# **Chapter 17: Transactions**

Sistemas de Bases de Dados 2019/20

Capítulo refere-se a: Database System Concepts, 7th Ed

#### **Outline**

- Transaction Concept
- Transaction State
- Concurrent Executions
- Serializability
- Recoverability
- Implementation of Isolation
- Transaction Definition in SQL
- Testing for Serializability.

## **Transaction Concept**

- A transaction is a unit of program execution that accesses and possibly updates various data items.
- E.g., transaction to transfer €50 from account A to account B:
  - 1. **read**(*A*)
  - 2. A := A 50
  - 3. **write**(*A*)
  - 4. **read**(*B*)
  - 5. B := B + 50
  - 6. **write**(*B*)
- Two main issues to deal with:
  - Failures of various kinds, such as hardware failures and system crashes
  - Concurrent execution of multiple transactions

## **Transaction Properties**

- Transaction to transfer €50 from account A to account B:
  - 1. **read**(*A*)
  - 2. A := A 50
  - 3. **write**(*A*)
  - 4. **read**(*B*)
  - 5. B := B + 50
  - 6. **write**(*B*)
- <u>A</u>tomicity requirement
  - If the transaction fails after step 3 and before step 6, money will be "lost" leading to an inconsistent database state
    - Failure could be due to software or hardware
  - The system should ensure that updates of a partially executed transaction are not reflected in the database – all or nothing execution
- Durability requirement once the user has been notified that the transaction has completed (i.e., the transfer of the €50 has taken place), the updates to the database by the transaction must persist even if there are software or hardware failures.

# **Transaction Properties (Cont.)**

- Transaction to transfer €50 from account A to account B:
  - 1. **read**(*A*)
  - 2. A := A 50
  - 3. **write**(*A*)
  - 4. **read**(*B*)
  - 5. B := B + 50
  - 6. **write**(*B*)
- Consistency requirement in the example: The sum of A and B is unchanged by the execution of the transaction
- In general, consistency requirements include
  - Explicitly specified integrity constraints such as primary keys and foreign keys
  - Implicit integrity constraints
    - e.g., sum of balances of all accounts, minus sum of loan amounts must equal value of cash-in-hand
  - A transaction must see a consistent database.
  - During transaction execution the database may be temporarily inconsistent.
  - When the transaction completes successfully the database must be consistent

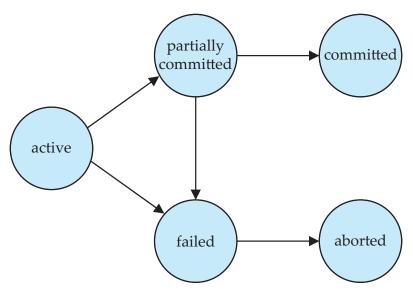
## **Transaction Properties (Cont.)**

T1 T2

- 1. **read**(*A*)
- 2. A := A 50
- 3. **write**(*A*)

read(A), read(B), print(A+B)

- 4. **read**(*B*)
- 5. B := B + 50
- 6. **write**(*B*)
- If between steps 3 and 6, another transaction T2 can access the partially updated database, it will see an inconsistent database (the sum A + B will be less than it should be).
- <u>Isolation requirement</u> If concurrent transactions are allowed, each transaction must execute as if it were executing alone
  - Intermediate results of a transaction must be hidden from other concurrent ones
- Isolation can be ensured trivially by running transactions serially (i.e. one after the other)
- However, executing multiple transactions concurrently has significant benefits.


## **ACID Properties - Summary**

A **transaction** is a unit of program execution that accesses and possibly updates various data items. To preserve the integrity of data the database system must ensure:

- Atomicity. Either all operations of the transaction are properly reflected in the database or none are.
- Consistency. Execution of a transaction preserves the consistency of the database in the end.
- Isolation. Although multiple transactions may execute concurrently, each transaction must be unaware of other concurrently executing transactions. Intermediate transaction results must be hidden from other concurrently executed transactions.
  - That is, for every pair of transactions  $T_i$  and  $T_j$ , it appears to  $T_i$  that either  $T_j$ , finished execution before  $T_i$  started, or  $T_j$  started execution after  $T_i$  finished.
- Durability. After a transaction completes successfully, the changes it has made to the database persist, even if there are system failures.

