
Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 15: Query Processing

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Chapter 15: Query Processing

§ Overview
§ Measures of Query Cost
§ Selection Operation
§ Sorting
§ Join Operation
§ Other Operations
§ Evaluation of Expressions

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Steps in Query Processing (Cont.)

§ Parsing and translation
• Translate the query into its internal form
• This is then translated into relational algebra

§ (Extended) relational algebra is more compact, and
differentiates clearly among the various operations

• Parser checks syntax, verifies relations
§ This is a subject for compilers

§ Evaluation
• The query-execution engine takes a query-evaluation plan,

executes that plan, and returns the answers to the query
§ The bulk of the problem lies in how to produce a good evaluation

plan!
§ Query-execution is “simply” executing a predefined plan (or

program)

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Steps in Query Processing:
Optimization

§ A relational algebra expression may have many equivalent expressions,
e.g.

• ssalary<75000(Õsalary(instructor)) is equivalent to

Õsalary(ssalary<75000(instructor))

§ Each relational algebra operation can be evaluated using one of several
different algorithms
• Correspondingly, a relational-algebra expression can be evaluated in

many ways.
§ Annotated expression specifying detailed evaluation strategy is called an

evaluation-plan. E.g.,:
• Use an index on salary to find instructors with salary < 75000,
• Or perform complete relation scan and discard instructors with salary

³ 75000

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Evalution Plan Example

An evaluation plan is a (possibly annotated) relational algebra expression

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Steps: Optimization (Cont.)

§ Query Optimization: Amongst all equivalent evaluation plans choose
the one with lowest cost.
• Cost is estimated using statistical information from the

database catalog
§ e.g.. number of tuples in each relation, size of tuples, etc.

§ In this and the next lecture we study
• How to measure query costs
• Algorithms for evaluating relational algebra operations
• How to combine algorithms for individual operations in order to

evaluate a complete expression
§ Immediately after that

• We study how to optimize queries, that is, how to find an evaluation
plan with lowest estimated cost

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Measures of Query Cost

§ Many factors contribute to time cost
• disk access, CPU, and network communication

§ Cost can be measured based on
• response time, i.e. total elapsed time for answering query, or
• total resource consumption

§ We use total resource consumption as cost metric
• Response time harder to estimate, and minimizing resource

consumption is a good idea in a shared database
§ We ignore CPU costs for simplicity, as they are usually much smaller

• Real systems do take CPU cost into account
• Network costs must be considered for distributed systems

§ We describe how to estimate the cost of each operation

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Measures of Query Cost

§ Disk cost can be estimated as:
• Number of seeks * average-seek-cost
• Number of blocks read * average-block-read-cost
• Number of blocks written * average-block-write-cost

§ For simplicity we just use the number of block transfers from disk and
the number of seeks as the cost measures
• tT – time to transfer one block
• tS – time for one seek
• Cost for b block transfers plus S seeks

b * tT + S * tS
§ tS and tT depend on where data is stored; with 4 KB blocks:

• High end magnetic disk: tS = 4 msec and tT =0.1 msec
• SSD: tS = 20-90 microsec and tT = 2-10 microsec for 4KB

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Measures of Query Cost (Cont.)

§ Required data may be buffer resident already, avoiding disk I/O
• But hard to consider for cost estimation

§ Several algorithms can reduce disk IO by using extra buffer space
• Amount of real memory available to buffer depends on other

concurrent queries and OS processes, known only during execution
§ Worst case estimates assume that no data is initially in buffer and only

the minimum amount of memory needed for the operation is available
• But more optimistic estimates are used in practice

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th EditionJosé Alferes - Adaptado de Database System Concepts - 6th Edition

Selection Operation (recall)

- Notation: σ p(r)
- p is the selection predicate
- Defined by:

 σp(r) = {t | t ∈ r and p(t)}
in which p is a formula of propositional calculus of terms
connected by: ∧ (and), ∨ (or), ¬ (not) 
Each term is of the form:

<attribute> op <attribute> or <constant>
 where op can be one of: =, ≠, >, ≥. <. ≤
- Selection example: 

 σ branch-name=‘Perryridge’ (account)

- For recalling other operators, see documentation of “Bases de
Dados”.

