
Sistemas de Bases de Dados 2020/21
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 15: Query Processing
(and also, chapter 22: Parallel Query Processing)

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Chapter 15: Query Processing

§ Overview
§ Measures of Query Cost
§ Selection Operation
§ Sorting
§ Join Operation
§ Other Operations
§ Evaluation of Expressions
§ Parallel query processing
§ Query processing in Oracle

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Intraquery Parallelism

§ Intraquery parallelism: execution of a single query in parallel on multiple
processors/disks; important for speeding up long-running queries.

§ Two complementary forms of intraquery parallelism:
• Interoperation Parallelism – execute the different operations in a

query expression in parallel.
§ Limited degree of parallelism

• Intraoperation Parallelism – parallelize the execution of each
individual operation in the query
§ Supports high degree of parallelism

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Parallel Processing of Relational Operations

§ Our discussion of parallel algorithms assumes:
• read-only queries
• shared-nothing architecture
• n nodes, N1, ..., Nn

§ Each assumed to have disks and processors.
• Initial focus on parallelization to a shared-nothing node

§ Parallel processing within a shared memory/shared disk node
discussed later

• Shared-nothing architectures can be efficiently simulated on shared-
memory and shared-disk systems.
§ Algorithms for shared-nothing systems can thus be run on

shared-memory and shared-disk systems.
§ However, some optimizations may be possible.

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Interoperator Parallelism

§ Pipelined parallelism
• Consider a join of four relations

§ r1 r2 r3 r4
• Set up a pipeline that computes the three joins in parallel

§ Let P1 be assigned the computation of  temp1 = r1 r2
§ P2 be assigned the computation of temp2 = temp1 r3
§ and P3 be assigned the computation of temp2 r4

• Each of these operations can execute in parallel, sending the result
tuples it computes to the next operation even as it is computing further
results
§ It requires a pipelineable join evaluation algorithm, e.g. (indexed)

nested loops join

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Factors Limiting Utility of Pipeline Parallelism

§ Pipeline parallelism is useful since it avoids writing intermediate results to
disk

§ Useful with small number of processors, but does not scale up well with
more processors.
• Pipeline chains usually do not have sufficient length!

§ Cannot pipeline operators which do not produce output until all inputs have
been accessed (e.g. aggregate and sort)

§ Little speedup is obtained for the frequent cases of skew in which one
operator's execution cost is much higher than the others.

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Intraoperation parallelism

§ Parallelize the execution of each individual operation in the query
• Supports high degree of parallelism

§ Devise parallel algorithms for the various operators
• Some operators are more amenable than others (e.g. in selection

there is not much opportunity for parallelism).

§ The basic idea of parallel algorithms for querying is:
1. Start by partitioning the relation(s) in a convenient way
2. Perform the operation in parallel in each of the partitions
3. (If needed) do some nonparallel processing in the end

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Range Partitioning Sort

Range-Partitioning Sort
! Choose nodes N1, ..., Nm,
! Create range-partition vector with

m-1 entries, on the sorting
attributes

! Redistribute the relation using
range partitioning

! Each node Ni sorts its partition of
the relation locally.
! Example of data parallelism:

each node executes the same
operation in parallel with other
nodes, without any interaction
with the others.

! Final merge operation is trivial:
range-partitioning ensures that,
if i < j, all key values in node Ni are

all less than all key values in Nj.

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Parallel External Sort-Merge

Parallel External Sort-Merge
" Assume the relation has already been

partitioned among nodes N1, ..., Nn (in
whatever manner – not necessary by range).

" Each node Ni locally sorts the data (using local
disk as required)

" The sorted runs on each node are then merged
in parallel:
! The sorted partitions at each node Ni are

range-partitioned across the processors
N1, ..., Nn.

! Each node Ni performs a merge on the
streams as they are received, to get a
single sorted run.

! The sorted runs on nodes N1, ..., Nn are
concatenated to get the result.

" Algorithm as described vulnerable to execution
skew
! all nodes send to node 1, then all nodes

send data to node 2, …
! Can be modified so each node sends data

to all other nodes in parallel (block at a
time)

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Partitioned Parallel Join

Partition using range or hash partitioning, on join attributes

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Partitioned Parallel Join (Cont.)

§ For equijoins and natural joins, it is possible to partition the two input
relations across the processors and compute the join locally at each
processor.

