
Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 14: Indexing
(and also chapter 24: Advanced Indexing)

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Outline

§ Basic Concepts
§ Ordered Indices
§ B+-Tree Index Files
§ B-Tree Index Files
§ Indices on Multiple Keys
§ Bitmap Indices
§ Write-optimized indices
§ Spatio-Temporal Indexing
§ Hashing

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiple-Key Access

§ Use multiple indices for certain types of queries.
§ Example:

select ID
from instructor
where dept_name = “Finance” and salary = 80000

§ Possible strategies for processing query using indices on single attributes:
1. Use index on dept_name to find instructors with department name

Finance; test salary = 80000
2. Use index on salary to find instructors with a salary of $80000; test

dept_name = “Finance”.
3. Use dept_name index to find pointers to all records pertaining to the
“Finance” department. Similarly use index on salary. Take
intersection of both sets of pointers obtained.

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Indices on Multiple Keys

§ Composite search keys are search keys containing more than one
attribute
• E.g., (dept_name, salary)

§ Lexicographic ordering: (a1, a2) < (b1, b2) if either
• a1 < b1, or
• a1=b1 and a2 < b2

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Indices on Multiple Attributes

§ With the where clause
where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only records that
satisfy both conditions.
• Using separate indices in less efficient — we may fetch many

records (or pointers) that satisfy only one of the conditions.
§ Can also efficiently handle

where dept_name = “Finance” and salary < 80000
§ But cannot efficiently handle

where dept_name < “Finance” and balance = 80000
• May fetch many records that satisfy the first but not the second

condition

Suppose we have an index on combined search-key
(dept_name, salary).

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Bitmap Indices

§ Bitmap indices are a special type of index designed for efficient querying
on multiple keys

§ Records in a relation are assumed to be numbered sequentially
• Given a number n it must be easy to retrieve record n

§ Particularly easy if records are of fixed size
§ Otherwise, a list of pointer might be used

§ Applicable on attributes that take on a relatively small number of distinct
values
• E.g., gender, country, state, …
• E.g., income-level (income broken up into a small number of levels

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)
§ A bitmap is simply an array of bits

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Bitmap Indices (Cont.)

§ In its simplest form a bitmap index on an attribute has a bitmap for each
value of the attribute
• The bitmap has as many bits as records in the table
• In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute, and is 0 otherwise
§ Example

ID income_levelgender

76766

22222

12121

15151

58583

m

m

f

f

f

L1

L1

L2

L4

L3

record
number

1

0

2

3

4

m

f

Bitmaps for gender

10010

01101

Bitmaps for
income_level

L1

L2

L3

L4

L5

10100

01000

00001

00010

00000

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Bitmap Indices (Cont.)

§ Bitmap indices are useful for queries on multiple attributes
• In general, not particularly useful for single attribute queries

§ Queries are answered using bitmap operations
• Intersection (and)
• Union (or)

§ Each operation takes two bitmaps of the same size and applies the
operation on corresponding bits to get the result bitmap
• E.g., 100110 AND 110011 = 100010

100110 OR 110011 = 110111
NOT 100110 = 011001

• Males with income level L1: 10010 AND 10100 = 10000
§ Can then retrieve required tuples.
§ Counting number of matching tuples is even faster

• It doesn’t even require access to the table file!

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Bitmap Indices (Cont.)

§ Bitmap indices generally very small compared to relation size
• E.g., if record is 1000 bytes, space for a single bitmap is 1/8000 of

space used by relation.
§ If number of distinct attribute values is 8, bitmap is only 1/1000 of

the relation size
§ Deletion needs to be handled properly

• Existence bitmap to mark whether there is a valid record at a
record location

• Needed for complementation
§ not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap

§ Should keep bitmaps for all values, even null value
• To correctly handle SQL null semantics for NOT(A=v):

§ intersect above result with (NOT bitmap-A-Null)

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Efficient Implementation of Bitmap Operations