#### **Transaction States**

- Active the initial state; the transaction stays in this state while it is executing
- Partially committed after the final statement has been executed.
- **Failed** -- after the discovery that normal execution can no longer proceed.
- Aborted after the transaction has been rolled back and the database restored to its state prior to the start of the transaction. Two options after it has been aborted:
  - Restart the transaction
    - Can be done only if no internal logical error
  - Kill the transaction
- Committed after successful completion.
- To guarantee atomicity, external observable actions should all be performed (in order) after the transaction is committed.



#### **Non-ACID transactions**

- There are application domains where ACID properties are not necessarily desired or, most likely, not always possible.
- This is the case of so-called long-duration transactions
  - Suppose that a transaction takes a lot of time
  - In this case it is unlikely that isolation can/should be guaranteed
    - E.g. Consider a transaction of booking a hotel and a flight
- Without Isolation, Atomicity may be compromised
- Consistency and Durability should be preserved
- A usual solution for long-duration transactions is to define compensation actions – what to do if later the transaction fails
- In (centralised) databases long-duration transactions are usually not considered.
- But these are more and more important, especially in the context of the Web.

#### **Concurrent Executions**

- Multiple transactions can run concurrently in the system. Advantages are:
  - Increased processor and disk utilization, leading to better transaction throughput
    - E.g., one transaction can be using the CPU while another is reading from or writing to the disk
  - Reduced average response time for transactions: short transactions need not wait behind long ones.
- Concurrency control schemes mechanisms to achieve isolation
  - That is, to control the interaction among the concurrent transactions in order to prevent them from destroying the consistency of the database
    - We'll study that next week,
- Before seeing how to implement correct concurrent transaction, let's define the notion of correctness of concurrent executions.

- Schedule a sequences of instructions that specify the chronological order in which instructions of concurrent transactions are executed
  - A schedule for a set of transactions must consist of all instructions of those transactions
  - Must preserve the order in which the instructions appear in each individual transaction.
- A transaction that successfully completes its execution will have a commit instructions as the last statement
  - In the slides, we'll assume, by default, that a transaction executes a commit instruction as its last step
- A transaction that fails to successfully complete its execution will have an abort instruction as the last statement
- The goal is to find schedules that preserves consistency

- Let  $T_1$  transfer €50 from A to B, and  $T_2$  transfer 10% of the balance from A to B.
- A serial schedule in which  $T_1$  is followed by  $T_2$ :

| $T_1$                                                                            | $T_2$                                                                                                                                                                |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| read $(A)$ $A := A - 50$ write $(A)$ read $(B)$ $B := B + 50$ write $(B)$ commit | read ( <i>A</i> )  temp := <i>A</i> * 0.1 <i>A</i> := <i>A</i> - temp  write ( <i>A</i> )  read ( <i>B</i> ) <i>B</i> := <i>B</i> + temp  write ( <i>B</i> )  commit |

A serial schedule where T<sub>2</sub> is followed by T<sub>1</sub>

| $T_1$                                                                                                                                | $T_2$                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| read ( <i>A</i> ) <i>A</i> := <i>A</i> - 50 write ( <i>A</i> ) read ( <i>B</i> ) <i>B</i> := <i>B</i> + 50 write ( <i>B</i> ) commit | read ( <i>A</i> )  temp := <i>A</i> * 0.1 <i>A</i> := <i>A</i> - temp  write ( <i>A</i> )  read ( <i>B</i> ) <i>B</i> := <i>B</i> + temp  write ( <i>B</i> )  commit |

If each transaction, by itself, preserves consistency, serial schedules obviously also preserve consistency!