§ Can use either range partitioning or hash partitioning.
§ r and s must be partitioned on their join attributes, using the same range-

partitioning vector or hash function.
§ Join can be computed at each site using any of

• Hash join, leading to partitioned parallel hash join
• Merge join, leading to partitioned parallel merge join
• Nested loops join, leading to partitioned parallel nested-loops join

or partitioned parallel index nested-loops join

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:
§ A hash function h1 takes the join attribute value of each tuple in s and

maps this tuple to one of the n nodes.
§ As tuples of relation s are received at the destination nodes, they are

partitioned further using another hash function, h2, which is used to
compute the hash-join locally.

§ Repeat above for each tuple in r.
§ Each node Ni executes the build and probe phases of the hash-join

algorithm on the local partitions ri and si of r and s to produce a partition
of the final result of the hash-join.

§ Note: Hash-join optimizations can be applied to the parallel case
• e.g., the hybrid hash-join algorithm can be used to cache some of the

incoming tuples in memory and avoid the cost of writing them and
reading them back in.

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Fragment-and-Replicate Join

§ Partitioning is not possible for some join conditions
• E.g., non-equijoin conditions, such as r.A > s.B.

§ For joins where partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique
• Fragment r into n relations, and s into m relations
• Use n*m processors to compute joins between all partitions
• This requires replicating the fragments
• Make the union of the obtained joins

§ Special case – asymmetric fragment-and-replicate:
• One of the relations, say r, is partitioned; any partitioning

technique can be used.
• The other relation, s, is replicated across all the processors.
• Node Ni then locally computes the join of ri with all of s using

any join technique.
• Also referred to as broadcast join

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Fragment-and-Replicate Joins

Symmetric and Asymmetric Fragment-and-Replicate Joins

r1 N1,1

s1 s2 s3

s

s4 sm

r2

r r3

r4

rn
Nn,m

.

.

.

N1r1

N2r2

r s

N3r2

N4r3

.

.

.
.
.
.

N2,1

N3,1

N1,2

N2,2

N3,2

N1,3

N2,3

N1,4

. . .

.

.

.

.

.

.

(a) Asymmetric
fragment and replicate

(b) Fragment and replicate

r1 N1,1

s1 s2 s3

s

s4 sm

r2

r r3

r4

rn
Nn,m

.

.

.

N1r1

N2r2

r s

N3r2

N4r3

.

.

.
.
.
.

N2,1

N3,1

N1,2

N2,2

N3,2

N1,3

N2,3

N1,4

. . .

.

.

.

.

.

.

(a) Asymmetric
fragment and replicate

(b) Fragment and replicate

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Fragment-and-Replicate Join (Cont.)

§ Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

§ Usually has a higher cost than partitioning, since one of the relations
(for asymmetric fragment-and-replicate) or both relations (for general
fragment-and-replicate) must be replicated.

§ Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.
• E.g., if s is small and r is large, and r is already partitioned, it may

be cheaper to replicate s across all nodes, rather than repartition
r and s on the join attributes.

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Relational Operations

Selection sq(r)
§ If q is of the form ai = v, where ai is an attribute and v a value.

• If r is partitioned on ai the selection is performed at a single node.
§ If q is of the form l ≤ ai ≤ u (i.e., q is a range selection) and the relation

has been range-partitioned on ai

• Selection is performed at each node whose partition overlaps with
the specified range of values.

§ In all other cases: the selection is performed in parallel at all the nodes.

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Relational Operations (Cont.)

§ Duplicate elimination
• Perform by using either of the parallel sort techniques

§ eliminate duplicates as soon as they are found during sorting.
• Can also partition the tuples (using either range- or hash- partitioning)

and perform duplicate elimination locally at each node.
§ Projection

• Projection without duplicate elimination can be performed as tuples
are read from disk, in parallel.

• If duplicate elimination is required, any of the above duplicate
elimination techniques can be used.

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Grouping/Aggregation

§ Step 1: Partition the relation on the grouping attributes
§ Step 2: Compute the aggregate values locally at each node.
§ Optimization: Can reduce cost of transferring tuples during partitioning

by partial aggregation before partitioning
• For distributive aggregate
• Can be done as part of run generation
• Consider the sum aggregation operation:

§ Perform aggregation operation at each node Ni on those tuples
stored in its local disk
• results in tuples with partial sums at each node.

§ Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each node Ni
to get the final result.

• Fewer tuples need to be sent to other nodes during partitioning.

