Matthias Knorr

Departamento de Informática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, Portugal mkn@fct.unl.pt

November 17, 2020

- Introduction
- Normal Logic Programs
- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

Extensions

- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- Bibliography

Introduction

- Normal Logic Programs
- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

Extensions

- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- 3 Bibliography

- In the 1950s, John McCarthy expressed the need to use logic-based languages for representing and reasoning about knowledge
- First attempts used classical logic of the predicate calculus (First-Order Logic)
 - well-defined semantics
 - well-understood inference mechanism
 - expressive power capable of representing mathematical knowledge
- However, common-sense reasoning is inherently non-monotonic, leading to the development of non-monotonic logics (late 1970s and 1980s)
 - circumscription
 - default logic
 - non-monotonic modal logics

- Also in the 1970s, others were investigating the idea of combining logic as a representation language with the theory of automated deduction.
- Kowalski and Colmerauer et al. defined and implemented the first PROLOG interpreter, based on a model-theoretic, fixpoint and operational semantics for the Horn-clause fragment.
- The beginning of the paradigm of Logic Programming
- Formal foundations of LP during late 1970s:
 - least model semantics (van Emden and Kowalski)
 - first PROLOG compiler (Warren)
 - program completion (Clark)
 - closed world assumption (Reiter) leading to negation-as-finite-failure in PROLOG

Logic Programming introduced Declarative Programming in Computer Science.

- Procedural Language: specify how
- Declarative Language: specify what

Algorithm = Logic + Control (Kowalski, 1979)

Features of Prolog (Colmerauer, Kowalski)

- Declarative (relational) programming language
- Based on SLD(NF) Resolution
- Top-down query evaluation
- Terms as data structures
- Parameter passing by unification
- Solutions are extracted from instantiations of variables occurring in the query

• Prolog is only almost declarative! To see this, consider:

above
$$(X, Y)$$
 :- on (X, Y) .
above (X, Y) :- on (X, Z) , above (Z, Y) .

and compare it to

above
$$(X, Y)$$
 :- above (Z, Y) , on (X, Z) .
above (X, Y) :- on (X, Y) .

An interpretation in classical logic amounts to

 $\forall xy(on(x, y) \lor \exists z(on(x, z) \land above(z, y)) \supset above(x, y))$

Some Historical Remarks

- Prolog offers negation as failure via operator not.
- But, for instance,

cannot be captured by

$$info(a) \land \forall x(\neg info(x) \supset ask(x))$$

• but by appeal to Clark's completion by

$$orall x(x = a \equiv info(x)) \land orall x(\neg info(x) \equiv ask(x)) \Leftrightarrow$$

 $\Leftrightarrow info(a) \land orall x(x \neq a \equiv ask(x))$

In LP one uses "if" but means "iff" [Clark78]

```
naturalN(0).
naturalN(s(Y)) :- naturalN(Y).
```

- This does not imply that -1 is not a natural number!
- With this program we mean:

 $naturalN(x) \Leftrightarrow \forall x(x = 0 \lor \exists y(x = s(y) \land naturalN(y)))$

- This is the idea of Clark's completion:
 - Syntactically transform if's into iff's
 - Use classical logic in the transformed theory to provide the semantics of the program

Definition (Program Completion)

The completion of *P* is the theory comp(P) obtained by:

- Replace $p(\vec{t}) \leftarrow \varphi$ by $p(\vec{x}) \leftarrow \vec{x} = \vec{t}, \varphi$
- Replace p(x) ← φ by p(x) ← ∃yφ, where y are the original variables of the rule
- Merge all rules with the same head into a single one $p(\vec{x}) \leftarrow \varphi_1 \lor \cdots \lor \varphi_n$
- For every $q(\vec{x})$ without rules, add $q(\vec{x}) \leftarrow \bot$
- Replace $p(\vec{x}) \leftarrow \varphi$ by $\forall \vec{x} (p(\vec{x}) \Leftrightarrow \varphi)$

Definition (Completion Semantics)

The completion semantics of *P* is given by the semantics of comp(P) where not is interpreted as classical negation.