§ Bitmaps are packed into words; a single word and (a basic CPU
instruction) computes AND of 32 or 64 bits at once
• E.g., 1-million-bit maps can be and-ed with just 31,250 instruction

§ Counting number of 1s can be done fast by a trick:
• Use each byte to index into a precomputed array of 256 elements

each storing the count of 1s in the binary representation
§ Can use pairs of bytes to speed up further at a higher memory

cost
• Add up the retrieved counts

§ Bitmaps can be used instead of Tuple-ID lists at leaf levels of
B+-trees, for values that have a large number of matching records
• Worthwhile if > 1/64 of the records have that value, assuming a tuple-

id is 64 bits
• Above technique merges benefits of bitmap and B+-tree indices

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Spatial and Temporal Indices

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Spatial Data

§ Databases can store data types such as lines, polygons, in addition to
raster images
• allows relational databases to store and retrieve spatial information
• Queries can use spatial conditions (e.g. contains or overlaps).
• queries can mix spatial and nonspatial conditions

§ Nearest neighbor queries, given a point or an object, find the nearest
object that satisfies given conditions.

§ Range queries deal with spatial regions. e.g., ask for objects that lie
partially or fully inside a specified region.

§ Queries that compute intersections or unions of regions.
§ Spatial join of two spatial relations with the location playing the role of join

attribute.

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexing of Spatial Data

§ k-d tree - early structure used for
indexing in multiple dimensions.

§ Each level of a k-d tree partitions the
space into two.
• Choose one dimension for

partitioning at the root level of the
tree.

• Choose another dimensions for
partitioning in nodes at the next
level and so on, cycling through the
dimensions.

§ In each node, approximately half of the
points stored in the sub-tree fall on one
side and half on the other.

§ Partitioning stops when a node has less
than a given number of points.

3 1 3

2

3 3

2

§ The k-d-B tree extends the k-d
tree to allow multiple child
nodes for each internal node;
well-suited for secondary
storage.

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Division of Space by Quadtrees

§ Each node of a quadtree is associated with a rectangular region of space;
the top node is associated with the entire target space.

§ Each non-leaf nodes divides its region into four equal sized quadrants
• correspondingly each such node has four child nodes corresponding

to the four quadrants and so on
§ Leaf nodes have between zero and some fixed maximum number of

points (set to 1 in example).

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

R-Trees

§ R-trees are a N-dimensional extension of B+-trees, useful for indexing sets
of rectangles and other polygons.

§ Supported in many modern database systems, along with variants like R+ -
trees and R*-trees.

§ Basic idea: generalize the notion of a one-dimensional interval associated
with each B+-tree (intermediate) node to an N-dimensional interval, that is,
an N-dimensional rectangle.

§ We only consider the two-dimensional case (N = 2)
• generalization for N > 2 is straightforward, although R-trees work well

only for relatively small N
§ The bounding box of a node is a minimum sized rectangle that contains

all the rectangles/polygons associated with the node
• Bounding boxes of children of a node can overlap

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

Example R-Tree

§ A set of rectangles (solid line) and the bounding boxes (dashed line) of the
nodes of an R-tree for the rectangles.

§ The R-tree is shown on the right.

BB1 BB2 BB

B CA E F H I

A B

C

I

E F

H

1

2

3

D

G

D G

3

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Search in R-Trees

§ To find data items intersecting a given query point/region, do the following,
starting from the root node:
• If the node is a leaf node, output the data items whose keys intersect

the given query point/region.
• Else, for each child of the current node whose bounding box intersects

the query point/region, recursively search the child
§ Can be very inefficient in worst case since multiple paths may need to be

searched, but works acceptably in practice.

BB1 BB2 BB

B CA E F H I

A B

C

I

E F

H

1

2

3

D

G

D G

3

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexing Temporal Data

§ Temporal data refers to data that has an associated time period (interval)
• Example: a temporal version of the course relation

§ Time interval has a start and end time
• End time set to infinity (or large date such as 9999-12-31) if a tuple is

currently valid and its validity end time is not currently known
§ Query may ask for all tuples that are valid at a point in time or during a

time interval
• Index on valid time period speeds up this task

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexing Temporal Data (Cont.)