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Query processing in Oracle

§ Oracle implements most of the algorithms we’ve seen for query processing
of the various operations
• For selection

§ Full table scan (i.e. linear search algorithm)
§ Index scan (as described above in these slides)
§ Index fast full scan (transverse the whole table using the B+ index)
§ Cluster and hash cluster access (access data by using cluster key)

• For join
§ (Block) nested loop join (possibly using indexes, when available)
§ Sort-merge join
§ Hash join

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Query processing in Oracle (Cont.)

§ The choice of the algorithm to be used in each operation is done by the
query optimiser (we will see more on this later today)

§ However, the user can force specific algorithms by providing hints when
writing the query:

select /*+ here_comes_the_hint */ …
§ Many hints can be added. Here we name just a few.

• Hints for forcing a specific algorithm (or index file) to be used in a
selection

• Hints for ordering the relation in a join (i.e. to choose the outer and the
inner relations)

• Hints for choosing an algorithm for join, and possibly an index file if
appropriate;

• Hints for forcing parallelism; Hints for guiding the optimiser
• …

§ See more at the Oracle’s reference manual under the section on
“Comments”
• It may seem a strange place to have it, but there is where it is!

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Some query hints in Oracle

§ full(table_name)
• Instructs the processor to use a full table scan

§ index(table_name index_name)
• The processor uses index_name to scan the table

§ no_index(table_name index_name)
• Forbids the use of index_name to scan the table

§ index_combine(table_name index_names)
• Builds a bitmap for the index files specified, and uses it in the scan of

the table

§ ordered
• Instructs the processor to use the relations in a join in the exact order

they appear in the select query
§ star_transformation

• The order chosen for join has the smaller relations first

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Some (more) query hints in Oracle

§ use_nl(table_name table_name table_name …)
• Uses (block) nested loop for the join between the tables

§ use_nl_with_index(table_name index_name)
• The table is to be used as the inner relation of the join, in a nested

loop algorithm, using the index file in the inner loop
§ use_merge(table_name table_name)

• Uses merge-join algorithm for the join between the tables
§ use_hash(table_name table_name)

• Uses hash join algorithm for the join between the tables

§ first_rows(n)
• Instructs the processor to use the fastest plan for providing the first n

tuple of the result (as in pipelining)
§ all_rows

• The optimisation is made assuming taking into account the cost of
obtaining all the tuples of the result

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Parallel query processing in Oracle

§ Oracle allows for parallelism in query processing, whenever multiple
processors are available:

alter session enable parallel query [parallel_max servers n]
§ This enables the use of parallel algorithms for intraoperation and for

parallelism in pipelining, using n processors
• Other options are available for specifying parallelism groups, number

of threads per cpu, etc.
• Pipelining can be explicitly enforced by using pipelined PL/SQL table

functions
§ Parallelism can be specified to be used in all algorithms, depending on a

specific table, with
alter table table_name parallel

§ There are also hints for imposing parallelism:
• parallel(table_name,n)

§ Use n processors in partitioning parallel algorithms involving
table_name in the query where the hint is given

§ If n is not given, the default value for the session is used

Sistemas de Bases de Dados 2020/21
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 16: Query Optimization

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

Outline

§ Introduction
§ Transformation of Relational Expressions
§ Catalog Information for Cost Estimation
§ Statistical Information for Cost Estimation
§ Cost-based optimization
§ Dynamic Programming for Choosing Evaluation Plans
§ Materialized views

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Introduction

§ Alternative ways of evaluating a given query
• Equivalent expressions
• Different algorithms for each operation

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Introduction (Cont.)

§ An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

§ We’ve seen how to view the plans in Oracle

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Introduction (Cont.)

§ Cost difference between evaluation plans for a query can be enormous
• E.g., seconds vs. days in some cases

§ Steps in cost-based query optimization
1. Generate logically equivalent expressions using equivalence rules
2. Annotate resultant expressions to get alternative query plans
3. Choose the cheapest plan based on estimated cost

§ Estimation of plan cost based on:
• Statistical information about relations. Examples:

§ number of tuples, number of distinct values for an attribute
• Statistics estimation for intermediate results

§ to compute cost of complex expressions
• Cost formulae for algorithms, computed using statistics

Sistemas de Bases de Dados 2020/21
Capítulo refere-se a: Database System Concepts, 7th Ed

Generating Equivalent Expressions

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Transformation of Relational Expressions

§ Two relational algebra expressions are said to be equivalent if the two
expressions generate the same set of tuples on every legal database
instance
• Note: order of tuples is irrelevant
• we don’t care if they generate different results on databases that

violate integrity constraints
§ In SQL, inputs and outputs are multisets of tuples

• Two expressions in the multiset version of the relational algebra are
said to be equivalent if the two expressions generate the same
multiset of tuples on every legal database instance.

