
Answer Set Programming

Matthias Knorr

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, Portugal
mkn@fct.unl.pt

November 17, 2020

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 1 / 136

mkn@fct.unl.pt

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 2 / 136

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 3 / 136

Some Historical Remarks

In the 1950s, John McCarthy expressed the need to use logic-based
languages for representing and reasoning about knowledge
First attempts used classical logic of the predicate calculus (First-Order
Logic)

well-defined semantics
well-understood inference mechanism
expressive power capable of representing mathematical knowledge

However, common-sense reasoning is inherently non-monotonic, leading
to the development of non-monotonic logics (late 1970s and 1980s)

circumscription
default logic
non-monotonic modal logics

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 4 / 136

Some Historical Remarks

Also in the 1970s, others were investigating the idea of combining logic
as a representation language with the theory of automated deduction.
Kowalski and Colmerauer et al. defined and implemented the first
PROLOG interpreter, based on a model-theoretic, fixpoint and
operational semantics for the Horn-clause fragment.
The beginning of the paradigm of Logic Programming
Formal foundations of LP during late 1970s:

least model semantics (van Emden and Kowalski)
first PROLOG compiler (Warren)
program completion (Clark)
closed world assumption (Reiter) - leading to negation-as-finite-failure in
PROLOG

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 5 / 136

Some Historical Remarks

Logic Programming introduced Declarative Programming in Computer
Science.

Procedural Language: specify how
Declarative Language: specify what

Algorithm = Logic + Control (Kowalski, 1979)

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 6 / 136

Some Historical Remarks

Features of Prolog (Colmerauer, Kowalski)
Declarative (relational) programming language
Based on SLD(NF) Resolution
Top-down query evaluation
Terms as data structures
Parameter passing by unification
Solutions are extracted from instantiations of variables occurring in the
query

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 7 / 136

Some Historical Remarks

Prolog is only almost declarative! To see this, consider:

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z),above(Z,Y).

and compare it to

above(X,Y) :- above(Z,Y),on(X,Z).

above(X,Y) :- on(X,Y).

An interpretation in classical logic amounts to

8xy(on(x , y) _ 9z(on(x , z) ^ above(z, y)) � above(x , y))

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 8 / 136

Some Historical Remarks

Prolog offers negation as failure via operator not.
But, for instance,

info(a).

ask(X) :- not info(X).

cannot be captured by

info(a) ^ 8x(¬info(x) � ask(x))

but by appeal to Clark’s completion by

8x(x = a ⌘info(x)) ^ 8x(¬info(x) ⌘ ask(x)),
,info(a) ^ 8x(x 6= a ⌘ ask(x))

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 9 / 136

The idea of completion

In LP one uses “if" but means “iff" [Clark78]

naturalN(0).

naturalN(s(Y)) :- naturalN(Y).

This does not imply that -1 is not a natural number!
With this program we mean:

naturalN(x), 8x(x = 0 _ 9y(x = s(y) ^ naturalN(y)))

This is the idea of Clark’s completion:
Syntactically transform if’s into iff’s
Use classical logic in the transformed theory to provide the semantics of the
program

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 10 / 136

Completion Semantics

Definition (Program Completion)
The completion of P is the theory comp(P) obtained by:

Replace p(~t) ' by p(~x) ~x =~t ,'
Replace p(~x) ' by p(~x) 9~y', where ~y are the original variables of
the rule
Merge all rules with the same head into a single one p(~x) '1 _ · · · _ 'n

For every q(~x) without rules, add q(~x) ?
Replace p(~x) ' by 8~x(p(~x), ')

Definition (Completion Semantics)
The completion semantics of P is given by the semantics of comp(P) where
not is interpreted as classical negation.

Though completion’s definition is not that simple, the idea behind it is
quite simple
Also, it defines a non-classical semantics by means of classical inference
on a transformed theory

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 11 / 136

SLDNF proof procedure

By adopting completion, procedurally we have:
not is “negation as finite failure"

Definition (SLDNF Proof Procedure)
In SLDNF proceed as in SLD. To prove not A:

If there is a finite derivation for A, fail not A
If, after any finite number of steps, all derivations for A fail, remove not A
from the resolvent (i.e. succeed not A)

SLDNF can be efficiently implemented (cf. Prolog)

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 12 / 136

SLDNF example

Example

According to completion:
comp(P) |= {not a, b, not c}
comp(P) 6|= p, comp(P) 6|= not p
comp(P) 6|= q, comp(P) 6|= not q

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 13 / 136

Problems with completion

Some consistent programs may became inconsistent:

p not p becomes p, not p

Does not correctly deal with deductive closures

edge(a,b). edge(c,d). edge(d,c).

reachable(a).

reachable(B) edge(A,B), reachable(A).