- Though completion's definition is not that simple, the idea behind it is quite simple
- Also, it defines a non-classical semantics by means of classical inference on a transformed theory

M.Knorr (DI/FCT/UNL)

• By adopting completion, procedurally we have:

not is "negation as finite failure"

Definition (SLDNF Proof Procedure)

In SLDNF proceed as in SLD. To prove not A:

- If there is a finite derivation for A, fail not A
- If, after any finite number of steps, all derivations for *A* fail, remove not *A* from the resolvent (i.e. succeed not *A*)
- SLDNF can be efficiently implemented (cf. Prolog)

SLDNF example

Example

According to completion:

- $comp(P) \models \{not \ a, \ b, \ not \ c\}$
- $comp(P) \not\models p, \ comp(P) \not\models not p$
- $comp(P) \not\models q$, $comp(P) \not\models not q$

Some consistent programs may became inconsistent:

```
p \leftarrow not p \ becomes p \Leftrightarrow not p
```

Does not correctly deal with deductive closures

```
edge(a,b). edge(c,d). edge(d,c).
reachable(a).
reachable(B) \leftarrow edge(A,B), reachable(A).
```

- Completion does not conclude not *reachable*(*c*), due to the circularity caused by *edge*(*c*, *d*) and *edge*(*d*, *c*)
- Circularity is a procedural concept, not a declarative one

- Clark's completion has other problems:
- For example:

```
bird(tweety).
fly(X) :- bird(X),not abnormal(X).
abnormal(X) :- irregular(X).
irregular(X) :- abnormal(X).
```

...does not allow the conclusion that tweety flies.

- Or even more complex yet analogous situations.
- An explanation would be: "the rules for abnormal and irregular cause a loop".
 - But looping is a procedural concept, not a declarative one, and should be rejected when defining declarative semantics

- While the Logic Programming community was developing PROLOG into a full-fledged Programming Language...
- Some devoted their time to the development of appropriate semantics for logic programs with negation.
- The 1980s and early 1990s saw "the war of the semantics", mainly focusing on the meaning of programs like:
 - a :- not b. a :- not a. b :- not a.
- Great Schism: Single-model vs. multiple-model semantics

- Due to its declarative nature, LP has become a prime candidate for Knowledge Representation and Reasoning
- This has been more noticeable since its relations to other NMR formalisms were established
- For this usage of LP, a precise declarative semantics was in order.
- To date:
 - Well-Founded Semantics by van Gelder et al. (1991).
 - Stable Model Semantics by Gelfond & Lifschitz (1988,1991).

Introduction

Normal Logic Programs

- Modeling
- Disjunctive Logic Programs
- Nested Logic Programs
- Propositional Theories
- Computational Complexity

Extensions

- Strong Negation
- Choice Rules
- Cardinality Constraints
- Cardinality Rules
- Weight Constraints (and more)
- Aggregates
- 3 Bibliography

Definition (Rule)

A (normal) rule, r, is an ordered pair of the form

$$A_0 \leftarrow A_1, \ldots, A_m$$
, not A_{m+1}, \ldots , not A_n

where $n \ge m \ge 0$, and each A_i ($0 \le i \le n$) is an atom.

Definition (Logic Program)

A (normal) logic program is a finite set of rules.

Notation

Definition (Positive Logic Program)

A program is called positive if $body^{-}(r) = \emptyset$ for all its rules.

Notation

We often use the following notation interchangeably in order to stress the respective view:

				negation	classical
	if	and	or	as failure	negation
source code	:-	,		not	_
logic program	$ $ \leftarrow	,	;	not/ \sim	_
formula	\rightarrow	\wedge	\vee		_

Definition (Closure)

A set of atoms X is closed under a positive program Π iff for any $r \in \Pi$, head $(r) \in X$ whenever $body^+(r) \subseteq X$.

• X corresponds to a model of Π (seen as a formula).