§ To create a temporal index on attribute a:
• Use spatial index, such as R-tree, with attribute a as one dimension,

and time as another dimension
§ Valid time forms an interval in the time dimension

• Tuples that are currently valid cause problems, since value is infinite
or very large
§ Solution: store all current tuples (with end time as infinity) in a

separate index, indexed on (a, start-time)
• To find tuples valid at a point in time t in the current tuple index,

search for tuples in the range (a, 0) to (a,t)
§ Temporal index on primary key can help enforce temporal primary key

constraint

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Creation of Indices

§ Example
create index takes_pk on takes (ID,course_ID, year, semester, section)
drop index takes_pk

§ Most database systems allow specification of the type of index, and
clustering.

§ Indices on primary key created automatically by almost all databases
§ Some database also create indices on foreign key attributes

• Why might such an index be useful for this query:
§ takes ⨝ σname='Shankar' (student)

§ Indices can greatly speed up lookups, but impose cost on updates
• Index tuning assistants/wizards supported on several databases to

help choose indices, based on query and update workload

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexing in Oracle

§ Oracle supports B+-Tree indices as a default for the create index SQL
command
• B+-Tree indices are created by default for every primary key and

unique declaration
§ A new non-null attribute rowid is added to all indices to non-unique

attributes, so as to guarantee that all search keys are unique.
• indices are supported on

§ attributes, and attribute lists,
§ on results of function over attributes
§ or using structures external to Oracle (Domain indices)

§ Bitmap indices are also supported, but for that an explicit declaration is
needed:
create bitmap index <index-name> on <relation-name> (<attribute-list>)

§ Oracle also has spatial indices, using R-Trees:
create index <index-name> on <relation-name> (<attribute-list>)

indextype is mdsys.spatial_index

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Write Optimized Indices

§ Performance of
§ B+-trees can be poor for write-intensive workloads

• One I/O per leaf, assuming all internal nodes are in memory
• With magnetic disks, < 100 inserts per second per disk
• With flash memory, one page overwrite per insert

§ Two approaches to reducing cost of writes
• Log-structured merge tree
• Buffer tree

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Log Structured Merge (LSM) Tree

§ Consider only inserts/queries for
now

§ Records inserted first into in-
memory tree (L0 tree)

§ When in-memory tree is full,
records moved to disk (L1 tree)
• B+-tree constructed using

bottom-up build by merging
existing L1 tree with records
from L0 tree

§ When L1 tree exceeds some
threshold, merge into L2 tree
• And so on for more levels
• Size threshold for Li+1 tree is

k times size threshold for Li
tree

• Merge creates a new B+-tree
using bottom-up build

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

LSM Tree (Cont.)

§ Benefits of LSM approach:
• Except for L0, which is in memory:

§ Inserts are done using only sequential I/O operations
§ Leaves are full, avoiding space wastage
§ Reduced number of I/O operations per record inserted as

compared to normal B+-tree (up to some size)
• If each leaf has m entries, m/k entries merged in using 1 IO
• Total I/O operations: k/m logk(I/M) where I = total number of

entries, and M is the size of L0 tree.
§ Drawback of LSM approach

• Queries have to search multiple trees
• Entire content of each level copied multiple times

§ Used in several BigData storage systems: Cassandra, MongoDB, …
• MySQL also supports LSM trees (engine MyRocks)

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

Buffer Tree

§ Alternative to LSM tree
§ Key idea: each internal node of B+-tree has a buffer to store inserts

• Inserts are moved to lower levels when buffer is full
• With a large buffer, many records are moved to lower level each time
• Per record I/O decreases correspondingly

§ Benefits
• Less overhead on queries, and less writes
• Can be used with any tree index structure
• Used in PostgreSQL Generalized Search Tree (GiST) indices

§ Drawback: more random I/O than LSM tree
• Bad for magnetic disk, but not a problem for SSD

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Hashing

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Static Hashing

§ A bucket is a unit of storage containing one or more entries (a bucket
is typically a disk block).
• we obtain the bucket of an entry from its search-key value using a

hash function
§ Hash function h is a function from the set of all search-key values K to

the set of all bucket addresses B.
§ Hash function is used to locate entries for access, insertion as well as

deletion.
§ Entries with different search-key values may be mapped to the same

bucket; thus entire bucket must be searched sequentially to locate an
entry.

