
Knowledge Representation and Reasoning

Solutions to Exercises on First Order Logic

1 Alpine Club

Formulate the following pieces of knowledge as sentences of first-order logic:
Tony, Mike and John belong to the Alpine Club. Every member of the Alpine Club who is not a skier is

a mountain climber. Mountain climbers do not like rain, and anyone who does not like snow is not a skier.
Mike dislikes whatever Tony likes, and likes whatever Tony dislikes. Tony likes rain and snow.

Answer: The answer uses the following predicates and constants:
• Member: unary predicate meaning a member of the Alpine Club;
• Skier: unary predicate meaning a skier;
• Climber: unary predicate meaning a climber;
• Likes: binary predicate where Likes (x, y) means that x likes y;
• constants tony, mike, john, rain, snow.

In the translation, we name sentences so that it is easy to refer to them later.
• Tony, Mike and John belong to the Alpine Club.

S1 : Member (tony) S2 : Member (mike) S3 : Member (john)

• Every member of the Alpine Club who is not a skier is a mountain climber.

S4 : ∀x ((Member (x) ∧ ¬Skier (x))→ Climber (x))

• Mountain climbers do not like rain

S5 : ∀x (Climber (x)→ ¬Likes (x, rain))

• and anyone who does not like snow is not a skier.

S6 : ∀x (¬Likes (x, snow)→ ¬Skier (x))

• Mike dislikes whatever Tony likes

S7 : ∀x (Likes (tony, x)→ ¬Likes (mike, x))

• and likes whatever Tony dislikes.

S8 : ∀x (¬Likes (tony, x)→ Likes (mike, x))

• Tony likes rain and snow.

S9 : Likes (tony, rain) S10 : Likes (tony, snow)

Note that S7 and S8 can be joined in one equivalence ∀x (Likes (tony, x)↔ ¬Likes (mike, x)) as
∀x (¬Likes (tony, x)→ Likes (mike, x)) and ∀x (¬Likes (mike, x)→ Likes (tony, x)) are equivalent
to ∀x (¬Likes (tony, x) ∨ ¬Likes (mike, x)) and ∀x (Likes (tony, x) ∨ Likes (mike, x)), respectively. Con-
sider alternatively ∀x, y((Likes(tony, x) ∧ ¬Likes(tony, y)) → (¬Likes(mike, x) ∧ Likes(mike, y)))
joining the two implications into one. This is, however not equivalent since whenever Tony likes all
things (in the domain), then nothing can be said about what Mike likes.

1



2 Reduction to CNF

Rewrite all sentences in KB = {(p ∨ q)→ r, r → s, p} in conjunctive normal form, and present KB in clausal
form.
Answer:

• (p ∨ q)→ r is, by definition of → equivalent to ¬ (p ∨ q) ∨ r

¬ (p ∨ q) ∨ r is by de Morgan’s law equivalent to (¬p ∧ ¬q) ∨ r

By distributivity, (¬p ∧ ¬q) ∨ r is equivalent to (¬p ∨ r) ∧ (¬q ∨ r)

(¬p ∨ r) ∧ (¬q ∨ r) is in CNF and corresponds to two clauses [¬p, r] [¬q, r].

• r → s is, by definition of → equivalent to ¬r ∨ s

¬r ∨ s is in CNF and corresponds to the clause [¬r, s].

The KB written in clausal form is KB = {[¬p, r] , [¬q, r] , [¬r, s] , [p]}.

3 Propositional Resolution

a) Show by resolution that the following set of clauses is inconsistent (derive the empty clause from it):

[A,B,C] , [A,B,¬C] , [A,¬B,C] , [A,¬B,¬C]

[¬A,B,C] , [¬A,B,¬C] , [¬A,¬B,C] , [¬A,¬B,¬C]

b) Show by resolution that the following sentence is inconsistent:

¬¬A ∧ (¬A ∨ ((¬B ∨ C) ∧B)) ∧ ¬C

Answer:
a) We can apply resolution as follows:

1. [A,B] from [A,B,C] , [A,B,¬C].

2. [A,¬B] from [A,¬B,C] , [A,¬B,¬C].

3. [A] from 1. and 2.

4. [¬A,B] from [¬A,B,C] , [¬A,B,¬C].

5. [¬A,¬B] from [¬A,¬B,C] , [¬A,¬B,¬C].

6. [¬A] from 4. and 5.

7. [] from 3. and 6.

b) We first need to transform into conjunctive normal form to obtain the clauses:

• ¬¬A ∧ (¬A ∨ ((¬B ∨ C) ∧B)) ∧ ¬C is equivalent to

• A ∧ (¬A ∨ ¬B ∨ C) ∧ (¬A ∨B) ∧ ¬C which corresponds to the clauses

• [A] , [¬A,¬B,C] , [¬A,B] , [¬C]; Then:

1. [¬B,C] from [A] , [¬A,¬B,C]

2. [B] from [A] , [¬A,B]

3. [C] from 1. and 2.

4. [] from 3. and [¬C]

Can you find a shorter proof?