Let  $T_1$  and  $T_2$  be the transactions defined previously. The following schedule is not a serial schedule, but it is *equivalent* to Schedule 1

| $T_1$       | $T_2$           |
|-------------|-----------------|
| read (A)    |                 |
| A := A - 50 |                 |
| write $(A)$ |                 |
|             | read (A)        |
|             | temp := A * 0.1 |
|             | A := A - temp   |
|             | write $(A)$     |
| read (B)    |                 |
| B := B + 50 |                 |
| write (B)   |                 |
| commit      |                 |
|             | read (B)        |
|             | B := B + temp   |
|             | write (B)       |
|             | commit          |

■ In Schedules 1, 2 and 3, the sum A + B is preserved.

• The following concurrent schedule does not preserve the value of (A + B).

| $T_1$                                                                                    | $T_2$                                                                                     |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| read ( $A$ ) $A := A - 50$                                                               | read ( <i>A</i> )  temp := <i>A</i> * 0.1 <i>A</i> := <i>A</i> - temp  write ( <i>A</i> ) |
| write ( <i>A</i> ) read ( <i>B</i> ) <i>B</i> := <i>B</i> + 50 write ( <i>B</i> ) commit | read ( $B$ ) $B := B + temp$ write ( $B$ ) commit                                         |

# Serializability

- Goal: Deal with concurrent schedules that are equivalent to some serial execution:
  - Basic Assumption Each transaction preserves database consistency.
  - Thus serial execution of a set of transactions preserves database consistency.
- A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different forms of schedule equivalence give rise to the notions of:
  - 1. Conflict serializability
  - 2. View serializability
- Simplified view of transaction:
  - We ignore operations other than read and write instructions
  - We assume that transactions may perform arbitrary computations on data in local buffers in between reads and writes.
  - Our simplified schedules consist of only read and write instructions.

## **Conflicting Instructions**

- Instructions  $I_i$  and  $I_j$  of transactions  $T_i$  and  $T_j$  respectively, **conflict** if and only if there exists some item Q accessed by both  $I_i$  and  $I_j$ , and at least one of these instructions wrote Q.
  - 1.  $I_i = \text{read}(Q)$ ,  $I_j = \text{read}(Q)$ .  $I_i$  and  $I_i$  don't conflict.
  - 2.  $l_i = \text{read}(Q)$ ,  $l_i = \text{write}(Q)$ . They conflict.
  - 3.  $I_i = \mathbf{write}(Q)$ ,  $I_i = \mathbf{read}(Q)$ . They conflict
  - 4.  $I_i = \mathbf{write}(Q)$ ,  $I_i = \mathbf{write}(Q)$ . They conflict
- Intuitively, a conflict between  $l_i$  and  $l_j$  forces a (logical) temporal order between them.
  - If I<sub>i</sub> and I<sub>j</sub> are consecutive in a schedule and they do not conflict, their results would remain the same even if they had been interchanged in the schedule.

# **Conflict Serializability**

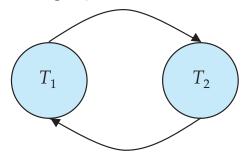
- If a schedule S can be transformed into a schedule S' by a series of swaps of non-conflicting instructions, we say that S and S' are conflict equivalent.
- We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule
- E.g. Schedule 3 can be transformed into Schedule 6, a serial schedule where  $T_2$  follows  $T_1$ , by series of swaps of non-conflicting instructions. Therefore Schedule 3 is conflict serializable.

| $T_1$                                   | $T_2$                                   | $T_1$                                 | $T_2$                                                                     |
|-----------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------|
| read ( <i>A</i> )<br>write ( <i>A</i> ) | read ( <i>A</i> )<br>write ( <i>A</i> ) | read (A) write (A) read (B) write (B) |                                                                           |
| read ( <i>B</i> )<br>write ( <i>B</i> ) | read ( <i>B</i> )<br>write ( <i>B</i> ) |                                       | read ( <i>A</i> ) write ( <i>A</i> ) read ( <i>B</i> ) write ( <i>B</i> ) |