§ An equivalence rule says that expressions of two forms are equivalent
• One can replace expression of the 1st form by the 2nd, or vice versa

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of
individual selections.

σq1 Ù q2 (E) ≡ σq1 (σq2 (E))
2. Selection operations are commutative.

σq1(σq2(E)) ≡ σq2 (σq1(E))
3. In a sequence of projection operations, only the most restrictive is needed,

the others can be omitted.
Õ L1(Õ L2(…(Õ Ln(E))…)) ≡ Õ L1(E)

where L1 ⊆ L2 … ⊆ Ln

4. Selections can be combined with Cartesian products and theta joins.
a. σq (E1 x E2) ≡ E1 ⨝ q E2

b. σ q1 (E1 ⨝q2 E2) ≡ E1 ⨝ q1∧q2 E2

FCT NOVA33José Alferes – Adaptado de Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

E1 ⨝ E2 ≡ E2 ⨝ E1

6. (a) Natural join operations are associative:
(E1 ⨝ E2) ⨝ E3 ≡ E1 ⨝ (E2 ⨝ E3)

(b) Theta joins are associative in the following manner:

(E1 ⨝ q1 E2) ⨝ q2 Ù q3 E3 ≡ E1 ⨝q1 Ù q3 (E2 ⨝ q2 E3)

where q2 involves attributes from only E2 and E3.

FCT NOVA34José Alferes – Adaptado de Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under the
following two conditions:
(a) When all the attributes in q0 involve only the attributes of one

of the expressions (E1) being joined:

sq0 (E1 ⨝q E2) ≡ (sq0(E1)) ⨝q E2

(b) When q1 involves only the attributes of E1 and q2 involves
only the attributes of E2:

sq1 Ù q2 (E1 ⨝q E2) ≡ (sq1(E1)) ⨝q (sq2(E2))

FCT NOVA35José Alferes – Adaptado de Database System Concepts - 7th Edition

Pictorial Depiction of Equivalence Rules

FCT NOVA36José Alferes – Adaptado de Database System Concepts - 7th Edition

8. The projection operation distributes over the theta join operation as follows:
(a) if q involves only attributes from L1 È L2:

Õ L1 È L2(E1 ⨝q E2) ≡ Õ L1(E1) ⨝q Õ L2(E2)
(b) In general, consider a join E1 ⨝q E2.
• Let L1 and L2 be sets of attributes from E1 and E2, respectively.
• Let L3 be attributes of E1 that are involved in join condition q, but are

not in L1 È L2, and
• let L4 be attributes of E2 that are involved in join condition q but are not

in L1 È L2.
Õ L1 È L2(E1 ⨝q E2) ≡ Õ L1 È L2(Õ L1 È L3(E1) ⨝q Õ L2 È L4(E2))

Similar equivalences hold for outerjoin operations: ⟕, ⟖, and ⟗

Equivalence Rules (Cont.)

FCT NOVA37José Alferes – Adaptado de Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E1 È E2 ≡ E2 È E1
E1 Ç E2 ≡ E2 Ç E1

(set difference is not commutative).
10. Set union and intersection are associative.

(E1 È E2) È E3 ≡ E1 È (E2 È E3)
(E1 Ç E2) Ç E3 ≡ E1 Ç (E2 Ç E3)

11. The selection operation distributes over È, Ç and –.
a. sq (E1 È E2) ≡ sq (E1) È sq(E2)
b. sq (E1 Ç E2) ≡ sq (E1) Ç sq(E2)
c. sq (E1 – E2) ≡ sq (E1) – sq(E2)
d. sq (E1 Ç E2) ≡ sq(E1) Ç E2
e. sq (E1 – E2) ≡ sq(E1) – E2

preceding equivalence does not hold for È
12. The projection operation distributes over union

PL(E1 È E2) ≡ (PL(E1)) È (PL(E2))

