
Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 14: Indexing

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Outline

§ Basic Concepts
§ Ordered Indices
§ B+-Tree Index Files
§ B-Tree Index Files
§ Hashing
§ Write-optimized indices
§ Spatio-Temporal Indexing

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

B+-Tree Index Files

B+-tree indices are an alternative to indexed-sequential files.

§ Disadvantage of indexed-sequential files
• Performance degrades as file grows, since many overflow blocks get

created.
• Periodic reorganization of entire file is required.

§ Advantage of B+-tree index files:
• Automatically reorganizes itself with small, local, changes, in the

face of insertions and deletions.
• Reorganization of entire file is not required to maintain performance.

§ (Minor) disadvantage of B+-trees:
• Extra insertion and deletion overhead, space overhead.

§ Advantages of B+-trees outweigh disadvantages
• B+-trees are used extensively

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Example of B+-Tree

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

B+-Tree Index Files (Cont.)

§ All paths from root to leaf are of the same length
§ Each node that is not a root or a leaf has between én/2ù and n

children.
§ A leaf node has between é(n–1)/2ù and n–1 values
§ Special cases:

• If the root is not a leaf, it has at least 2 children.
• If the root is a leaf (that is, there are no other nodes in the tree), it

can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

B+-Tree Node Structure

§ Typical node

• Ki are the search-key values
• Pi are pointers to children (for non-leaf nodes) or pointers to records or

buckets of records (for leaf nodes).
§ The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

P1 K1 P2 Pn-1 Kn-1 Pn…

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Leaf Nodes in B+-Trees

§ For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key value
Ki,

§ If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or equal
to Lj’s search-key values

§ Pn points to next leaf node in search-key order

Properties of a leaf node:

leaf node
Pointer to next leaf node

instructor file

Brandt

Srinivasan

Califieri Crick

Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

leaf node
Pointer to next leaf node

instructor file

Brandt

Srinivasan

Califieri Crick

Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Non-Leaf Nodes in B+-Trees

§ Non leaf nodes form a multi-level sparse index on the leaf nodes. For a
non-leaf node with m pointers:
• All the search-keys in the subtree to which P1 points are less than K1

• For 2 £ i £ n – 1, all the search-keys in the subtree to which Pi points
have values greater than or equal to Ki–1 and less than Ki

• All the search-keys in the subtree to which Pn points have values
greater than or equal to Kn–1

• General structure

P1 K1 P2 Pn-1 Kn-1 Pn…

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Example of B+-tree

§ B+-tree for instructor file (n = 6)

§ Leaf nodes must have between 3 and 5 values
(é(n–1)/2ù and n –1, with n = 6).

§ Non-leaf nodes other than root must have between 3 and 6
children (é(n/2ù and n with n =6).

§ Root must have at least 2 children.

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Observations about B+-trees

§ Since the inter-node connections are done by pointers, “logically” close blocks
need not be “physically” close.

§ The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
§ The B+-tree contains a relatively small number of levels

§ Level below root has at least 2* én/2ù values
§ Next level has at least 2* én/2ù * én/2ù values
§ .. etc.

• If there are K search-key values in the file, the tree height is no more than
é logén/2ù(K)ù

• Thus, searches (and also insertions and deletion, as we shall see) can be
efficient.

§ Most space occupied by a B+-tree is in the leaves:
• E.g. a B+-tree with n=100, 1M values, each one (+pointer) with 40 bytes

§ Each node is at most 4K (guess why I chose these numbers :-)
§ The maximum height of the tree is é logé50ù(1000000)ù = 4
§ Leaves occupy between 1Mb and 2Mb
§ Level 3 occupies at most 2Mb/50 = 40Kb
§ The whole intermediate levels have 48Kb

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Queries on B+-Trees

function find(v)
1. C=root
2. while (C is not a leaf node)

1. Let i be least number s.t. V £ Ki.
2. if there is no such number i then
3. Set C = last non-null pointer in C
4. else if (v = C.Ki) Set C = Pi +1

5. else set C = C.Pi

3. if for some i, Ki = V then return C.Pi

4. else return null /* no record with search-key value v exists. */

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Queries on B+-Trees (Cont.)