Schedule 3

Schedule 6

# **Conflict Serializability (Cont.)**

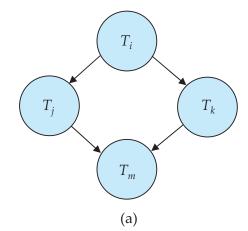

Example of a schedule that is not conflict serializable:

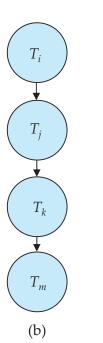
| $T_3$     | $T_4$              |
|-----------|--------------------|
| read (Q)  | write ( <i>Q</i> ) |
| write (Q) | write (Q)          |

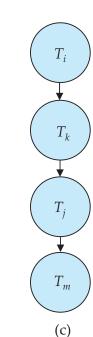
• We are unable to swap instructions in the above schedule to obtain either the serial schedule  $< T_3, T_4 >$ , or the serial schedule  $< T_4, T_3 >$ .

# **Testing for Serializability**

- Consider some schedule of a set of transactions  $T_1, T_2, ..., T_n$
- Precedence graph a direct graph where
  - the vertices are the transactions (names).
  - there is an arc from  $T_i$  to  $T_j$  if the two transactions conflict, and  $T_i$  accessed the data item on which the conflict arose earlier.
- We may label the arc by the item that was accessed.
- Example of a precedence graph

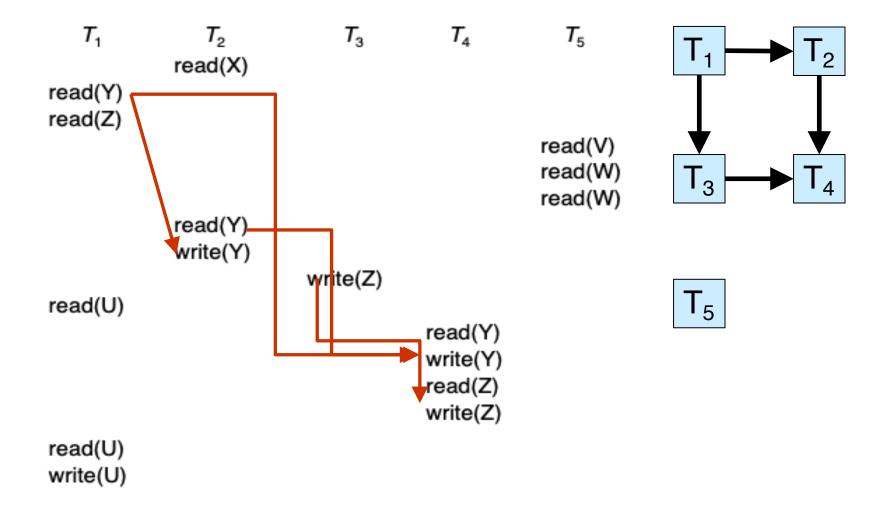




# **Test for Conflict Serializability**


- A schedule is conflict serializable if and only if its precedence graph is acyclic.
- Cycle-detection algorithms exist which take order n<sup>2</sup> time, where n is the number of vertices in the graph.
  - (Better algorithms take order n + e where e is the number of edges.)
- If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of the graph.
  - This is a linear order consistent with the partial order of the graph.
  - For example, a serializability order for Schedule A would be

$$T_5 \rightarrow T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_4$$

• Are there others?








