Answer Set Programming

- Introduction
- Normal Logic Programs
- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

Extensions

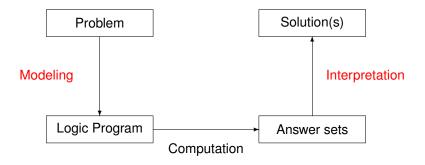
- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- Bibliography

Answer Set Programming

- Introduction
- Normal Logic Programs
- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

2 Extensions

- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- 3 Bibliography



For solving a problem class P for a problem instance I, encode

- the problem instance I as a set of facts C(I) and
- the problem class P as a set of rules C(P),

such that the solutions to P for I can be (polynomially) extracted from the answer sets of $C(P) \cup C(I)$.

Problem

Problem instance A graph (V, E).

Problem class Assign each vertex in V one of 3 colors such that no two vertexes in V connected by an edge in E have the same color.

olution	
<i>C(I)</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C(P)	colored(V,r) ← not colored(V,b), not colored(V,g),vertex(V) colored(V,b) ← not colored(V,r), not colored(V,g),vertex(V) colored(V,g) ← not colored(V,r), not colored(V,b),vertex(V) colored(V,g) ← not colored(V,r), not colored(V,b),vertex(V) ← edge(V,U), colored(V,C), colored(U,C), color(U,C), color(C)
AS's	<pre>{ colored(1,r), colored(2,b), colored(3,g), othercolor(1,g),, vertex(1),, edge(1,2),},</pre>

Problem

Problem instance A graph (V, E).

Problem class Assign each vertex in V one of n colors such that no two vertexes in V connected by an edge in E have the same color.

Solution	
<i>C(I)</i>	$vertex(1) \leftarrow vertex(2) \leftarrow vertex(3) \leftarrow$
	$edge(1,2) \leftarrow edge(2,3) \leftarrow edge(3,1) \leftarrow$
С(Р)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
AS's	{ colored(1,r), colored(2,b), colored(3,g), },

ASP Basic Methodology

Generate and Test (or: Guess and Check) approach.

Generator Generate potential candidate answer sets (typically through non-deterministic constructs)

Tester Eliminate non-valid Candidates (typically through integrity constraints)

In a Nutshell...

Logic Program = Data + Generator + Tester [+Optimizer]

Problem

Problem instance A propositional formula ϕ .

Problem class Is there an assignment of propositional variables to true and false such that a given formula ϕ is true.

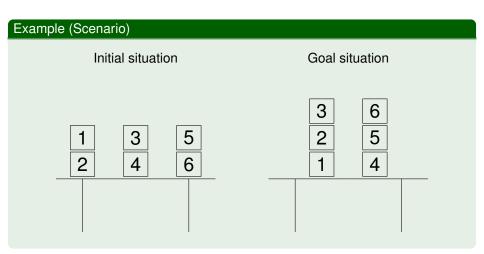
Soluti	on								
Consider formula $(a \lor \neg b) \land (\neg a \lor b)$:									
Generator			Test	Tester			set		
а	\leftarrow	not a'	\leftarrow	not a, b	A_1	=	{a,b}		
a'	\leftarrow	not a	\leftarrow	a, not b	A ₂	=	{a',b'}		
b	\leftarrow	not b'							
b'	\leftarrow	not b							

Sneak Preview: Generator with a choice rule: $\{a,b\} \leftarrow$

Problem

Problem instance A directed graph (V, E) and a starting vertex $v \in V$. Problem class Find a path in (V, E) starting at v and visiting all other vertices in V exactly once.