Definition $(Cn(\Pi))$

The least (smallest) set of atoms which is closed under a positive program Π is denoted by $Cn(\Pi)$.

• $Cn(\Pi)$ corresponds to the \subseteq -least model of Π (seen as a formula).

Definition (Answer Set of a Positive Logic Program)

The set $Cn(\Pi)$ of atoms is the answer set of a *positive* program Π .

Positive rules are also referred to as definite clauses.

• Definite clauses are disjunctions with exactly one positive atom:

$$A_0 \lor \neg A_1 \lor \cdots \lor \neg A_m$$

- A set of definite clauses has a (unique) smallest model.
- Horn clauses are clauses with at most one positive atom.
 - Every definite clause is a Horn clause but not vice versa.
 - A set of Horn clauses has a smallest model or none.
- This smallest model is the intended semantics of a set of Horn clauses.
 - Given a positive program Π , $Cn(\Pi)$ corresponds to the smallest model of the set of definite clauses corresponding to Π .

Answer sets versus (minimal) models

- Program $\{a \leftarrow not b\}$ has answer set $\{a\}$.
- Clause $a \lor b$ (being equivalent to $a \leftarrow \neg b$)
 - has models $\{a\}$, $\{b\}$, and $\{a, b\}$,
 - among which $\{a\}$ and $\{b\}$ are minimal.

The negation-as-failure operator not makes a difference!

Informally, a set of atoms X is an answer set of a logic program Π

- if X is a (classical) model of Π and
- if all atoms in X are justified by some rule in Π
 - rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Example

Consider the logical formula Φ and its three (classical) models:

 $\{p, q\}, \{q, r\}, \text{ and } \{p, q, r\}.$

This formula has one answer set:

{**p**, **q**}

$$\Phi \quad q \land (q \land \neg r \to p)$$

$$\begin{array}{rcl}
 q & \leftarrow \\
 p & \leftarrow & q, \text{ not } r
\end{array}$$

For instance, interpreting

$$\left\{ egin{array}{ccc} b & \leftarrow \ a & \leftarrow & b, \ \textit{not} \ c \end{array}
ight\}$$
 as $b \wedge (b \wedge \neg c
ightarrow a)$, that is, $b \wedge (a \lor c)$,

we obtain

- 3 models: {*a*, *b*}, {*b*, *c*}, and {*a*, *b*, *c*},
- 2 minimal models: $\{a, b\}$ and $\{b, c\}$, and
- 1 stable model: $\{a, b\} \checkmark \iff answer set$

Informally, a set of atoms X is an answer set of a logic program Π

- if X is a minimal (classical) model of Π^{1} and
- if all atoms in X are *justified* by some rule in Π .

¹That is, interpreting ' \leftarrow ', ',', and '*not*' as in classical logic.

Definition (GL-Reduct (Gelfond and Lifschitz 1988))

The reduct, Π^X , of a program Π relative to a set of atoms X is given by

 $\Pi^{X} = \{head(r) \leftarrow body^{+}(r) \mid r \in \Pi \text{ and } body^{-}(r) \cap X = \emptyset\}.$

Intuitively, given a set of atoms X from Π , Π^X is obtained from Π by:

- **(**) deleting each rule having a *not* A in its body with $A \in X$, and then
- eleting all negative atoms of the form *not A* in the bodies of the remaining rules.

Definition (Answer Set of a Normal Logic Program)

A set X of atoms is an answer set of a program Π iff $Cn(\Pi^X) = X$.