§ In a hash index, buckets store entries with pointers to records
§ In a hash file-organization buckets store records

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key.
bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

bucket 7

45565

15151 Mozart Music 40000

80000
Wu12121 Finance 90000

76543 FinanceSingh

10101 Comp. Sci.Srinivasan
Katz Comp. Sci. 75000

92000

6500032343
58583

El Said
Califieri

History
History

80000
60000

Einstein
Gold
Kim

22222
33456
98345

Physics
Physics
Elec. Eng.

95000
87000
80000

Brandt83821 Comp. Sci.

76766 Crick Biology 72000

§ There are 8 buckets,
§ The binary representation of

the I th character is assumed
to be the integer i.

§ The hash function returns the
sum of the binary
representations of the
characters modulo 8
• E.g. h(Music) = 1

h(History) = 2
h(Physics) = 3
h(Elec. Eng.) = 3

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Hash Functions

§ Worst hash function maps all search-key values to the same bucket; this
makes access time proportional to the number of search-key values in the
file.

§ An ideal hash function is uniform, i.e., each bucket is assigned the same
number of search-key values from the set of all possible values.

§ Ideal hash function is random, so each bucket will have the same number
of records assigned to it irrespective of the actual distribution of search-key
values in the file.

§ Typical hash functions perform computation on the internal binary
representation of the search-key.
• For example, for a string search-key, the binary representations of all

the characters in the string could be added and the sum modulo the
number of buckets could be returned (as in previous example)

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

Handling of Bucket Overflows

§ Bucket overflow can occur because of
• Insufficient buckets
• Skew in distribution of records. This can occur due to two reasons:

§ multiple records have same search-key value
§ chosen hash function produces non-uniform distribution of key

values
§ Although the probability of bucket overflow can be reduced, it cannot be

eliminated; it is handled by using overflow buckets.

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Handling of Bucket Overflows (Cont.)

§ Overflow chaining – the overflow buckets of a given bucket are chained
together in a linked list.

§ Above scheme is called closed addressing (also called closed hashing
or open hashing depending on the book you use)
• An alternative, called

open addressing
(also called
open hashing or
closed hashing
depending on the
book you use) which
does not use over-
flow buckets, is not
suitable for database
applications.

overflow buckets for bucket 1

bucket 0

bucket 1

bucket 2

bucket 3

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Hash Indices
bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

76766

45565
76543

10101

15151
33456

58583

83821

22222

98345

bucket 7
12121
32343

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

§ Hashing can be used
not only for file
organisation, but also
for index-structure
creation.

§ A hash index
organises the search
keys, with their
associated record
pointers, into a hash
file structure.

FCT NOVA33José Alferes – Adaptado de Database System Concepts - 7th Edition

Deficiencies of Static Hashing

§ In static hashing, function h maps search-key values to a fixed set of B of
bucket addresses. Databases grow or shrink with time.
• If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.
• If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).
• If database shrinks, again space will be wasted.

§ One solution: periodic re-organization of the file with a new hash function
• Expensive, disrupts normal operations

§ Better solution: allow the number of buckets to be modified dynamically.