FCT NOVA38José Alferes – Adaptado de Database System Concepts - 7th Edition

Equivalence Rules (Cont.)
13. Selection distributes over aggregation as below

sq(G𝛾A(E)) ≡ G𝛾A(sq(E))
provided q only involves attributes in G

14. a. Full outerjoin is commutative:
E1 ⟗ E2 ≡ E2 ⟗ E1

b. Left and right outerjoin are not commutative, but:
E1 ⟕ E2 ≡ E2 ⟖ E1

15. Selection distributes over left and right outerjoins as below, provided q1
only involves attributes of E1
a. sq1 (E1 ⟕q E2) ≡ (sq1 (E1)) ⟕q E2
b. sq1 (E1 ⟖q E2) ≡ E2 ⟕q (sq1 (E1))

16. Outerjoins can be replaced by inner joins under some conditions
a. sq1 (E1 ⟕q E2) ≡ sq1 (E1 ⨝q E2)
b. sq1 (E1 ⟖q E1) ≡ sq1 (E1 ⨝q E2)
provided q1 is null rejecting on E2

FCT NOVA39José Alferes – Adaptado de Database System Concepts - 7th Edition

Equivalence Rules (Cont.)
Note that several equivalences that hold for joins do not hold for outerjoins
§ syear=2017(instructor ⟕ teaches) ≢ syear=2017(instructor ⨝ teaches)
§ Outerjoins are not associative

(r ⟕ s) ⟕ t ≢ r ⟕ (s ⟕ t)
• e.g. with r(A,B) = {(1,1)}, s(B,C) = { (1,1)}, t(A,C) = { }

FCT NOVA40José Alferes – Adaptado de Database System Concepts - 7th Edition

Transformation Example: Pushing Selections

§ Query: Find the names of all instructors in the Music department, along
with the titles of the courses that they teach
• Pname, title(sdept_name= ‘Music’

(instructor ⨝ (teaches ⨝ Pcourse_id, title (course))))
§ Transformation using rule 7a.

• Pname, title((sdept_name= ‘Music’(instructor)) ⨝
(teaches ⨝ Pcourse_id, title (course)))

• It is usually a good idea since performing the selection as early as
possible reduces the size of the relation to be joined.

FCT NOVA41José Alferes – Adaptado de Database System Concepts - 7th Edition

Example with Multiple Transformations

§ Query: Find the names of all instructors in the Music department who have
taught a course in 2017, along with the titles of the courses that they taught
• Pname, title(sdept_name= "Music”Ùyear = 2017

(instructor ⨝ (teaches ⨝ Pcourse_id, title (course))))
§ Transformation using join associatively (Rule 6a):

• Pname, title(sdept_name= “Music”Ùyear = 2017

((instructor ⨝ teaches) ⨝ Pcourse_id, title (course)))
§ Second form provides an opportunity to apply the “perform selections

early” rule, resulting in the subexpression
sdept_name = “Music” (instructor) ⨝ s year = 2017 (teaches)

§ A sequence of transformations can be useful!

FCT NOVA42José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiple Transformations (Cont.)

FCT NOVA43José Alferes – Adaptado de Database System Concepts - 7th Edition

Transformation Example: Pushing Projections

§ Consider: Pname, title(sdept_name= “Music” (instructor) ⨝ teaches)
⨝ Pcourse_id, title (course))))

§ When we compute
sdept_name = “Music” (instructor ⨝ teaches)

we obtain a relation whose schema is:
(ID, name, dept_name, salary, course_id, sec_id, semester, year)

§ Push projections using equivalence rules 8a and 8b; eliminate unneeded
attributes from intermediate results to get:

Pname, title(Pname, course_id (
sdept_name= “Music” (instructor) ⨝ teaches))

⨝ Pcourse_id, title (course))))

§ Performing the projection as early as possible reduces the size of the
relation to be joined.
• Important also for the size of the intermediate relation, e.g. in

materialisation

FCT NOVA44José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Ordering Example

§ For all relations r1, r2, and r3,
(r1 ⨝ r2) ⨝ r3 = r1 ⨝ (r2 ⨝ r3)

(Join Associativity) ⨝
§ If r2 ⨝ r3 is quite large and r1 ⨝ r2 is small, we choose

(r1 ⨝ r2) ⨝ r3

so that the computed and stored temporary relation (in case no pipelining
is used) is smaller

FCT NOVA45José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Ordering Example (Cont.)