Completion does not conclude not reachable(c), due to the circularity
caused by edge(c, d) and edge(d , c)
Circularity is a procedural concept, not a declarative one

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 14 / 136

Some Historical Remarks

Clark’s completion has other problems:
For example:

bird(tweety).

fly(X) :- bird(X),not abnormal(X).

abnormal(X) :- irregular(X).

irregular(X) :- abnormal(X).

...does not allow the conclusion that tweety flies.
Or even more complex yet analogous situations.
An explanation would be: “the rules for abnormal and irregular cause a
loop".

But looping is a procedural concept, not a declarative one, and should be
rejected when defining declarative semantics

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 15 / 136

Some Historical Remarks

While the Logic Programming community was developing PROLOG into
a full-fledged Programming Language...
Some devoted their time to the development of appropriate semantics for
logic programs with negation.
The 1980s and early 1990s saw “the war of the semantics", mainly
focusing on the meaning of programs like:

a :- not b. a :- not a.

b :- not a.

Great Schism: Single-model vs. multiple-model semantics

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 16 / 136

LP for Knowledge Representation

Due to its declarative nature, LP has become a prime candidate for
Knowledge Representation and Reasoning
This has been more noticeable since its relations to other NMR
formalisms were established
For this usage of LP, a precise declarative semantics was in order.
To date:

Well-Founded Semantics by van Gelder et al. (1991).
Stable Model Semantics by Gelfond & Lifschitz (1988,1991).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 17 / 136

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 18 / 136

Problem solving in ASP

Problem

Logic Program

Solution(s)

Answer set(s)
?

-

6

Modeling Interpretation

Computation

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 19 / 136

Normal Logic Programs: Syntax

Definition (Rule)
A (normal) rule, r , is an ordered pair of the form

A0 A1, . . . ,Am, not Am+1, . . . , not An

where n � m � 0, and each Ai (0 i n) is an atom.

Definition (Logic Program)
A (normal) logic program is a finite set of rules.

Notation

head(r) = A0
body(r) = {A1, . . . ,Am, not Am+1, . . . , not An}

body+(r) = {A1, . . . ,Am}
body�(r) = {Am+1, . . . ,An}

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 20 / 136

Normal Logic Programs: Syntax

Definition (Positive Logic Program)

A program is called positive if body�(r) = ; for all its rules.

Notation
We often use the following notation interchangeably in order to stress the
respective view:

negation classical
if and or as failure negation

source code :- , | not -
logic program , ; not /⇠ ¬
formula ! ^ _ ¬

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 21 / 136

Problem solving in ASP: Semantics

Problem

Logic Program

Solution(s)

Answer set(s)
?

-

6

Modeling Interpretation

Computation

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 22 / 136

Positive Logic Programs: Semantics

Definition (Closure)
A set of atoms X is closed under a positive program ⇧ iff for any r 2 ⇧,
head(r) 2 X whenever body+(r) ✓ X .

X corresponds to a model of ⇧ (seen as a formula).

Definition (Cn(⇧))

The least (smallest) set of atoms which is closed under a positive program ⇧
is denoted by Cn(⇧).

Cn(⇧) corresponds to the ✓-least model of ⇧ (seen as a formula).

Definition (Answer Set of a Positive Logic Program)
The set Cn(⇧) of atoms is the answer set of a positive program ⇧.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 23 / 136

Some “logical” remarks

Positive rules are also referred to as definite clauses.
Definite clauses are disjunctions with exactly one positive atom:

A0 _ ¬A1 _ · · · _ ¬Am

A set of definite clauses has a (unique) smallest model.
Horn clauses are clauses with at most one positive atom.

Every definite clause is a Horn clause but not vice versa.
A set of Horn clauses has a smallest model or none.

This smallest model is the intended semantics of a set of Horn clauses.
+ Given a positive program ⇧, Cn(⇧) corresponds to the smallest model of the

set of definite clauses corresponding to ⇧.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 24 / 136

Another “logical” remark

Answer sets versus (minimal) models
Program {a not b} has answer set {a}.
Clause a _ b (being equivalent to a ¬b)

has models {a}, {b}, and {a, b},
among which {a} and {b} are minimal.