 X

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Selection Operation

§ File scan
§ Algorithm A1 (linear search). Scan each file block and test all records

to see whether they satisfy the selection condition.
• Cost estimate = br block transfers + 1 seek

§ br denotes number of blocks containing records from relation r
• If selection is on a key attribute, can stop on finding record

§ cost = (br /2) block transfers + 1 seek
• Linear search can be applied regardless of

§ selection condition or
§ ordering of records in the file, or
§ availability of indices

§ Note: binary search generally does not make sense since data is not
stored consecutively
• except when there is an index available,
• and binary search requires more seeks than index search

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Selections Using Indices

§ Index scan – search algorithms that use an index
• selection condition must be on search-key of index.

§ A2 (clustering index, equality on key). Retrieve a single record that
satisfies the corresponding equality condition
• Cost = hi * (tT + tS)

§ Recall that the height of a B+-tree index is ⎡log⎡n/2⎤(K)⎤, where n is the
number of index entries per node and K is the number of search keys.
• E.g. for a relation r with 1.000.000 different search key, and with 100

index entries per node, hi = 4
• Unless the relation is really small, this algorithms (for equality

condition) always “pays” when indexes are available

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Selections Using Indices

§ A3 (clustering index, equality on nonkey) Retrieve multiple records.
• Records will be on consecutive blocks

§ Let b = number of blocks containing matching records
• Cost = hi * (tT + tS) + tS + tT * b

§ A4 (secondary index, equality on key/non-key).
• Retrieve a single record if the search-key is a candidate key

§ Cost = (hi + 1) * (tT + tS)
• Retrieve multiple records if search-key is not a candidate key

§ each of n matching records may be on a different block
§ Cost = (hi + n) * (tT + tS)

• Can be very expensive if n is big!
§ Note that n multiplies by the time for seeks

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Selections Involving Comparisons

§ One can implement selections of the form sA£V (r) or sA ³ V(r) by using
• a linear file scan,
• or by using indices in the following ways:

§ A5 (clustering index, comparison). (Relation is sorted on A)
§ For sA ³ V(r) use index to find first tuple ³ v and scan relation

sequentially from there
§ For sA£V (r) just scan relation sequentially until first tuple > v; do

not use index

§ A6 (nonclustering index, comparison).
§ For sA ³ V(r) use index to find first index entry ³ v and scan index

sequentially from there, to find pointers to records.
§ For sA£V (r) just scan leaf pages of index finding pointers to

records, till first entry > v
§ In either case, retrieve records that are pointed to

• requires an I/O per record;
• Linear file scan may be cheaper!!!

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

Implementation of Complex Selections

§ Conjunction: sq1Ù q2Ù. . . qn(r)
§ A7 (conjunctive selection using one index).

• Select a combination of qi and algorithms A1 through A6 that results
in the least cost for sqi (r).

• Test other conditions on tuple after fetching it into memory buffer.
§ A8 (conjunctive selection using composite index).

• Use appropriate composite (multiple-key) index if available.
§ A9 (conjunctive selection by intersection of identifiers).

• Requires indices with record pointers (or bitmaps)
• Use corresponding index for each condition and take intersection of

all the obtained sets of record pointers.
• Then fetch records from file

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Algorithms for Complex Selections

§ Disjunction:sq1Ú q2 Ú. . . qn (r).
§ A10 (disjunctive selection by union of identifiers).

• Applicable if all conditions have available indices.
§ Otherwise use linear scan.

• Use corresponding index for each condition and take union of all the
obtained sets of record pointers.

