used in the body of the outer level

query

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown
§ Rewrite: select A

from r1, r2 ,…, rn
where P1 and exists (select *

from s1, s2 ,…, sm
where P2

1 and P2
2)

§ To: with t1 as
(select distinct V
from s1, s2 ,…, sm
where P2

1)
select …
from r1, r2 ,…, rn , t1
where P1 and P2

2

• P2
1 contains predicates that do not involve any correlation variables

• P2
2 contains predicates involving correlation variables

• V contains all attributes used in predicates with correlation variables

FCT NOVA33José Alferes – Adaptado de Database System Concepts - 7th Edition

Optimizing Nested Subqueries (Cont.)

§ In our example, the original nested query would be transformed to
with t1 as

(select distinct ID
from teaches
where year = 2021)

select name
from instructor, t1
where t1.ID = instructor.ID

§ The process of replacing a nested query by a query with a join (possibly
with a temporary relation) is called decorrelation.

§ Decorrelation is more complicated in several cases, e.g.
§ The nested subquery uses aggregation, or
§ The nested subquery is a scalar subquery

• Correlated evaluation used in these cases

FCT NOVA34José Alferes – Adaptado de Database System Concepts - 7th Edition

Decorrelation (Cont.)

Decorrelation of scalar aggregate subqueries can be done using group-
by/aggregation in some cases. E.g.
§ select name

from instructor
where 1 < (select count(*)

from teaches
where instructor.ID = teaches.ID

and teaches.year = 2021)
can be transformed into
§ with t as

(select ID, count(*) as cnt
from teaches
where teaches.year = 2021
group by ID)

select name
from instructor, t
where instructor.ID = t.ID and cnt > 1)

FCT NOVA35José Alferes – Adaptado de Database System Concepts - 7th Edition

Materialized Views

§ A materialized view is a view whose contents are computed and stored.
§ Consider the view

create view department_total_salary(dept_name, total_salary) as
select dept_name, sum(salary)
from instructor
group by dept_name

§ Materializing the above view would be very useful if the total salary by
department is required frequently
• Saves the effort of finding multiple tuples and adding up their amounts

FCT NOVA36José Alferes – Adaptado de Database System Concepts - 7th Edition

Materialized View Maintenance

§ The task of keeping a materialized view up-to-date with the underlying
data is known as materialized view maintenance

§ Materialized views can be maintained by recomputation on every update
§ A better option is to use incremental view maintenance

• Changes to database relations are used to compute changes to
the materialized view, which is then updated

§ View maintenance can be done by
• Manually defining triggers on insert, delete, and update of each

relation in the view definition
• Manually written code to update the view whenever database relations

are updated
• Periodic recomputation (e.g., nightly)
• Incremental maintenance supported by many database systems

§ Avoids manual effort/correctness issues

FCT NOVA37José Alferes – Adaptado de Database System Concepts - 7th Edition

Incremental View Maintenance

§ The changes (inserts and deletes) to a relation or expressions are referred
to as its differential
• Set of tuples inserted to and deleted from r are denoted ir and dr

§ To simplify, we only consider inserts and deletes
• We replace updates to a tuple by deletion of the tuple followed by

insertion of the update tuple
§ We describe how to compute the change to the result of each relational

operation, given changes to its inputs
§ We then outline how to handle relational algebra expressions

FCT NOVA38José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Operation

§ Consider the materialized view v = r ⨝ s and an update to r
§ Let rold and rnew denote the old and new states of relation r
§ Consider the case of an insert to r:

• We can write rnew⨝ s as (rold È ir) ⨝ s
• And rewrite the above to (rold⨝ s) È (ir⨝ s)
• But (rold⨝ s) is simply the old value of the materialized view, so the

incremental change to the view is just ir⨝ s
§ Thus, for inserts vnew = voldÈ(ir⨝ s)
§ Similarly for deletes vnew = vold – (dr⨝ s)