### **Example of Schedule and Precedence Graph**

Is this schedule is serializable? Yes



### **View Serializability**

 Sometimes it is possible to serialize schedules that are not conflict serializable. E.g.

| $T_{27}$  | $T_{28}$  | $T_{29}$  |
|-----------|-----------|-----------|
| read (Q)  |           |           |
| write (Q) | write (Q) |           |
|           |           | write (Q) |

- This schedule is not conflict serializable
- But it is serializable:
  - It is equivalent to either <T27,T28,T29> or <T28,T27,T29>
- View serialisability provides a weaker and still consistency preserving notion of serialization

# **View Serializability**

- Let S and S' be two schedules with the same set of transactions. S and S' are view equivalent if the following three conditions are met, for each data item Q,
  - 1. If in schedule S, transaction  $T_i$  reads the initial value of Q, then in schedule S' also transaction  $T_i$  must read the initial value of Q.
  - 2. If in schedule S transaction  $T_i$  executes read(Q), and that value was produced by transaction  $T_j$  (if any), then in schedule S' also transaction  $T_i$  must read the value of Q that was produced by the same write(Q) operation of transaction  $T_i$ .
  - 3. The transaction (if any) that performs the final **write**(Q) in schedule S must also perform the final **write**(Q) operation in schedule S.
- As can be seen, view equivalence is also based purely on reads and writes alone.
- A schedule S is view serialisable if it is view equivalent to a serial schedule.
  - Every conflict serializable schedule is also view serializable
  - Every view serializable schedule that is not conflict serializable has blind writes (i.e. writes that don't read the item in the same transaction)

# **Test for View Serializability**

- The precedence graph test for conflict serializability cannot be used directly to test for view serializability.
  - Extension to test for view serializability has cost exponential in the size of the precedence graph.
- The problem of checking if a schedule is view serializable falls in the class of NP-complete problems.
  - Thus, existence of an efficient algorithm is extremely unlikely.
- However practical algorithms that just check some sufficient conditions for view serializability can still be used.

#### **Recoverable Schedules**

What to do if some transaction fails? One needs to address the effect of failures on concurrently running transactions.

- Recoverable schedule if a transaction  $T_j$  reads a data item previously written by a transaction  $T_i$ , then the commit operation of  $T_i$  appears before the commit operation of  $T_i$ .
- The following schedule is not recoverable

| $T_{\mathcal{S}}$                       | $T_{9}$                     |
|-----------------------------------------|-----------------------------|
| read ( <i>A</i> )<br>write ( <i>A</i> ) |                             |
|                                         | read ( <i>A</i> )<br>commit |
|                                         | commit                      |
| read (B)                                |                             |

- If  $T_8$  should abort,  $T_9$  would have read (and possibly shown to the user, or to other transactions) an inconsistent database state.
- Hence, a database must ensure that schedules are recoverable delaying commits.

### **Cascading Rollbacks**

 Cascading rollback – when a single transaction failure leads to a series of transaction rollbacks. Consider the following schedule where none of the transactions has yet committed (so the schedule is recoverable)

| $T_{10}$                                                      | $T_{11}$                                | $T_{12}$          |
|---------------------------------------------------------------|-----------------------------------------|-------------------|
| read ( <i>A</i> ) read ( <i>B</i> ) write ( <i>A</i> )  abort | read ( <i>A</i> )<br>write ( <i>A</i> ) | read ( <i>A</i> ) |

If  $T_{10}$  fails,  $T_{11}$  and  $T_{12}$  must also be rolled back.

- Can lead to undoing of a significant amount of work
- Avoided, in this case, by *anticipating* the commit of  $T_{10}$  to before the read in  $T_{11}$ , and the commit of  $T_{11}$  to before the read in  $T_{12}$

#### **Cascadeless Schedules**

- Cascadeless schedules cascading rollbacks cannot occur;
  - For each pair of transactions  $T_i$  and  $T_j$  such that  $T_j$  reads a data item previously written by  $T_i$ , the commit operation of  $T_i$  appears before the read operation of  $T_i$ .
- Every Cascadeless schedule is also recoverable
- It is desirable to restrict the schedules to those that are cascadeless

# **Concurrency Control**

- A database must provide a mechanism that will ensure that all possible schedules are
  - either conflict or view serializable, and
  - are recoverable and preferably cascadeless
- A policy in which only one transaction can execute at a time generates serial schedules, but provides a poor degree of concurrency
  - Are serial schedules recoverable/cascadeless?
- Testing a schedule for serializability after it has executed is a little too late!
- Goal to develop concurrency control protocols that will assure serializability
  - Lock-based protocols
  - Timestamp-based protocols