§ Consider the expression
Pname, title((sdept_name= “Music” (instructor) ⨝ teaches) ⨝ Pcourse_id, title (course))

§ Could compute teaches ⨝ Pcourse_id, title (course) first, and join result with
sdept_name= “Music” (instructor)

but the result of the first join is likely to be a large relation.
§ Only a small fraction of the university’s instructors are likely to be from the

Music department
• it is better to compute

sdept_name= “Music” (instructor) ⨝ teaches
first.

FCT NOVA46José Alferes – Adaptado de Database System Concepts - 7th Edition

Enumeration of Equivalent Expressions

§ Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

§ Can generate all equivalent expressions as follows:
• Repeat

§ apply all applicable equivalence rules on every subexpression of
every equivalent expression found so far

§ add newly generated expressions to the set of equivalent
expressions

Until no new equivalent expressions are generated above
§ The above approach is very expensive in space and time

• Two approaches
§ Optimized plan generation based on transformation rules
§ Special case approach for queries with only selections, projections

and joins

FCT NOVA47José Alferes – Adaptado de Database System Concepts - 7th Edition

Cost Estimation

§ Cost of each operator computer as described in Chapter 15
• Need statistics of input relations

§ E.g., number of tuples, sizes of tuples
§ Inputs can be results of sub-expressions

• Need to estimate statistics of expression results
• To do so, we require additional statistics

§ E.g., number of distinct values for an attribute

§ More on cost estimation next week

FCT NOVA48José Alferes – Adaptado de Database System Concepts - 7th Edition

Choice of Evaluation Plans

§ Must consider the interaction of evaluation techniques when choosing
evaluation plans
• choosing the cheapest algorithm for each operation independently may

not yield best overall algorithm. E.g.
§ merge-join may be costlier than hash-join but may provide a sorted

output which reduces the cost for an outer level aggregation.
§ nested-loop join may provide opportunity for pipelining

§ Practical query optimizers incorporate elements of the following two broad
approaches:
1. Search all the plans and choose the best plan in a

cost-based fashion.
2. Uses heuristics to choose a plan.

FCT NOVA49José Alferes – Adaptado de Database System Concepts - 7th Edition

Cost-Based Optimization

§ Consider finding the best join-order for r1 ⨝ r2 ⨝ . . . ⨝ rn.
§ There are (2(n – 1))!/(n – 1)! different join orders for above expression.

With n = 7, the number is 665 280; with n = 10, the number is greater than
176 billion!

§ No need to generate all the join orders. Using dynamic programming, the
least-cost join order for any subset of {r1, r2, . . . rn} is computed only once
and stored for future use.

FCT NOVA50José Alferes – Adaptado de Database System Concepts - 7th Edition

Implementing Transformation Based Optimization

§ Space requirements reduced by sharing common sub-expressions:
• when E1 is generated from E2 by an equivalence rule, usually only the

top level of the two are different, subtrees below are the same and can
be shared using pointers
§ E.g., when applying join commutativity

• Same sub-expression may get generated multiple times
§ Detect duplicate sub-expressions and share one copy

§ Time requirements are reduced by not generating all expressions
• Dynamic programming

§ We will study only the special case of dynamic programming for join
order optimization

FCT NOVA51José Alferes – Adaptado de Database System Concepts - 7th Edition

Dynamic Programming in Optimization

§ To find the best join tree for a set of n relations:
• To find best plan for a set S of n relations, consider all possible plans

of the form: S1 ⨝ (S – S1) where S1 is any non-empty subset of S.
• Recursively compute costs for joining subsets of S to find the cost of

each plan. Choose the cheapest of the 2n – 2 alternatives.
• Base case for recursion: single relation access plan

§ Apply all selections on Ri using best choice of indices on Ri

• When plan for any subset is computed, store it and reuse it when it is
required again, instead of recomputing it
§ Dynamic programming

FCT NOVA52José Alferes – Adaptado de Database System Concepts - 7th Edition

Left Deep Join Trees

§ In left-deep join trees, the right-hand-side input for each join is a
relation, not the result of an intermediate join.

FCT NOVA53José Alferes – Adaptado de Database System Concepts - 7th Edition

Cost of Optimization

§ With dynamic programming time complexity of optimization with bushy trees
is O(3n).
• With n = 10, this number is 59000 instead of 176 billion!

§ Space complexity is O(2n)
§ To find best left-deep join tree for a set of n relations:

• Consider n alternatives with one relation as right-hand side input and the
other relations as left-hand side input.