• Then fetch records from file
§ Negation: s¬q(r)

• Use linear scan on file
• If very few records satisfy ¬q, and an index is applicable to q

§ Find satisfying records using index and fetch from file

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Sorting

§ Sorting algorithms are important in query processing at least for two
reasons:
• The query itself may require sorting (order by clause)
• Some algorithms for other operations, like projection, join, set

operations and aggregation, require that, or benefit from relations
that are previously sorted

§ To sort a relation:
• We may build an index on the relation, and then use the index to

read the relation in sorted order.
§ This only sorts the relation logically; not physically
§ Sorting physically may lead to one disk access for each tuple.

• For relations that fit in memory, techniques like quicksort can be
used.

• For relations that don’t fit in memory, external sort-merge is a
good choice.

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

External Sort-Merge

1. Create sorted runs. Let i be 0 initially.
Repeatedly do the following until the end of the relation:
(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run Ri; increment i.

Let the final value of i be N
2. Merge the runs (next slide)…..

Let M denote memory size (in pages).

§ If the relation does not fit in memory, divide it into runs that fit, and start
by sorting those runs

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N < M.
1. Use N blocks of memory to buffer input runs, and 1 block to buffer

output. Read the first block of each run into its buffer page
2. repeat

1. Select the first record (in sort order) among all buffer pages
2. Write the record to the output buffer. If the output buffer is full

write it to disk.
3. Delete the record from its input buffer page.

If the buffer page becomes empty, then
read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

§ Then merge the runs, two by two, in a sorted manner

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

External Sort-Merge (Cont.)

§ If N ³ M, several merge passes are required.
• In each pass, contiguous groups of M - 1 runs are merged.
• A pass reduces the number of runs by a factor of M -1 and creates

runs longer by the same factor.
§ E.g. If M=11, and there are 90 runs, one pass reduces the

number of runs to 9, each 10 times the size of the initial runs
• Repeated passes are performed until all runs have been merged

into one.

§ Note that, in practice, this is only needed for really huge relations:
• Consider a 4GB memory and 4KB blocks (i.e. 1M blocks fit in

memory)
• For a 2nd pass to be needed, there should be over 1M runs, i.e.

4000TB (since each run can be circa 4GB)
§ A 4000TB relation is a really big relation (not found usually)!!!

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Example: External Sorting Using Sort-Merge

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

External Merge Sort (transfer cost)

§ Cost analysis:
• Total number of merge passes required: élog ëM/bbû–1(br/M)ù

§ This part >1 only for very very big relations
• Block transfers for initial run creation as well as in each pass is 2br

§ for final pass, we don’t count write cost
• we ignore final write cost for all operations since the output of

an operation may be sent to the parent operation without
being written to disk (to be studied later)

§ Thus, total number of block transfers for external sorting:
br (2 élog ëM/bbû–1 (br / M)ù + 1)

• (usually this boils down to 3br)

§ Legend:
• M – size of the memory
• bb – number of blocks per run
• br – number of blocks of relation r

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

External Merge Sort (seek cost)

§ Cost of seeks
• During run generation: one seek to read each run and one seek

to write each run
§ 2 ébr / Mù

• During the merge phase
§ Need 2 ébr / bbù seeks for each merge pass

• except the final one which does not require a write
§ Total number of seeks:

2 ébr / Mù + ébr / bbù (2 élogëM/bbû–1(br / M)ù -1)
• (Usually, this boils down to 2 ébr / Mù + ébr / bbù

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Operation

§ Several different algorithms to implement joins
• Nested-loop join
• Block nested-loop join
• Indexed nested-loop join
• Merge-join
• Hash-join

§ Choice based on cost estimate
§ Examples use the following information

• Number of records of student: 5,000 takes: 10,000
• Number of blocks of student: 100 takes: 400

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Nested-Loop Join

§ To compute the theta join r ⨝ q s
for each tuple tr in r do begin

for each tuple ts in s do begin
test pair (tr,ts) to see if they satisfy the join condition q
if they do, add tr • ts to the result.

end
end

§ r is called the outer relation and s the inner relation of the join.
§ Requires no indices and can be used with any kind of join condition.
§ Expensive since it examines every pair of tuples in the two relations.