Solutio	n				
	<i>C(l)</i>	vertex/1	é	arc/2	start/1
	<i>C(P)</i>	inPath(X,Y)	\leftarrow	arc(X,	Y), not outPath(X,Y)
		outPath(X,Y)	\leftarrow	arc(X,	Y), not inPath(X,Y)
			\leftarrow	inPath	$h(X,Y)$, inPath(X,Z), $Y \neq Z$
			\leftarrow	inPath	$h(X,Y)$, inPath(Z,Y), $X \neq Z$
		reached(X)	\leftarrow	start()	X)
		reached(X)	\leftarrow	reache	ed(Y),inPath(Y,X)
			\leftarrow	vertex	(X),not reached(X)
			\leftarrow	inPath	h(Y,X), start(X)



Example (Initial Situation)

```
#const grippers=2.
#const lasttime=3.
block(1..6).
% DEFINE
on(1,2,0).
on(2,table,0).
on(3,4,0).
on(4,table,0).
on(5,6,0).
on(6,table,0).
```

Example (Goal Situation)

% TEST

- :- not on(3,2,lasttime).
- :- not on(2,1,lasttime).
- :- not on(1,table,lasttime).
- :- not on(6,5,lasttime).
- :- not on(5,4,lasttime).
- :- not on(4,table,lasttime).

Example (Generate)

```
time(0..lasttime).
```

```
location(B) :- block(B).
location(table).
```

#show move/3.

Example (Define)

```
% effect of moving a block
on (B, L, T+1) :- move (B, L, T),
                block(B), location(L),
                time(T), T<lasttime.
% inertia
on (B, L, T+1) :- on (B, L, T), not neq_on (B, L, T+1),
                location(L), block(B),
                time(T), T<lasttime.
% uniqueness of location
neq_on(B, L1, T) := on(B, L, T), L!=L1,
                   block(B), location(L), location(L1),
                   time(T).
```

Example (Test)

```
% neg_on is the negation of on
:- on(B,L,T), neg_on(B,L,T),
    block(B), location(L), time(T).
```

```
% two blocks cannot be on top of the same block
:- 2 { on(B1,B,T) : block(B1) },
      block(B), time(T).
```

% a block can't be moved unless it is clear :- move(B,L,T), on(B1,B,T), block(B), block(B1), location(L), time(T), T<lasttime.</pre>

% a block can't be moved onto a block that is being moved :- move(B,B1,T), move(B1,L,T), block(B), block(B1), location(L), time(T), T<lasttime.</pre>

Example (The Plan)

```
clingo blocks.lp 0
clingo version 5.4.0
Reading from blocks.lp
Solving..
Answer: 1
move(1,table,0) move(3,table,0) move(2,1,1) move(5,4,1) move(3,2,2)
move(6,5,2)
SATISFIABLE
Models : 1
Calls : 1
Time : 0.008s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.008s
```

Answer Set Programming

- Introduction
- Normal Logic Programs
- Modeling

Disjunctive Logic Programs

- Nested Logic Programs
- Propositional Theories
- Computational Complexity

2 Extensions

- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- 3 Bibliography

Disjunctive Logic Programs: Syntax

Definition (Disjunctive Rule)

A disjunctive rule, r, is an ordered pair of the form

$$A_1$$
;...; $A_m \leftarrow A_{m+1}, \ldots, A_n$, not A_{n+1}, \ldots , not A_o ,

where $o \ge n \ge m \ge 0$, and each A_i ($0 \le i \le o$) is an atom.

Definition (Disjunctive Logic Program)

A disjunctive logic program is a finite set of disjunctive rules.

Notation

Definition (Positive Disjunctive Logic Programs)

A program is called **positive** if $body^{-}(r) = \emptyset$ for all its rules.

Definition (Closure)

A set X of atoms is closed under a positive program Π iff for any $r \in \Pi$, head $(r) \cap X \neq \emptyset$ whenever $body^+(r) \subseteq X$.

• X corresponds to a model of Π (seen as a formula).

Definition $(\min_{\subseteq}(\Pi))$

The set of all \subseteq -minimal sets of atoms being closed under a positive program Π is denoted by min $_{\subseteq}(\Pi)$.

• $\min_{\subseteq}(\Pi)$ corresponds to the \subseteq -minimal models of Π (seen as a formula).

