Knowledge Representation and Reasoning

Exercises on Description Logic Ontologies

1 Converting from Description Logics to First-Order Logic

Consider the solutions from the previous class on converting the following UML class diagram into description logics.

Convert the Description Logic result into first-order logic.

2 Constructing Models of Ontologies

Consider the following **TBox**:

 $Cow \sqsubseteq Vegetarian$ $MadCow \sqsubseteq Cow \sqcap \exists eat.BrainOfSheep$ $Sheep \sqsubseteq Animal$ $Vegetarian \sqsubseteq (\geq 1 \ eat) \sqcap \forall eat. \neg (Animal \sqcup PartOfAnimal)$ $BrainOfSheep \sqsubseteq PartOfAnimal$

- 1. Translate the TBox into natural language, and compare with the translation into first-order logic.
- 2. Construct a model for the ontology $\mathcal{O}_1 = (\mathbf{TBox}, \{Cow(mimosa)\}).$
- 3. Show that there is no model for the ontology $\mathcal{O}_2 = (\mathbf{TBox}, \{MadCow(mimosa)\}).$

3 Knowledge Representation in ALC

Express the following sentences in terms of the description logic $\ \mathcal{ALC}$.

- 1. All employees are humans.
- 2. A mother is a female who has a child.
- 3. A parent is a mother or a father.
- 4. A grandmother is a mother who has a child who is a parent.
- 5. Only humans have children that are humans.

4 Semantics of ALC

Let \mathcal{I} be the following \mathcal{ALC} interpretation on the domain $\Delta^{\mathcal{I}} = \{s_0, s_1, ..., s_5\}.$

Determine the interpretation of the following concepts:

- 1. $\top^{\mathcal{I}}$.
- 2. $\perp^{\mathcal{I}}$.
- 3. $A^{\mathcal{I}}$.
- 4. $B^{\mathcal{I}}$.
- 5. $(A \sqcap B)^{\mathcal{I}}$.
- 6. $(A \sqcup B)^{\mathcal{I}}$.
- 7. $(\neg A)^{\mathcal{I}}$.
- 8. $(\exists r.A)^{\mathcal{I}}$.
- 9. $(\forall r. \neg B)^{\mathcal{I}}$.
- 10. $(\forall r. (A \sqcup B))^{\mathcal{I}}$.

5 Semantics of ALC

Let \mathcal{I} be the following \mathcal{ALC} interpretation on the domain $\Delta^{\mathcal{I}} = \{s_0, s_1, ..., s_3\}.$

Determine the interpretation of the following concepts:

- 1. $(A \sqcup B)^{\mathcal{I}}$.
- 2. $(\exists s. \neg A)^{\mathcal{I}}$.
- 3. $(\forall s.A)^{\mathcal{I}}$.
- 4. $(\exists s. \exists s. \exists s. \exists s. A)^{\mathcal{I}}$.
- 5. $(\neg \exists r. (\neg A \sqcup \neg B))^{\mathcal{I}}.$
- 6. $(\exists s. (A \sqcup \forall s. \neg B) \sqcup \neg \forall r. \exists r. (A \sqcup \neg A))^{\mathcal{I}}.$

6 (Un)Satisfiability and Validity of \mathcal{ALC}

For each of the following formulas, indicate if it is valid, satisfiable or unsatisfiable. If it is not valid, provide a model that falsifies it:

- 1. $\forall r. (A \sqcap B) \equiv \forall r.A \sqcap \forall r.B.$
- 2. $\forall r. (A \sqcup B) \equiv \forall r.A \sqcup \forall r.B.$
- 3. $\exists r. (A \sqcap B) \equiv \exists r.A \sqcap \exists r.B.$
- 4. $\exists r. (A \sqcup B) \equiv \exists r.A \sqcup \exists r.B.$