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Nested-Loop Join Costs

§ In the worst case, if there is enough memory only to hold one block of
each relation, the estimated cost is

nr * bs + br block transfers, plus nr + br seeks
§ In general, it is much better to have the smaller relation as the outer

relation
• The number of block transfers is multiplied by the number of blocks

of the inner relation
• The number of seeks only depends on the outer relation

§ However, if the smaller relation fits entirely in memory, one should use it
as the inner relation!
• Reduces cost to br + bs block transfers and 2 seeks

§ The choice of the inner and outer relation strongly depends on the
estimate of the size of each relation
• Statistics on the size of the relations, in run time, can be a great help!

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Nested-Loop Join Costs

§ For joining student and takes, assuming worst case memory availability,
cost estimate is
• with student as outer relation:

§ 5000 * 400 + 100 = 2,000,100 block transfers,
§ 5000 + 100 = 5100 seeks

• with takes as the outer relation
§ 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks

§ If smaller relation (student) fits entirely in memory, the cost estimate will
be 500 block transfers and 2 seeks

§ Instead of iterating over records, one could iterate over blocks. This way,
instead of nr ∗ bs + br we would have br ∗ bs + br block transfers

§ This is the basis of the block nested-loops algorithm (next slide).

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Block Nested-Loop Join

§ Variant of nested-loop join in which every block of inner relation
is paired with every block of outer relation.
for each block Br of r do begin

for each block Bs of s do begin
for each tuple tr in Br do begin

for each tuple ts in Bs do begin
Check if (tr,ts) satisfy the join condition
if they do, add tr • ts to the result.

end
end

end
end

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

Block Nested-Loop Join (Cont.)

§ Worst case estimate: br * bs + br block transfers + 2 * br seeks
• Each block in the inner relation s is read once for each block in the

outer relation
§ Best case(when smaller relation fits into memory): br + bs block transfers

plus 2 seeks.

§ In the running example the cost of student ⨝ takes is:
• If student is outer: 100*400+100 = 40,100 transfer + 200 seeks
• If takes is outer: 400*100+400 = 40,400 transfers + 400 seeks

§ Improvements to nested loop and block nested loop algorithms:
• If equijoin attribute forms a key or inner relation, stop inner loop on

first match
• Scan inner loop forward and backward alternately, to make use of

the blocks remaining in buffer (with LRU replacement)
• Use index on inner relation if available (next slide)

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexed Nested-Loop Join

§ Index lookups can replace file scans if
• join is an equijoin or natural join and
• an index is available on the inner relation’s join attribute

§ In some cases, it pays to construct an index just to compute a
join.

§ For each tuple tr in the outer relation r, use the index to look up tuples
in s that satisfy the join condition with tuple tr.

§ Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

§ Cost of the join: br (tT + tS) + nr * c
• Where c is the cost of traversing index and fetching all matching

s tuples for one tuple or r
• c can be estimated as cost of a single selection on s using the

join condition (usually quite small compared to the joincost)
§ If indices are available on join attributes of both r and s,

use the relation with fewer tuples as the outer relation.

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Example of Nested-Loop Join Costs

§ Compute student ⨝ takes, with student as the outer relation.
§ Let takes have a primary B+-tree index on the attribute ID, which contains

20 entries in each index node.
§ Since takes has 10,000 tuples, the height of the tree is 4, and one more

access is needed to find the actual data
§ student has 5000 tuples
§ As we’ve seen, the best cost of block nested loops join

• 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks
§ assuming worst case memory
§ may be significantly less with more memory

§ Cost of indexed nested loops join
• 100 + 5000 * 5 = 25,100 block transfers and seeks.

• CPU cost likely to be less than that for block nested loops join

• However, in terms of time for transfers and seeks, in this case using
the index doesn’t pay (this is so because the relations are small)