2



4 First-Order Resolution

Determine whether the following sentences are valid using resolution:

a) ∃x∀y∀z ((P (y)→ Q (z))→ (P (x)→ Q (x)))

b) ∃x (P (x)→ ∀y (P (y)))

c) ¬∃x∀y (E (x, y)↔ ¬E (y, y))

Show by resolution that the following set of clauses is inconsistent.

d) [P (x), P (f(x))] , [¬P (y), P (f(z))] , [¬P (w),¬P (f(w))]

Answer:
To do this we need to check if from the negation of the sentence we can derive an empty clause (a con-
tradiction).
a) First transform the negation into clausal form:

¬∃x∀y∀z ((P (y)→ Q (z))→ (P (x)→ Q (x)))

¬∃x∀y∀z (¬ (¬P (y) ∨Q (z)) ∨ (¬P (x) ∨Q (x)))

∀x∃y∃z¬ (¬ (¬P (y) ∨Q (z)) ∨ (¬P (x) ∨Q (x)))

∀x∃y∃z (¬¬ (¬P (y) ∨Q (z)) ∧ ¬ (¬P (x) ∨Q (x)))

∀x∃y∃z ((¬P (y) ∨Q (z)) ∧ (¬¬P (x) ∧ ¬Q (x)))

∀x∃y∃z ((¬P (y) ∨Q (z)) ∧ P (x) ∧ ¬Q (x))

∀x ((¬P (f (x)) ∨Q (g (x))) ∧ P (x) ∧ ¬Q (x))

Clauses:

C1 : [¬P (f (x)) ∨Q (g (x))]

C2 : [P (x1)]

C3 : [¬Q (x2)]

Proof:

1. [Q (g (x))] from C1 and C2, x1/f (x).

2. [] from (1) and C3, x2/g (x).

Regarding why renaming of variables in clauses is necessary consider ∀x(p(a, x)∧¬p(x, b)). This formula
is inconsistent, because it implies both p(a, b) and ¬p(a, b). So we should be able to use resolution to
derive the empty clause. The clausal form of the formula is: {[p(a, x)], [¬p(x, b)]} However, we cannot
unify p(a, x) and ¬p(x, b), since x would need to be mapped to a and b simultaneously.
b) Transform the negation into clausal form:

¬∃x (P (x)→ ∀y (P (y)))

∀x¬ (¬P (x) ∨ ∀y (P (y)))

∀x (P (x) ∧ ∃y ¬P (y))

∀x (P (x) ∧ ¬P (f (x)))

Clauses:

C1 : [P (x)]

C2 : [¬P (f (x1))]

Proof:

1. [] from C1 and C2, x/f (x1)

3



c) Transform the negation into clausal form:

¬¬∃x∀y (E (x, y)↔ ¬E (y, y))

∃x∀y ((¬E (x, y) ∨ ¬E (y, y)) ∧ (E (x, y) ∨ E (y, y)))

∀y ((¬E (a, y) ∨ ¬E (y, y)) ∧ (E (a, y) ∨ E (y, y)))

Clauses:

C1 : [¬E (a, y) ,¬E (y, y)]

C2 : [E (a, y1) , E (y1, y1)]

Proof:

1. [¬E (a, a)] factorization C1, y/a

2. [E (a, a)] factorization C2, y1/a

3. [] from 1. and 2.

Alternatively, we may use a generalization of the resolution rule, which allows resolving more than one
unified (identical) atom per clause.
Proof:

1. [] from 1. and 2., y/a, y1/a

d) We can apply resolution directly (and there are several possible solutions).
Clauses:

C1 : [P (x), P (f(x))]

C2 : [¬P (y), P (f(z))]

C3 : [¬P (w),¬P (f(w))]

Proof:

1. [¬P (y),¬P (w)] resolution C2 and C3, z/w

2. [¬P (y)] factorization C1, w/y

3. [P (f(x))] resolution C1 and 2., y/x

4. [] from 2. and 3., y/f(x)

An example of an alternative proof without factorization follows:

Alternative Proof:

1. [¬P (y),¬P (w)] resolution C2 and C3, z/w

2. [P (f(x))] resolution C1 and 1., y/x and w/x

3. [] from 1. and 2., y/f(x) and w/f(x)

4



5 Alpine Club and First-Order Resolution

As a follow-up to the Alpine Club Exercise, use resolution to prove that there exists a member of the Alpine
club who is a climber but not a skier. Can you determine his name?

Answer:
Translation into first-order logic as given in the solution for Exercise 1 (S1 – S10) together with:

S11 : ∃x (Member (x) ∧ Climber (x) ∧ ¬Skier (x))

Now in clausal form (with S11 negated):

C1 : [Member (tony)]

C2 : [Member (mike)]

C3 : [Member (john)]

C4 : [¬Member (x) , Skier (x) , Climber (x)]

C5 : [¬Climber (x1) ,¬Likes (x1, rain)]

C6 : [Likes (x2, snow) ,¬Skier (x2)]

C7 : [¬Likes (tony, x3) ,¬Likes (mike, x3)]

C8 : [Likes (tony, x4) , Likes (mike, x4)]

C9 : [Likes (tony, rain)]

C10 : [Likes (tony, snow)]

C11 : [¬Member (x5) ,¬Climber (x5) , Skier (x5)]

Prove that, together, C1− C11 are inconsistent:

1. [¬Likes (mike, snow)] from C10 and C7, x3/snow

2. [¬Skier (mike)] from 1. and C6, x2/mike

3. [¬Member (mike) , Climber (mike)] from 2. and C4, x/mike

4. [Climber (mike)] from 3. and C2

5. [¬Member (mike) , Skier (mike)] from (4) and C11, x5/mike

6. [Skier (mike)] from 5. and C2

7. [] from 6. and 2.

To determine his name, we can change S11 to:

S11 : ∃x (Member (x) ∧ Climber (x) ∧ ¬Skier (x) ∧ ¬A(x))

This results in C11 = [¬Member (x5) ,¬Climber (x5) , Skier (x5) , A(x5)].
In step 5, we thus add A(mike), which then occurs in the clauses of steps 6. and 7., thus providing the
answer.
Can you find an even shorter proof (there is one with 5 resolution steps)?

5