+ The negation-as-failure operator not makes a difference!

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 25 / 136

Normal Logic Programs: Semantics

Informally, a set of atoms X is an answer set of a logic program ⇧

if X is a (classical) model of ⇧ and
if all atoms in X are justified by some rule in ⇧

rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Example
Consider the logical formula � and its three
(classical) models:

{p, q}, {q, r}, and {p, q, r}.

� q ^ (q ^ ¬r ! p)

This formula has one answer set:

{p, q}
⇧ q

p q, not r

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 26 / 136

Answer set: Basic idea

For instance, interpreting
⇢

b
a b, not c

�
as b ^ (b ^ ¬c ! a), that is, b ^ (a _ c) ,

we obtain
3 models: {a, b}, {b, c}, and {a, b, c},
2 minimal models: {a, b} and {b, c}, and
1 stable model: {a, b} 4 () answer set

Informally, a set of atoms X is an answer set of a logic program ⇧

if X is a minimal (classical) model of ⇧ 1 and
if all atoms in X are justified by some rule in ⇧.

1That is, interpreting ‘ ’, ‘,’, and ‘not ’ as in classical logic.
M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 27 / 136

Normal Logic Programs: Semantics

Definition (GL-Reduct (Gelfond and Lifschitz 1988))

The reduct, ⇧X , of a program ⇧ relative to a set of atoms X is given by

⇧X = {head(r) body+(r) | r 2 ⇧ and body�(r) \ X = ;}.

Intuitively, given a set of atoms X from ⇧, ⇧X is obtained from ⇧ by:
1 deleting each rule having a not A in its body with A 2 X , and then
2 deleting all negative atoms of the form not A in the bodies of the

remaining rules.

Definition (Answer Set of a Normal Logic Program)

A set X of atoms is an answer set of a program ⇧ iff Cn(⇧X) = X .

Intuition: X is stable under “applying rules from ⇧”
Note: Every atom in X is justified by an “applicable rule from ⇧”

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 28 / 136

Normal Logic Programs: Examples

Example (First Example)
Consider the program

⇧ = {p p q not p}

X ⇧X Cn(⇧X)
; p p {q} 8

q
{p} p p ; 8

{q} p p {q} 4
q

{p, q} p p ; 8

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 29 / 136

Normal Logic Programs: Examples

Example (Even Loop)
Consider the program

⇧ = {p not q q not p}

X ⇧X Cn(⇧X)
; p {p, q} 8

q
{p} p {p} 4

{q} {q} 4
q

{p, q} ; 8

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 30 / 136

Normal Logic Programs: Examples

Example (Odd Loop)
Consider the program

⇧ = {p not p}

X ⇧X Cn(⇧X)
; p {p} 8

{p} ; 8

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 31 / 136

Answer Sets: Properties

Property
If X is an answer set of a logic program ⇧, then X is a model of ⇧ (seen as a
formula).

Property (Minimality)
Every answer set X of ⇧ is a minimal model of ⇧ (wrt. ✓).

Property (Supportedness)
If X is an answer set of a logic program ⇧, and p 2 X, then 9r 2 ⇧ such that
head(r) = p and body�(r) \ X = ; and body+(r) ✓ X.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 32 / 136

Answer Sets: Alternative Definition

Definition (Modified-Reduct (Faber et al. 2004))
The modified reduct, ⇧X , of a program ⇧ relative to a set of atoms X is given
by

⇧X = {r 2 ⇧ | body+(r) ✓ X and body�(r) \ X = ;}.

Intuitively, given a set of atoms X from ⇧, ⇧X (dubbed the set of generating
rules of X wrt. ⇧) is obtained from ⇧ by:

1 deleting each rule having a body literal that is false w.r.t. X .

Definition (Answer Set of a Normal Logic Program - Alternative)
A set X of atoms is an answer set of a program ⇧ iff X 2 min✓(⇧X), where
min✓(⇧) is the set of minimal models of a program ⇧ (wrt. ✓).

Theorem (Soundness and completeness of the Alternative Definition)

X 2 min✓(⇧X) iff Cn(⇧X) = X

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 33 / 136

Example: Even Loop Revisited

Example (Even Loop)
Consider the program

⇧ = {p not q q not p}

X ⇧X min✓(⇧X)
; p not q {p}, {q} 8

q not p
{p} p not q {p}, {q} 4

{q} {p}, {q} 4
q not p

{p, q} ; 8

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 34 / 136

A closer look at Cn

Definition (Immediate Consequence Operator)
Let ⇧ be a positive program and X a set of atoms. The immediate
consequence operator T⇧ is defined as follows:

T⇧((X)) = {head(r) | r 2 ⇧ and body(r) ✓ X}

Let T 0
⇧ (X) = X and T i

⇧ (X) = T⇧

⇣
T i�1
⇧ (X)

⌘
.