§ If there are K search-key values in the file, the height of the tree is no
more than élogén/2ù(K)ù.

§ A node is generally the same size as a disk block, typically 4 kilobytes
• and n is typically around 100 (40 bytes per index entry).

§ With 1 million search key values and n = 100
• at most log50(1,000,000) = 4 nodes are accessed in a lookup

traversal from root to leaf.
§ Contrast this with a balanced binary tree with 1 million search key values

— around 20 nodes are accessed in a lookup
• The above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Updates on B+-Trees: Insertion

Assume the record is already added to the file. Let
! pr be pointer to the record, and let
! v be the search key value of the record

1. Find the leaf node in which the search-key value would appear
1. If there is room in the leaf node, insert (v, pr) pair in the leaf node
2. Otherwise, split the node (along with the new (v, pr) entry) as

discussed in the next slide, and propagate updates to parent nodes.

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Updates on B+-Trees: Insertion (Cont.)

§ Splitting a leaf node:
• take the n (search-key value, pointer) pairs (including the one being

inserted) in sorted order. Place the first én/2ù in the original node, and
the rest in a new node.

• let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

• If the parent is full, split it and propagate the split further up.
§ Splitting of nodes proceeds upwards till a node that is not full is found.

• In the worst case the root node may be split increasing the height of
the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri, pointer-to-new-node) into parent

Adams Califieri CrickBrandt

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

Affected nodes

B+-Tree before and after insertion of “Adams”

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

B+-Tree Insertion

Srinivasan

Gold

Califieri Einstein

Mozart

Kim

Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

B+-Tree before and after insertion of “Lamport”
Affected nodes

Affected nodes

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

§ Splitting a non-leaf node: when inserting (k,p) into an already full internal
node N
• Copy N to an in-memory area M with space for n+1 pointers and n

keys
• Insert (k,p) into M
• Copy P1,K1, …, K én/2ù-1,P én/2ù from M back into node N
• Copy Pén/2ù+1,K én/2ù+1,…,Kn,Pn+1 from M into newly allocated node N'
• Insert (K én/2ù,N') into parent N

§ Example

§ Read pseudocode in book!

Insertion in B+-Trees (Cont.)

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Examples of B+-Tree Deletion

§ Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

Affected nodes

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Examples of B+-Tree Deletion (Cont.)

§ Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

§ Search-key value in the parent changes as a result

Before and after deleting “Singh” and “Wu”

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

Affected nodes

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Example of B+-tree Deletion (Cont.)

§ Node with Gold and Katz became underfull, and was merged with its sibling
§ Parent node becomes underfull, and is merged with its sibling

• Value separating two nodes (at the parent) is pulled down when merging
§ Root node then has only one child, and is deleted

Before and after deletion of “Gold”

Adams Brandt Einstein El Said Katz Kim Mozart

GoldCalifieri

Califieri

Einstein

Crick

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart

Califieri Einstein Kim

Gold

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Updates on B+-Trees: Deletion

Assume record already deleted from file. Let V be the search key value of the
record, and Pr be the pointer to the record.
§ Remove (Pr, V) from the leaf node
§ If the node has too few entries due to the removal, and the entries in the

node and a sibling fit into a single node, then merge siblings:
• Insert all the search-key values in the two nodes into a single node

(the one on the left), and delete the other node.
• Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted node,

from its parent, recursively using the above procedure.

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Updates on B+-Trees: Deletion

§ Otherwise, if the node has too few entries due to the removal, but the
entries in the node and a sibling do not fit into a single node, then
redistribute pointers:
• Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.
• Update the corresponding search-key value in the parent of the node.

§ The node deletions may cascade upwards till a node which has én/2ù or
more pointers is found.

§ If the root node has only one pointer after deletion, it is deleted, and the
sole child becomes the root.