Definition (Reduct of a Disjunctive Logic Program)

The reduct, Π^X , of a disjunctive program Π relative to a set *X* of atoms is defined by

 $\Pi^{X} = \{ head(r) \leftarrow body^{+}(r) \mid r \in \Pi \text{ and } body^{-}(r) \cap X = \emptyset \}.$

Definition (Answer Set of a Disjunctive Logic Program)

A set X of atoms is an answer set of a disjunctive program Π if $X \in \min_{\subseteq}(\Pi^X)$.

$$\Pi = \left\{ \begin{array}{rrr} a & \leftarrow \\ b ; c & \leftarrow \\ \end{array} \right\}$$

- The sets $\{a, b\}$, $\{a, c\}$, and $\{a, b, c\}$ are closed under Π .
- We have $\min_{\subseteq}(\Pi) = \{ \{a, b\}, \{a, c\} \}.$

Problem

Problem instance A graph (V, E).

Problem class Assign each vertex in V one of 3 colors such that no two vertexes in V connected by an edge in E have the same color.

Solut	ion								
	<i>C(I)</i>	vertex(1)	\leftarrow	vertex(2)	\leftarrow	vertex(3)	\leftarrow		
		edge(1,2)	\leftarrow	edge(2,3)	\leftarrow	edge(3,1)	\leftarrow		
-	<i>C(P)</i>	$colored(V,r); colored(V,b); colored(V,g) \leftarrow vertex(V)$							
		$\leftarrow edge(V,U), \ colored(V,C), \ colored(U,C)$							
	AS's	{ colored(1,r)	{ colored(1,r), colored(2,b), colored(3,g), },						

- $\Pi_1 = \{a ; b ; c \leftarrow\}$ has answer sets $\{a\}, \{b\}, and \{c\}.$
- $\Pi_2 = \{a ; b ; c \leftarrow, \leftarrow a\}$ has answer sets $\{b\}$ and $\{c\}$.
- $\Pi_3 = \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$ has answer set $\{b, c\}$.
- Π₄ = {a; b ← c, b ← not a, not c, a; c ← not b} has answer sets {a} and {b}.

Property

A disjunctive logic program may have zero, one, or multiple stable models

Property

If X is a stable model of a disjunctive logic program Π , then X is a model of Π (seen as a formula)

Property

If X and Y are stable models of a disjunctive logic program $\Pi,$ then $X \not\subset Y$

Property

If $A \in X$ for some stable model X of a disjunctive logic program Π , then there is a rule $r \in \Pi$ such that $body^+(r) \subseteq X$, $body^-(r) \cap X = \emptyset$, and $head(r) \cap X = \{A\}$

$$\Pi = \left\{ \begin{array}{l} a(1,2) & \leftarrow \\ b(X); c(Y) & \leftarrow \\ a(X,Y), not \ c(Y) \end{array} \right\}$$

$$ground(\Pi) = \left\{ \begin{array}{l} a(1,2) & \leftarrow \\ b(1); c(1) & \leftarrow \\ b(1); c(2) & \leftarrow \\ b(1); c(2) & \leftarrow \\ b(2); c(1) & \leftarrow \\ b(2); c(2) & \leftarrow \\ a(2,2), not \ c(2) \end{array} \right\}$$

For every answer set X of Π , we have

•
$$a(1,2) \in X$$
 and

•
$$\{a(1,1), a(2,1), a(2,2)\} \cap X = \emptyset.$$

$$ground(\Pi)^X = \begin{cases} a(1,2) & \leftarrow \\ b(1); c(1) & \leftarrow & a(1,1) \\ b(1); c(2) & \leftarrow & a(1,2) \\ b(2); c(1) & \leftarrow & a(2,1) \\ b(2); c(2) & \leftarrow & a(2,2) \end{cases}$$

- Consider $X = \{a(1,2), b(1)\}.$
- We get $\min_{\subseteq}(ground(\Pi)^{\chi}) = \{ \{a(1,2), b(1)\}, \{a(1,2), c(2)\} \}.$
- X is an answer set of Π because $X \in \min_{\subseteq}(ground(\Pi)^X)$.