FCT NOVA34José Alferes – Adaptado de Database System Concepts - 7th Edition

Dynamic Hashing

§ Periodic rehashing
• If number of entries in a hash table becomes (say) 1.5 times size of

hash table,
§ create new hash table of size (say) 2 times the size of the

previous hash table
§ Rehash all entries to new table

§ Linear Hashing
• Do rehashing in an incremental manner

§ Extendable Hashing
• Tailored to disk based hashing, with buckets shared by multiple hash

values
• Doubling of # of entries in hash table, without doubling # of buckets

FCT NOVA35José Alferes – Adaptado de Database System Concepts - 7th Edition

Extendable Hashing

§ Extendable hashing – one form of dynamic hashing
• Hash function generates values over a large range — typically b-bit

integers, with b = 32.
• At any time use only a prefix of the hash function to index into a table

of bucket addresses.
• Let the length of the prefix be i bits, 0 £ i £ 32.

§ Bucket address table size = 2i. Initially i = 0
§ Value of i grows and shrinks as the size of the database grows

and shrinks.
• Multiple entries in the bucket address table may point to a bucket

(why?)
• Thus, actual number of buckets is < 2i

§ The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

FCT NOVA36José Alferes – Adaptado de Database System Concepts - 7th Edition

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next slide for details)

i i1

i2

i3

bucket 1

bucket 2

bucket 3

00..
01..
10..

11..

bucket address table

hash prefix

…

…

FCT NOVA37José Alferes – Adaptado de Database System Concepts - 7th Edition

Use of Extendable Hash Structure

§ Each bucket j stores a value ij
• All the entries that point to the same bucket have the same values on

the first ij bits.
§ To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X
2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket
§ To insert a record with search-key value Kj

• follow same procedure as look-up and locate the bucket, say j.
• If there is room in the bucket j insert record in the bucket.
• Else the bucket must be split and insertion re-attempted (next slide.)

§ Overflow buckets used instead in some cases (will see shortly)

FCT NOVA38José Alferes – Adaptado de Database System Concepts - 7th Edition

Insertion in Extendable Hash Structure (Cont.)

§ If i > ij (more than one pointer to bucket j)
• allocate a new bucket z, and set ij = iz = (ij + 1)
• Update the second half of the bucket address table entries originally

pointing to j, to point to z
• remove each record in bucket j and reinsert (in j or z)
• recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full)
§ If i = ij (only one pointer to bucket j)

• If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

• Else
§ increment i and double the size of the bucket address table.
§ replace each entry in the table by two entries that point to the same

bucket.
§ recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

FCT NOVA39José Alferes – Adaptado de Database System Concepts - 7th Edition

Deletion in Extendable Hash Structure

§ To delete a key value,
• locate it in its bucket and remove it.
• The bucket itself can be removed if it becomes empty (with appropriate

updates to the bucket address table).
• Coalescing of buckets can be done (can coalesce only with a “buddy”

bucket having same value of ij and same ij –1 prefix, if it is present)
• Decreasing bucket address table size is also possible

§ Note: decreasing bucket address table size is an expensive
operation and should be done only if number of buckets becomes
much smaller than the size of the table

FCT NOVA40José Alferes – Adaptado de Database System Concepts - 7th Edition

Use of Extendable Hash Structure: Example

!"#$%&'(" !"!"#$%&'("#

$%&'&() **+*ȱ++*+ȱ++++ȱ+*++ȱ**+*ȱ++**ȱ**++ȱ****
,&-./ȱ01%/ ++++ȱ***+ȱ**+*ȱ*+**ȱ+**+ȱ**++ȱ*++*ȱ++*+
2'31/ȱ24(/ *+**ȱ**++ȱ+*+*ȱ++**ȱ++**ȱ*++*ȱ++*+ȱ++++
5%46413 +*+*ȱ**++ȱ+*+*ȱ****ȱ++**ȱ*++*ȱ+**+ȱ++++
7%89&:) ++**ȱ*+++ȱ+++*ȱ++*+ȱ+*++ȱ++++ȱ**++ȱ+*+*
;<8%1 **++ȱ*+*+ȱ+*+*ȱ*++*ȱ++**ȱ+**+ȱ+++*ȱ+*++
=!)8%18ȱȱȱȱȱȱȱȱȱȱȱȱ+**+ȱ+***ȱ**++ȱ++++ȱ+**+ȱ++**ȱ****ȱ***+

FCT NOVA41José Alferes – Adaptado de Database System Concepts - 7th Edition

Example (Cont.)