A, 1
B, 2

1, p
2, r
2, s

A, 1, p
B, 2, r
B, 2, s

C,2
C, 2, r
C, 2, s

FCT NOVA39José Alferes – Adaptado de Database System Concepts - 7th Edition

Selection and Projection Operations

§ Selection: Consider a view v = sq(r).
• vnew = voldÈsq(ir)
• vnew = vold - sq(dr)

§ Projection is a more difficult operation
• R = (A,B), and r(R) = { (a,2), (a,3)}
• ÕA(r) has a single tuple (a).
• If we delete the tuple (a,2) from r, we should not delete the tuple (a)

from ÕA(r), but if we then delete (a,3) as well, we should delete the
tuple

§ For each tuple in a projection ÕA(r), we keep a count of how many times it
was derived
• On insert of a tuple to r, if the resultant tuple is already in ÕA(r) we

increment its count, else we add a new tuple with count = 1
• On delete of a tuple from r, we decrement the count of the

corresponding tuple in ÕA(r)
§ if the count becomes 0, we delete the tuple from ÕA(r)

FCT NOVA40José Alferes – Adaptado de Database System Concepts - 7th Edition

Aggregation Operations

§ Count : v = A 𝛾 count(B)
(r).

• When a set of tuples ir is inserted
§ For each tuple r in ir, if the corresponding group is already present in

v, we increment its count, else we add a new tuple with count = 1
• When a set of tuples dr is deleted

§ for each tuple t in ir.we look for the group t.A in v, and subtract 1 from
the count for the group.
• If the count becomes 0, we delete from v the tuple for the group

t.A
§ Sum: v = A 𝛾 sum (B)

(r)

• We maintain the sum in a manner similar to count, except we
add/subtract the B value instead of adding/subtracting 1 for the count

• Additionally we maintain the count in order to detect groups with no
tuples. Such groups are deleted from v
§ Cannot simply test for sum = 0 (why?)

FCT NOVA41José Alferes – Adaptado de Database System Concepts - 7th Edition

Aggregate Operations (Cont.)

§ Avg:
• Maintain sum and count separately, and divide at the end

§ min, max: v = A 𝛾 min (B) (r).
• Handling insertions on r is straightforward.
• Maintaining the aggregate values min and max on deletions may be

more expensive. We have to look at the other tuples of r that are in the
same group to find the new minimum

FCT NOVA42José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Operations

§ Set intersection: v = r Ç s
• when a tuple is inserted in r we check if it is present in s, and if so we

add it to v.
• If the tuple is deleted from r, we delete it from the intersection if it is

present.
• Updates to s are symmetric
• The other set operations, union and set difference are handled in a

similar fashion.
§ Outer joins are handled in much the same way as joins but with some extra

work
• we leave details to you.

FCT NOVA43José Alferes – Adaptado de Database System Concepts - 7th Edition

Handling Expressions

§ To handle an entire expression, we derive expressions for computing the
incremental change to the result of each sub-expressions, starting from the
smallest sub-expressions.

§ E.g., consider E1 ⨝ E2 where each of E1 and E2 may be a complex
expression
• Suppose the set of tuples to be inserted into E1 is given by D1

§ Computed earlier, since smaller sub-expressions are handled first
• Then the set of tuples to be inserted into E1 ⨝ E2 is given by

D1 ⨝ E2

§ This is just the usual way of maintaining joins

FCT NOVA44José Alferes – Adaptado de Database System Concepts - 7th Edition

Query Optimization and Materialized Views

§ Rewriting queries to use materialized views:
• A materialized view v = r ⨝ s is available
• A user submits a query r ⨝ s ⨝ t
• We can rewrite the query as v ⨝ t

§ Whether to do so depends on cost estimates for the two alternative
§ Replacing a use of a materialized view by the view definition:

• A materialized view v = r ⨝ s is available, but without any index on it
• User submits a query sA=10(v).
• Suppose also that s has an index on the common attribute B, and r has

an index on attribute A.
• The best plan for this query may be to replace v by r ⨝ s, which can

lead to the query plan sA=10(r) ⨝ s
§ Query optimizer should be extended to consider all above

alternatives and choose the best overall plan

FCT NOVA45José Alferes – Adaptado de Database System Concepts - 7th Edition

Materialized View Selection

§ Materialized view selection: “What is the best set of views to materialize?”
§ Index selection: “what is the best set of indices to create”

• closely related, to materialized view selection
§ but simpler

§ Materialized view selection and index selection should be based on typical
system workload (queries and updates)
• Typical goal: minimize time to execute workload, subject to constraints

on space and time taken for some critical queries/updates
• One of the steps in database tuning

§ more on tuning, later
§ Commercial database systems provide tools (called “tuning assistants” or
“wizards”) to help the database administrator choose what indices and
materialized views to create

FCT NOVA46José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiquery Optimization

§ Example
Q1: select * from (r natural join t) natural join s
Q2: select * from (r natural join u) natural join s

• Both queries share common subexpression (r natural join s)
• May be useful to compute (r natural join s) once and use it in both

queries
§ But this may be more expensive in some situations

• e.g. (r natural join s) may be expensive, plans as shown in
queries may be cheaper

§ Multiquery optimization: find best overall plan for a set of queries,
exploiting sharing of common subexpressions between queries where it is
useful

FCT NOVA47José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiquery Optimization (Cont.)

§ Simple heuristic used in some database systems:
• optimize each query separately
• detect and exploiting common subexpressions in the individual optimal

query plans
§ May not always give best plan, but is cheap to implement

• Shared scans: widely used special case of multiquery optimization
§ Set of materialized views may share common subexpressions

• As a result, view maintenance plans may share subexpressions
• Multiquery optimization can be useful in such situations

FCT NOVA48José Alferes – Adaptado de Database System Concepts - 7th Edition

Parametric Query Optimization
§ Example

select *
from r natural join s
where r.a < $1
• value of parameter $1 not known at compile time

§ known only at run time
• different plans may be optimal for different values of $1

§ Solution 1: optimize at run time, each time the query is submitted
§ can be expensive

§ Solution 2: Parametric Query Optimization:
• optimizer generates a set of plans, optimal for different values of $1

§ Set of optimal plans usually small for 1 to 3 parameters
§ Key issue: how to find a set of optimal plans efficiently

• best one from this set is chosen at run time when $1 is known
§ Solution 3: Query Plan Caching

• If optimizer decides that same plan is likely to be optimal for all
parameter values, it caches plan and reuses it, else reoptimize each time

• Implemented in many database systems

FCT NOVA49José Alferes – Adaptado de Database System Concepts - 7th Edition

Plan Stability Across Optimizer Changes

§ What if 95% of plans are faster on database/optimizer version N+1 than on
N, but 5% are slower?
• Why should plans be slower on new improved optimizer?

§ Answer: Two wrongs can make a right, fixing one wrong can make
things worse!

§ Approaches:
• Allow hints for tuning queries

§ Not practical for migrating large systems with no access to source
code

• Set optimization level, default to version N (Oracle)
§ And migrate one query at a time after testing both plans on new

optimizer
• Save plan from version N, and give it to optimizer version N+1

§ Sybase, XML representation of plans (SQL Server)

FCT NOVA50José Alferes – Adaptado de Database System Concepts - 7th Edition

Adaptive Query Processing

§ Some systems support adaptive operators that change execution algorithm
on the fly
• E.g., (indexed) nested loops join or hash join chosen at run time,

depending on size of outer input
§ Other systems allow monitoring of behavior of plan at run time and adapt

plan
• E.g., if statistics such as number of rows is found to be very different in

reality from what optimizer estimated
• Can stop execution, compute fresh plan, and restart

§ But must avoid too many such restarts