$$ground(\Pi)^{X} = \begin{cases} a(1,2) \leftarrow \\ b(1); c(1) \leftarrow a(1,1) \\ b(2); c(1) \leftarrow a(2,1) \\ \end{pmatrix}$$

- Consider $X = \{a(1,2), c(2)\}.$
- We get $\min_{\subseteq}(ground(\Pi)^X) = \{ \{a(1,2)\} \}.$
- X is no answer set of Π because $X \notin \min_{\subseteq} (ground(\Pi)^X)$.

Answer Set Programming

- Introduction
- Normal Logic Programs
- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

2 Extensions

- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- 3 Bibliography

Definition (Formulas)

Formulas are formed from propositional atoms, \top and \bot , using negation-as-failure (*not*), conjunction (,), and disjunction (;).

Definition (Nested Rules)

A nested rule, r, is an ordered pair of the form

 $\textit{F} \leftarrow \textit{G}$

where F and G are formulas.

Definition (Nested Logic Program)

A nested program is a finite set of rules.

Notation

head(r) = F and body(r) = G.

Definition (Satisfaction relation)

The satisfaction relation $X \models F$ between a set of atoms and a formula *F* is defined recursively as follows:

•
$$X \models F$$
 if $F \in X$ for an atom F ,

•
$$X \models \top$$
,

•
$$X \not\models \bot$$
,

•
$$X \models (F, G)$$
 if $X \models F$ and $X \models G$

•
$$X \models (F; G)$$
 if $X \models F$ or $X \models G$,

•
$$X \models not F$$
 if $X \not\models F$.

A set *X* of atoms satisfies a nested program Π , written $X \models \Pi$, iff for any $r \in \Pi$, $X \models head(r)$ whenever $X \models body(r)$.

Definition $(\min_{\subseteq}(\Pi))$

The set of all \subseteq -minimal sets of atoms satisfying program Π is denoted by $\min_{\subseteq}(\Pi)$.

Definition (Reduct of a Formula)

The reduct, F^X , of a formula *F* relative to a set *X* of atoms is defined recursively as follows:

• $F^X = F$ if *F* is an atom or \top or \bot ,

•
$$(F, G)^X = (F^X, G^X),$$

• $(F; G)^X = (F^X; G^X),$

•
$$(not \ F)^{X} = \begin{cases} \perp & \text{if } X \models F \\ \top & \text{otherwise} \end{cases}$$

Definition (Reduct of a Nested Logic Program)

The reduct, Π^X , of a nested program Π relative to a set X of atoms is defined by

$$\Pi^X = \{ head(r)^X \leftarrow body(r)^X \mid r \in \Pi \}.$$

Definition (Answer Set of a Nested Logic Program)

A set X of atoms is an answer set of a nested program Π iff $X \in \min_{\subset}(\Pi^X)$.

•
$$\Pi_1 = \{(p; not p) \leftarrow \top\}$$

• For $X = \emptyset$, we get
• $\Pi_1^{\emptyset} = \{(p; \top) \leftarrow \top\}$
• $\min_{\subseteq}(\Pi_1^{\emptyset}) = \{\emptyset\}$. \checkmark
• For $X = \{p\}$, we get
• $\Pi_1^{\{p\}} = \{(p; \bot) \leftarrow \top\}$
• $\min_{\subseteq}(\Pi_1^{\{p\}}) = \{\{p\}\}$. \checkmark
• $\Pi_2 = \{p \leftarrow not not p\}$
• For $X = \emptyset$, we get $\Pi_2^{\emptyset} = \{p \leftarrow \bot\}$ and $\min_{\subseteq}(\Pi_2^{\emptyset}) = \{\{\emptyset\}\}$. \checkmark
• For $X = \{p\}$, we get $\Pi_2^{\{p\}} = \{p \leftarrow \top\}$ and $\min_{\subseteq}(\Pi_2^{\{p\}}) = \{\{p\}\}$. \checkmark