§ Initial hash structure; bucket size = 2

0 0

bucket 1bucket address table

hash prefix

FCT NOVA42José Alferes – Adaptado de Database System Concepts - 7th Edition

Example (Cont.)

§ Hash structure after insertion of “Mozart”, “Srinivasan”, and “Wu” records

1 1

bucket address table

hash prefix

1

15151 Music 40000

10101
12121

Srinivasan 90000
Wu 90000

Mozart

Comp. Sci.
Finance

FCT NOVA43José Alferes – Adaptado de Database System Concepts - 7th Edition

Example (Cont.)

§ Hash structure after insertion of Einstein record

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

FCT NOVA44José Alferes – Adaptado de Database System Concepts - 7th Edition

Example (Cont.)

§ Hash structure after insertion of Gold and El Said records

3

1

3

3

bucket address table

hash prefix

2

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
32343

Srinivasan
El Said

Comp. Sci.
History 60000

65000

FCT NOVA45José Alferes – Adaptado de Database System Concepts - 7th Edition

Example (Cont.)

§ Hash structure after insertion of Katz record

3

1

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

32343 El Said History 60000

3

FCT NOVA46José Alferes – Adaptado de Database System Concepts - 7th Edition

Example (Cont.)

3

bucket address table

hash prefix

2

3

3

3

22222
33456

Physics 95000
Physics 87000

Music
Biology

15151 40000
72000

Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

Crick76766

Singh76543 Finance

92000Comp. Sci.Brandt83821

32343
58583

El Said
Califieri

History
History

60000
62000

80000

3

And after insertion of
eleven records

FCT NOVA47José Alferes – Adaptado de Database System Concepts - 7th Edition

Example (Cont.)

3

2

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

Crick Biology 7200076766

Singh76543 Finance

80000Elec. Eng.Kim98345

92000Comp. Sci.Brandt83821

32343
58583

El Said
Califieri

History
History

60000
62000

2

80000

3

And after insertion of
Kim record in previous
hash structure

FCT NOVA48José Alferes – Adaptado de Database System Concepts - 7th Edition

Extendable Hashing vs. Other Schemes

§ Benefits of extendable hashing:
• Hash performance does not degrade with growth of file
• Minimal space overhead

§ Disadvantages of extendable hashing
• Extra level of indirection to find desired record
• Bucket address table may itself become very big (larger than memory)

§ Cannot allocate very large contiguous areas on disk either
§ Solution: B+-tree structure to locate desired record in bucket

address table
• Changing size of bucket address table is an expensive operation

§ Linear hashing is an alternative mechanism
• Allows incremental growth of its directory (equivalent to bucket

address table)
• At the cost of more bucket overflows

FCT NOVA49José Alferes – Adaptado de Database System Concepts - 7th Edition

Comparison of Ordered Indexing and Hashing

§ Cost of periodic re-organization
§ Relative frequency of insertions and deletions
§ Is it desirable to optimize average access time at the expense of worst-

case access time?
§ Expected type of queries:

• Hashing is generally better at retrieving records having a specified
value of the key.

• If range queries are common, ordered indices are to be preferred
§ In practice:

• PostgreSQL supports hash indices, but discourages use due to poor
performance

• Oracle supports static hash organization, but not hash indices
• SQLServer, as well as MySQL, does not support hashing

FCT NOVA50José Alferes – Adaptado de Database System Concepts - 7th Edition

Hashing in Oracle

§ Hash indices are not supported
§ However (limited) static hash file organisation is supported for partitions

create table … partition by hash(<attribute-list>)
partitions <N>
stored in (<tables>)

§ Index files can also be partitioned using hash function
create index … global partition by hash(<attribute-list>)

partitions <N>
§ This creates a global index partitioned by the hash function

§ (Global) indexing over hash partitioned table is also possible

§ Hashing may also be used to organise clusters in multitable clusters