## **Concurrency Control (Cont.)**

- Schedules must be conflict or view serializable, and recoverable, for the sake of database consistency, and preferably cascadeless.
- A policy in which only one transaction can execute at a time generates serial schedules but provides a poor degree of concurrency.
- Concurrency-control schemes tradeoff between the amount of concurrency they allow and the amount of overhead that they incur.
- Some schemes allow only conflict-serializable schedules to be generated, while others allow view-serializable schedules that are not conflictserializable.

# **Concurrency Control vs. Serializability Tests**

- Concurrency-control protocols allow concurrent schedules but ensure that the schedules are conflict/view serializable and are recoverable and cascadeless.
- Concurrency control protocols (generally) do not examine the precedence graph as it is being created
  - Instead a protocol imposes a discipline that avoids non-serializable schedules.
  - We study such protocols next week
- Different concurrency control protocols provide different tradeoffs between the amount of concurrency they allow and the amount of overhead that they incur.
- Tests for serializability help us understand why a concurrency control protocol is correct.

### **Weak Levels of Consistency**

- Some applications are willing to live with weak levels of consistency, allowing schedules that are not serializable
  - E.g., a read-only transaction that wants to get an approximate total balance of all accounts
  - E.g., database statistics computed for query optimization can be approximate (why?)
  - Such transactions need not be serializable with respect to other transactions
- Tradeoff accuracy for performance

# Levels of Consistency in SQL

- Serializable default
- Repeatable read only committed records to be read.
  - Repeated reads of same record must return same value.
  - However, a transaction may not be serializable it may find some records inserted by a transaction but not find others.
- Read committed only committed records can be read.
  - Successive reads of record may return different (but committed) values.
- Read uncommitted even uncommitted records may be read.

### **Levels of Consistency**

- Lower degrees of consistency are useful for gathering approximate information about the database
- Warning: some database systems do not ensure serializable schedules by default
- E.g., Oracle (and PostgreSQL prior to version 9) by default support a level of consistency called snapshot isolation (not part of the SQL standard)

#### **Transaction Definition in SQL**

- In SQL, a transaction begins implicitly.
- A transaction in SQL ends by:
  - Commit work commits current transaction and begins a new one.
  - Rollback work causes current transaction to abort.
- In almost all database systems, by default, every SQL statement also commits implicitly if it executes successfully
  - Implicit commit can be turned off by a database directive
    - E.g., in JDBC -- connection.setAutoCommit(false);
- Isolation level can be set at database level
- Isolation level can be changed at start of transaction
  - E.g. In SQL set transaction isolation level serializable
  - E.g. in JDBC -- connection.setTransactionIsolation(
     Connection.TRANSACTION\_SERIALIZABLE)

### Implementation of Isolation Levels

- Locking
  - Lock on whole database vs lock on items
  - How long to hold lock?
  - Shared vs exclusive locks
- Timestamps
  - Transaction timestamp assigned e.g. when a transaction begins
  - Data items store two timestamps
    - Read timestamp
    - Write timestamp
  - Timestamps are used to detect out of order accesses
- Multiple versions of each data item
  - Allow transactions to read from a "snapshot" of the database

#### **Transactions as SQL Statements**

- E.g., Transaction 1:
   select ID, name from instructor where salary > 90000
- E.g., Transaction 2:
   insert into instructor values ('11111', 'James', 'Marketing', 100000)
- Suppose
  - T1 starts, finds tuples salary > 90000 using index and locks them
  - And then T2 executes.
  - Do T1 and T2 conflict? Does tuple level locking detect the conflict?
  - Instance of the phantom phenomenon
- Also consider T3 below, with Wu's salary = 90000
   update instructor
   set salary = salary \* 1.1
   where name = 'Wu'
- Key idea: Detect "predicate" conflicts, and use some form of "predicate locking"