In general (Intuitionistic Logics HT (Heyting, 1930) and G3 (Gödel, 1932))

- $F \leftarrow G$, not not H is equivalent to F; not $H \leftarrow G$
- F; not not $G \leftarrow H$ is equivalent to $F \leftarrow H$, not G
- not not not F is equivalent to not F

Normal logic programs

 $inPath(X, Y) \leftarrow arc(X, Y), not outPath(X, Y)$ $outPath(X, Y) \leftarrow arc(X, Y), not inPath(X, Y)$

Disjunctive logic programs

inPath(X, Y); $outPath(X, Y) \leftarrow arc(X, Y)$

Nested logic programs

inPath(X, Y); not $inPath(X, Y) \leftarrow arc(X, Y)$

Answer Set Programming

- Introduction
- Normal Logic Programs
- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

- 2 Extensions
 - Strong Negation
 - Choice Rules
 - Cardinality Constraints
 - Cardinality Rules
 - Weight Constraints (and more)
 - Aggregates
- 3 Bibliography

Definition (Formulas)

Formulas are formed from atoms and \perp using conjunction (\land), disjunction (\lor), and implication (\rightarrow).

Notation

$$op = (\bot \to \bot)$$

 $\sim F = (F \to \bot)$ (or: *not* F)

Definition (Propositional Theory)

A propositional theory is a finite set of formulas.

Definition (Satisfaction relation)

The satisfaction relation $X \models F$ between a set X of atoms and a (set of) formula(s) F is defined as in propositional logic.

Definition (Reduct of a formula)

The reduct, F^X , of a formula *F* relative to a set *X* of atoms is defined recursively as follows:

•
$$F^X = \bot$$
 if $X \not\models F$

•
$$F^X = F$$
 if $F \in X$

• $F^X = (G^X \circ H^X)$ if $X \models F$ and $F = (G \circ H)$ for $\circ \in \{\land, \lor, \rightarrow\}$

→ If
$$F = \sim G = (G \rightarrow \bot)$$
,
then $F^X = (\bot \rightarrow \bot) = \top$, if $X \not\models G$, and $F^X = \bot$, otherwise.

Definition (Reduct of a Propositional Theory)

The reduct, \mathcal{F}^X , of a propositional theory \mathcal{F} relative to a set X of atoms is defined as

$$\mathcal{F}^{X} = \{ F^{X} \mid F \in \mathcal{F} \}.$$

Definition (Satisfaction of a Propositional Theory)

A set *X* of atoms satisfies a propositional theory \mathcal{F} , written $X \models \mathcal{F}$, iff $X \models F$ for each $F \in \mathcal{F}$.

Definition $(\min_{\subseteq}(\mathcal{F}))$

The set of all \subseteq -minimal sets of atoms satisfying a propositional theory \mathcal{F} is denoted by $\min_{\subseteq}(\mathcal{F})$.

Definition (Answer Set of a Propositional Theory)

A set X of atoms is an answer set of a propositional theory \mathcal{F} if $X \in \min_{\subseteq}(\mathcal{F}^X)$.

Proposition

If X is an answer set of \mathcal{F} , then $X \models \mathcal{F}$.

• In general, this does not imply $X \in \min_{\subseteq}(\mathcal{F})$!