Intuition: *X* is stable under "applying rules from Π " Note: Every atom in *X* is justified by an "applicable rule from Π "

Normal Logic Programs: Examples

Example (First Example)

$$\Box = \{ p \leftarrow p \qquad q \leftarrow not \ p \}$$

Х	П ^{<i>X</i>}	$Cn(\Pi^X)$	
Ø	$p \leftarrow p$	{ q }	×
	$q \leftarrow$		
{ p }	$oldsymbol{p} \leftarrow oldsymbol{p}$	Ø	×
{ q }	$egin{array}{c} p ightarrow p \ q ightarrow p \ red \phi \end{array}$	{ q }	~
{ p , q }	$oldsymbol{p} o oldsymbol{p}$	Ø	×

Normal Logic Programs: Examples

Example (Even Loop)

$$\exists = \{ p \leftarrow not \ q \qquad q \leftarrow not \ p \}$$

Х	Π^X	$Cn(\Pi^X)$	
Ø	$p \leftarrow$	{ p , q }	×
	$q \leftarrow$		
{ p }	$p \leftarrow$	{ p }	~
{ q }	$q \leftarrow$	{ q }	~
{ <i>p</i> , <i>q</i> }		Ø	×

Example (Odd Loop)

$$\Pi = \{ p \leftarrow \textit{not } p \}$$

Х	П ^{<i>X</i>}	$Cn(\Pi^X)$	
Ø	$p \leftarrow$	{ p }	X
{ p }		Ø	X

Property

If X is an answer set of a logic program Π , then X is a model of Π (seen as a formula).

Property (Minimality)

Every answer set X of Π is a minimal model of Π (wrt. \subseteq).

Property (Supportedness)

If X is an answer set of a logic program Π , and $p \in X$, then $\exists r \in \Pi$ such that head(r) = p and $body^{-}(r) \cap X = \emptyset$ and $body^{+}(r) \subseteq X$.

Definition (Modified-Reduct (Faber et al. 2004))

The modified reduct, Π_X , of a program Π relative to a set of atoms X is given by

$$\Pi_X = \{r \in \Pi \mid body^+(r) \subseteq X \text{ and } body^-(r) \cap X = \emptyset\}.$$

Intuitively, given a set of atoms X from Π , Π _X (dubbed the set of generating rules of X wrt. Π) is obtained from Π by:

• deleting each rule having a body literal that is false w.r.t. X.

Definition (Answer Set of a Normal Logic Program - Alternative)

A set X of atoms is an answer set of a program Π iff $X \in \min_{\subseteq}(\Pi_X)$, where $\min_{\subseteq}(\Pi)$ is the set of minimal models of a program Π (wrt. \subseteq).

Theorem (Soundness and completeness of the Alternative Definition)

$$X \in \min_{\subseteq}(\Pi_X)$$
 iff $Cn(\Pi^X) = X$

Example (Even Loop)

$$\Pi = \{ p \leftarrow not \ q \qquad q \leftarrow not \ p \}$$

Х	Π_X	$\min_{\subseteq}(\Pi_X)$	
Ø	$p \leftarrow not q$	$\{p\}, \{q\}$	×
	$q \leftarrow not p$		
{ p }	$p \leftarrow not q$	{ p }, { q }	~
{ q }	a ← not p	{ p }, { q }	~
{ p , q }		Ø	×

Definition (Immediate Consequence Operator)

Let Π be a positive program and X a set of atoms. The immediate consequence operator T_{Π} is defined as follows:

$$\mathcal{T}_{\Pi}((X)) = \{ head(r) \mid r \in \Pi \text{ and } body(r) \subseteq X \}$$

Let $T_{\Pi}^{0}(X) = X$ and $T_{\Pi}^{i}(X) = T_{\Pi}\left(T_{\Pi}^{i-1}(X)\right)$. Further let $T_{\Pi} \uparrow^{\omega} = \bigcup_{i=0}^{\infty} T_{\Pi}^{i}(\emptyset)$.

Theorem

Let Π be a positive program. Then:

- $Cn(\Pi) = T_{\Pi} \uparrow^{\omega}$.
- $X \subseteq Y$ implies $T_{\Pi}(X) \subseteq T_{\Pi}(Y)$.
- $Cn(\Pi)$ is the least fixpoint of T_{Π} .