§ You may experiment at:
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Complexity of Updates

§ Cost (in terms of number of I/O operations) of insertion and deletion of a
single entry proportional to height of the tree
• With K entries and maximum fanout of n, worst case complexity of

insert/delete of an entry is O(logén/2ù(K))
§ In practice, number of I/O operations is less:

• Internal nodes tend to be in buffer
• Splits/merges are rare, most insert/delete operations only affect a leaf

node
§ Average node occupancy depends on insertion order

• 2/3rds with random, ½ with insertion in sorted order

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

Non-Unique Search Keys

§ Alternatives to scheme described earlier
• Buckets on separate block (bad idea)
• List of tuple pointers with each key

§ Extra code to handle long lists
§ Deletion of a tuple can be expensive if there are many duplicates

on search key (why?)
• Worst case complexity may be linear!

§ Low space overhead, no extra cost for queries
• Make search key unique by adding a record-identifier

§ Extra storage overhead for keys
§ Simpler code for insertion/deletion
§ Widely used

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

B+-Tree File Organization

§ B+-Tree File Organization:
• Leaf nodes in a B+-tree file organization store records, instead of

pointers
• Helps keep data records clustered even when there are

insertions/deletions/updates
§ Leaf nodes are still required to be half full

• Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a nonleaf node.

§ Insertion and deletion are handled in the same way as insertion and
deletion of entries in a B+-tree index.

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

B+-Tree File Organization (Cont.)

§ Example of B+-tree File Organization

§ Good space utilization important since records use more space than
pointers.

§ To improve space utilization, involve more sibling nodes in redistribution
during splits and merges
• Involving 2 siblings in redistribution (to avoid split / merge where

possible) results in each node having at least entriesë û3/2n

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexing Strings

§ Variable length strings as keys
• Variable fanout
• Space usage as criterion for splitting, not number of pointers

§ Prefix compression
• Key values at internal nodes can be prefixes of full key

§ Keep enough characters to distinguish entries in the subtrees
separated by the key value
• E.g., “Silas” and “Silberschatz” can be separated by “Silb”

• Keys in leaf node can be compressed by sharing common prefixes

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

B-Tree Index Files

§ Similar to B+-tree, but B-tree allows search-key values to appear only once;
eliminates redundant storage of search keys.

§ Search keys in nonleaf nodes appear nowhere else in the B-tree; an
additional pointer field for each search key in a nonleaf node must be
included.

§ Generalized B-tree leaf node

§ Nonleaf node – pointers Bi are the bucket or file record pointers.

P1 K1 P2 Pn-1 Kn-1 Pn…

P1 B1 K1 P2 B2 K2 … Pm-1 Bm-1 Km-1 Pm

(a)

(b)

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

Brandt Califieri Crick El Said Gold Kim Mozart Srinivasan Wu

Einstein Katz Singh

Einstein
record

Katz
record

Singh
record

Brandt
record

Califieri
record ... and soon for other records...

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

B-Tree Index Files (Cont.)

§ Advantages of B-Tree indices:
• May use less tree nodes than a corresponding B+-Tree.
• Sometimes possible to find search-key value before reaching leaf

node.
§ Disadvantages of B-Tree indices:

• Only small fraction of all search-key values are found early
• Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees

typically have greater depth than corresponding B+-Tree
• Insertion and deletion more complicated than in B+-Trees
• Implementation is harder than B+-Trees.

§ Typically, advantages of B-Trees do not outweigh disadvantages.
• Note that only a very very small part of the search-keys are in

intermediate levels!
§ DBMS always use B+-trees (though they sometimes refer to them as B-

Trees)

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexing on Flash

§ Random I/O cost much lower on flash
• 20 to 100 microseconds for read/write

§ Writes are not in-place, and (eventually) require a more expensive erase
§ Optimum page size therefore much smaller
§ Bulk-loading is still useful since it minimizes page erases
§ Write-optimized tree structures (to be discussed next week) have been

adapted to minimize page writes for flash-optimized search trees

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexing in Main Memory

§ Random access in memory
• Much cheaper than on disk/flash
• But still expensive compared to cache read
• Data structures that make best use of cache preferable
• Binary search for a key value within a large B+-tree node results in

many cache misses
§ B+- trees with small nodes that fit in cache line are preferable to reduce

cache misses
§ Key idea: use large node size to optimize disk access, but structure data

within a node using a tree with small node size, instead of using an array.