•
$$\mathcal{F}_1 = \{ p \lor (p \to (q \land r)) \}$$

• For $X = \{ p, q, r \}$, we get
 $\mathcal{F}_1^{\{p,q,r\}} = \{ p \lor (p \to (q \land r)) \}$ and $\min_{\subseteq} (\mathcal{F}_1^{\{p,q,r\}}) = \{ \emptyset \}$. **X**
• For $X = \emptyset$, we get
 $\mathcal{F}_1^{\emptyset} = \{ \bot \lor (\bot \to \bot) \}$ and $\min_{\subseteq} (\mathcal{F}_1^{\emptyset}) = \{ \emptyset \}$. **V**

•
$$\mathcal{F}_2 = \{ p \lor (\sim p \to (q \land r)) \}$$

• For $X = \emptyset$, we get
 $\mathcal{F}_2^{\emptyset} = \{ \bot \}$ and $\min_{\subseteq} (\mathcal{F}_2^{\emptyset}) = \emptyset$. **X**
• For $X = \{ p \}$, we get
 $\mathcal{F}_2^{\{p\}} = \{ p \lor (\bot \to \bot) \}$ and $\min_{\subseteq} (\mathcal{F}_2^{\{p\}}) = \{ \emptyset \}$. **X**
• For $X = \{ q, r \}$, we get
 $\mathcal{F}_2^{\{q,r\}} = \{ \bot \lor (\top \to (q \land r)) \}$ and $\min_{\subseteq} (\mathcal{F}_2^{\{q,r\}}) = \{ \{q, r\} \}$. \checkmark

Propositional Theories: Relationship with Logic Programs

Definition (Translation of a nested rule)

The translation, $\tau[(F \leftarrow G)]$, of a (nested) rule ($F \leftarrow G$) is defined recursively as follows:

•
$$\tau[(F \leftarrow G)] = (\tau[G] \rightarrow \tau[F]),$$

•
$$\tau[\perp] = \perp$$

•
$$\tau[\top] = \top$$
,

• $\tau[F] = F$ if F is an atom,

•
$$\tau$$
[not F] = $\sim \tau$ [F]

•
$$\tau[(F, G)] = (\tau[F] \land \tau[G]),$$

• $\tau[(F; G)] = (\tau[F] \lor \tau[G]).$

Definition (Translation of a nested logic program)

The translation of a logic program Π is $\tau[\Pi] = \{\tau[r] \mid r \in \Pi\}$.

Propositional Theories: Relationship with Logic Programs

Theorem (Embedding of nested logic programs)

Given a logic program Π and a set X of atoms, X is an answer set of Π iff X is an answer set of $\tau[\Pi]$.

Example

- The normal logic program Π = {p ← not q, q ← not p} corresponds to τ[Π] = {~q → p, ~p → q}.
 - Answer sets: {*p*} and {*q*}
- The disjunctive logic program Π = {p ; q ←} corresponds to τ[Π] = {⊤ → p ∨ q}.
 - Answer sets: {*p*} and {*q*}
- The nested logic program Π = {p ← not not p} corresponds to τ[Π] = {~~p → p}.
 - ➡ Answer sets: Ø and {p}

Answer Set Programming

- Introduction
- Normal Logic Programs
- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

2 Extensions

- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- 3 Bibliography

Computational Complexity

Let A be an atom and X be a set of atoms.

- For a positive normal logic program Π:
 - Deciding whether X is the answer set of Π is **P**-complete.
 - Deciding whether A is in the answer set of Π is **P**-complete.

For a normal logic program Π:

- Deciding whether X is an answer set of Π is **P**-complete.
- Deciding whether A is in an answer set of Π is NP-complete.

Computational Complexity

- For a positive disjunctive logic program Π:
 - Deciding whether X is an answer set of Π is **co-NP**-complete.
 - Deciding whether A is in an answer set of Π is **NP**^{NP}-complete.
- For a disjunctive logic program Π:
 - Deciding whether X is an answer set of Π is **co-NP**-complete.
 - Deciding whether A is in an answer set of Π is **NP**^{NP}-complete.
- For a nested logic program Π:
 - Deciding whether X is an answer set of Π is **co-NP**-complete.
 - Deciding whether A is in an answer set of Π is **NP**^{NP}-complete.
- For a propositional theory \mathcal{F} :
 - Deciding whether X is an answer set of \mathcal{F} is **co-NP**-complete.
 - Deciding whether A is in an answer set of \mathcal{F} is **NP**^{NP}-complete.