Example

$\Pi = \{p$	\rightarrow	$oldsymbol{q} \leftarrow$	$r \leftarrow p$	$\boldsymbol{s} \leftarrow \boldsymbol{q}, \boldsymbol{t}$		$t \leftarrow r$	$u \leftarrow v\}$
$T_{\Pi}^{0}(\emptyset)$	=	Ø					
$T_{\Pi}^{1}(\emptyset)$	=	$\{p,q\}$	=	$T_{\Pi}\left(T_{\Pi}^{0}\left(\emptyset ight) ight)$	=	$T_{\Pi}(\emptyset)$	
$T_{\Pi}^{2}(\emptyset)$	=	{ <i>p</i> , <i>q</i> , <i>r</i> }	=	$T_{\Pi} \left(T_{\Pi}^{1} \left(\emptyset \right) \right)$	=	$T_{\Pi}(\{p, a\})$	7 })
$T_{\Pi}^{3}(\emptyset)$	=	$\{p, q, r, t\}$	=	$T_{\Pi} \left(T_{\Pi}^2 \left(\emptyset \right) \right)$	=	$T_{\Pi}(\{p, o\})$	q , r })
$T_{\Pi}^{4}(\emptyset)$	=	{ <i>p</i> , <i>q</i> , <i>r</i> , <i>t</i> , <i>s</i> }	=	$T_{\Pi} \left(T_{\Pi}^{3} \left(\emptyset \right) \right)$	=	$T_{\Pi}(\{p, o\})$	q, r, t
$T_{\Pi}^{5}(\emptyset)$	=	{ <i>p</i> , <i>q</i> , <i>r</i> , <i>t</i> , <i>s</i> }	=	$T_{\Pi} \left(T_{\Pi}^{4} \left(\emptyset \right) \right)$	=	$T_{\Pi}(\{p, o\})$	q, r, t, s})
$T_{\Pi}^{6}(\emptyset)$	=	{ <i>p</i> , <i>q</i> , <i>r</i> , <i>t</i> , <i>s</i> }	=	$T_{\Pi}\left(T_{\Pi}^{5}(\emptyset)\right)$	=	$T_{\Pi}(\{p, a\})$	q, r, t, s})

To see that $Cn(\Pi) = \{p, q, r, t, s\}$ is the smallest fixpoint of T_{Π} , note that $T_{\Pi}(\{p, q, r, t, s\}) = \{p, q, r, t, s\}$ and $T_{\Pi}(X) \neq X$ for every $X \subset \{p, q, r, t, s\}$.

Definition (Alphabet)

Let Π be a logic program.

- Herbrand Universe U^{Π} : Set of constants in Π .
- Herbrand Base B^Π: Set of (variable-free) atoms constructible from U^Π.
 We usually denote B^Π as A and call it Alphabet

Definition (Grounding of a rule)

Let Π be a logic program (with variables). The ground instantiation of a rule $r \in \Pi$ is the set of variable-free rules obtained by replacing all variables in r by elements from U^{Π} :

$$ground(r) = \{r\theta \mid \theta : var(r) \rightarrow U^{\Pi}\}$$

where var(r) stands for the set of all variables occurring in r and θ is a (ground) substitution.

Definition (Grounding of a Program)

Let Π be a logic program (with variables). The Ground Instantiation of a program Π is the set of all ground instantiations of its rules

$$ground(\Pi) = \bigcup_{r \in \Pi} ground(r)$$

Definition (Answer Set a Logic Program with Variables)

Let Π be a normal logic program with variables. A set of ground atoms X (i.e. $X \subseteq B^{\Pi}$) is an answer set of Π iff X is an answer set of ground(Π), i.e. iff

 $Cn(ground(\Pi)^X) = X$

Example

Consider the program:

 $\Pi = \{ r(a,b) \leftarrow r(b,c) \leftarrow t(X,Y) \leftarrow r(X,Y) \}$

We have:

$$U^{\Pi} = \{a, b, c\}$$

$$B^{\Pi} = \begin{cases} r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\ t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c) \end{cases}$$

$$ground(\Pi) = \begin{cases} r(a, b) \leftarrow \\ r(b, c) \leftarrow \\ t(a, a) \leftarrow r(a, a) t(b, a) \leftarrow r(b, a) t(c, a) \leftarrow r(c, a) \\ t(a, b) \leftarrow r(a, b) t(b, b) \leftarrow r(b, b) t(c, b) \leftarrow r(c, b) \\ t(a, c) \leftarrow r(a, c) t(b, c) \leftarrow r(b, c) t(c, c) \leftarrow r(c, c) \end{cases}$$

Example

Consider the program:

$$\Pi = \{ r(a,b) \leftarrow r(b,c) \leftarrow t(X,Y) \leftarrow r(X,Y) \}$$

We have:

$$U^{\Pi} = \{a, b, c\}$$

$$B^{\Pi} = \begin{cases} r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\ t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c) \end{cases}$$

$$ground(\Pi) = \left\{ egin{array}{ccc} r(a,b)\leftarrow & \ r(b,c)\leftarrow & \ t(a,b)\leftarrow & \ t(b,c)\leftarrow & \ t(b,c)\leftarrow & \end{array}
ight\}$$

Intelligent grounding!

- A normal rule is safe, if each of its variables also occurs in some positive body literal
- A normal program is safe, if all of its rules are safe

Safe ? d(a)1 d(c)1 d(d)1 p(a, b)1 p(b,c)1 p(c,d)1 $p(X,Z) \leftarrow p(X,Y), p(Y,Z)$ 1 q(a)1 q(b)1 $q(X) \leftarrow not r(X), d(X)$ 1 $r(X) \leftarrow not q(X), d(X)$ ~ $s(X) \leftarrow not r(X), p(X, Y), q(Y)$ 1

Programs with Integrity Constraints: Syntax

Integrity constraints eliminate unwanted candidate solutions

Definition (Integrity Constraint)

An integrity constraint is a (special kind of) rule of the form

 $\leftarrow A_1, \dots, A_m, not \ A_{m+1}, \dots, not \ A_n$

where $n \ge m \ge 1$, and each A_i $(1 \le i \le n)$ is an atom.

Example

The integrity constraint

 \leftarrow painted(X, C), painted(Y, C), adjacent(X, Y)

intuitively, would prevent the existence of answer sets in which two adjacent nodes (X and Y) are painted with the same colour (C).

Programs with Integrity Constraints: Semantics

Definition (Semantics of Integrity Constraints)

An integrity constraint of the form

$$\leftarrow A_1, \ldots, A_m, not \ A_{m+1}, \ldots, not \ A_n$$

is mapped to the rule (where x is a new atom not appearing anywhere else in the program)

$$x \leftarrow A_1, \ldots, A_m$$
, not A_{m+1}, \ldots , not A_n , not x

Example

Compare the answer sets of the following logic programs:

$$\Pi = \{ p \leftarrow not q \qquad q \leftarrow not p \}$$

$$\Pi' = \{ p \leftarrow not q \qquad q \leftarrow not p \qquad \leftarrow p \}$$

$$\Pi'' = \{ p \leftarrow not q \qquad q \leftarrow not p \qquad \leftarrow not p \}$$

Standard Computation Scheme

Global parameters: Logic program Π and its set of atoms A.

Definition (*answerset* $_{\Pi}(T, F)$)

- $(T, F) \leftarrow propagation_{\Pi}(T, F)$
- **2** if $(T \cap F) \neq \emptyset$ then fail
- **3** if $(T \cup F) = A$ then return(X)
- select $A \in \mathcal{A} \setminus (T \cup F)$
- 5 answerset_{Π}($T \cup \{A\}, F$) answerset_{Π}($T, F \cup \{A\}$)

Comments:

- (T, F) is supposed to be a 3-valued model such that T ⊆ X and F ∩ X = Ø for an answer set X of Π.
- Key operations: *propagation*_{Π}(*T*, *F*) and 'select $A \in A \setminus (T \cup F)$ '
- Worst case complexity: O(2^{|A|})