• Modify optimization algorithm:
§ Replace “for each non-empty subset S1 of S such that S1 ¹ S”
§ By: for each relation r in S

let S1 = S – r .
§ If only left-deep trees are considered, time complexity of finding best join

order is O(n 2n)
• Space complexity remains at O(2n)

§ Cost-based optimization is expensive, but worthwhile for queries on large
datasets (typical queries have small n, generally < 10)

FCT NOVA54José Alferes – Adaptado de Database System Concepts - 7th Edition

Interesting Sort Orders

§ Consider the expression (r1 ⨝ r2) ⨝ r3 (with A as common attribute)
§ An interesting sort order is a specific sort order of tuples that could make

a later operation (join/group by/order by) cheaper
• Using merge-join to compute r1 ⨝ r2 may be costlier than hash join but

generates result sorted on A
• Which in turn may make merge-join with r3 cheaper, which may reduce

cost of join with r3 and minimizing overall cost
§ Not sufficient to find the best join order for each subset of the set of n given

relations
• must find the best join order for each subset, for each interesting sort

order
• Simple extension of earlier dynamic programming algorithms
• Usually, the number of interesting orders is quite small and doesn’t

affect time/space complexity significantly

FCT NOVA55José Alferes – Adaptado de Database System Concepts - 7th Edition

Heuristic Optimization

§ Cost-based optimization is expensive, even with dynamic programming.
§ Systems may use heuristics to reduce the number of choices that must be

made in a cost-based fashion.
§ Heuristic optimization transforms the query-tree by using a set of rules that

typically (but not in all cases) improves execution performance:
• Perform selection early (reduces the number of tuples)
• Perform projection early (reduces the number of attributes)
• Perform most restrictive selection and join operations (i.e., with smallest

result size) before other similar operations.
§ Some systems use only heuristics, others combine heuristics with partial

cost-based optimization.

FCT NOVA56José Alferes – Adaptado de Database System Concepts - 7th Edition

Structure of Query Optimizers

§ Many optimizers considers only left-deep join orders.
• Plus heuristics to push selections and projections down the query tree
• Reduces optimization complexity and generates plans amenable to

pipelined evaluation.
§ Heuristic optimization is used in some versions of Oracle:

• Repeatedly pick “best” relation to join next
§ Starting from each of n starting points. Pick best among these

§ Intricacies of SQL complicate query optimization
• E.g., nested subqueries

FCT NOVA57José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Minimisation

select r.A, r.B
from r, s
where r.B = s.B
§ Check if join with s is redundant. If so, drop it!

• E.g. join condition is in foreign key from r to s, no selection on s
• Other sufficient conditions possible

select r.A, s1.B  
from r, s as s1, s as s2
where r.B=s1.B and r.B = s2.B and s1.A < 10 and s2.A < 20

§ join with s2 is redundant and can be dropped (along with selection
on s2)

§ There are many special cases where joins can be dropped!

FCT NOVA58José Alferes – Adaptado de Database System Concepts - 7th Edition

Optimising Nested Subqueries

§ Nested query example:
select instructor.name
from instructor
where exists (select *

from teaches
where teaches.instructor_id=

instructor.instructor_id)
§ SQL conceptually treats nested subqueries in the where clause as

functions that take parameters and return a single value or set of values
• Parameters are variables from outer level query that are used in the

nested subquery; such variables are called correlation variables
§ Conceptually, a nested subquery is executed once for each tuple in the

cross-product generated by the outer level from clause
• Such evaluation is called correlated evaluation
• Note: other conditions in where clause may be used to compute a join

(instead of a cross-product) before executing the nested subquery

FCT NOVA59José Alferes – Adaptado de Database System Concepts - 7th Edition

Structure of Query Optimizers (Cont.)
§ Some query optimizers integrate heuristic selection and the generation of

alternative access plans.
• Frequently used approach

§ heuristic rewriting of nested block structure and aggregation
§ followed by cost-based join-order optimization for each block

• Some optimizers (e.g. SQL Server) apply transformations to the entire
query and do not depend on block structure

• Optimization cost budget to stop optimization early (if cost of plan is
less than cost of optimization)

• Plan caching to reuse previously computed plan if the query is
resubmitted
§ Even with different constants in query

§ Even with the use of heuristics, cost-based query optimization imposes a
substantial overhead.
• But is worth it for expensive queries
• Optimizers often use simple heuristics for very cheap queries, and

perform exhaustive enumeration for more expensive queries