Further let T⇧ "!=
S1

i=0 T i
⇧ (;).

Theorem
Let ⇧ be a positive program. Then:

Cn(⇧) = T⇧ "!.
X ✓ Y implies T⇧ (X) ✓ T⇧ (Y).
Cn(⇧) is the least fixpoint of T⇧.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 35 / 136

Immediate Consequence Operator: Example

Example

⇧ = {p q r p s q, t t r u v}

T 0
⇧ (;) = ;

T 1
⇧ (;) = {p, q} = T⇧

�
T 0
⇧ (;)

�
= T⇧ (;)

T 2
⇧ (;) = {p, q, r} = T⇧

�
T 1
⇧ (;)

�
= T⇧ ({p, q})

T 3
⇧ (;) = {p, q, r , t} = T⇧

�
T 2
⇧ (;)

�
= T⇧ ({p, q, r})

T 4
⇧ (;) = {p, q, r , t , s} = T⇧

�
T 3
⇧ (;)

�
= T⇧ ({p, q, r , t})

T 5
⇧ (;) = {p, q, r , t , s} = T⇧

�
T 4
⇧ (;)

�
= T⇧ ({p, q, r , t , s})

T 6
⇧ (;) = {p, q, r , t , s} = T⇧

�
T 5
⇧ (;)

�
= T⇧ ({p, q, r , t , s})

To see that Cn(⇧) = {p, q, r , t , s} is the smallest fixpoint of T⇧, note that
T⇧({p, q, r , t , s}) = {p, q, r , t , s} and T⇧(X) 6= X for every X ⇢ {p, q, r , t , s}.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 36 / 136

Logic Programs with Variables

Definition (Alphabet)
Let ⇧ be a logic program.

Herbrand Universe U⇧: Set of constants in ⇧.
Herbrand Base B⇧: Set of (variable-free) atoms constructible from U⇧.
We usually denote B⇧ as A and call it Alphabet

Definition (Grounding of a rule)
Let ⇧ be a logic program (with variables). The ground instantiation of a rule
r 2 ⇧ is the set of variable-free rules obtained by replacing all variables in r by
elements from U⇧:

ground(r) = {r✓ | ✓ : var(r)! U⇧}

where var(r) stands for the set of all variables occurring in r and ✓ is a
(ground) substitution.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 37 / 136

Logic Programs with Variables

Definition (Grounding of a Program)
Let ⇧ be a logic program (with variables). The Ground Instantiation of a
program ⇧ is the set of all ground instantiations of its rules

ground(⇧) =
[

r2⇧

ground(r)

Definition (Answer Set a Logic Program with Variables)
Let ⇧ be a normal logic program with variables. A set of ground atoms X (i.e.
X ✓ B⇧) is an answer set of ⇧ iff X is an answer set of ground(⇧), i.e. iff

Cn(ground(⇧)X) = X

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 38 / 136

Logic Programs with Variables: Example

Example
Consider the program:

⇧ = { r(a, b) r(b, c) t(X ,Y) r(X ,Y)}

We have:

U⇧ = {a, b, c}

B⇧ =

⇢
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)

�

ground(⇧) =

8
>>>><

>>>>:

r(a, b)
r(b, c)
t(a, a) r(a, a) t(b, a) r(b, a) t(c, a) r(c, a)
t(a, b) r(a, b) t(b, b) r(b, b) t(c, b) r(c, b)
t(a, c) r(a, c) t(b, c) r(b, c) t(c, c) r(c, c)

9
>>>>=

>>>>;

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 39 / 136

Logic Programs with Variables: Example

Example
Consider the program:

⇧ = { r(a, b) r(b, c) t(X ,Y) r(X ,Y)}

We have:

U⇧ = {a, b, c}

B⇧ =

⇢
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)

�

ground(⇧) =

8
>>>><

>>>>:

r(a, b)
r(b, c)

t(a, b)
t(b, c)

9
>>>>=

>>>>;

Intelligent grounding!

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 40 / 136

Safety

A normal rule is safe, if each of its variables also occurs in some positive
body literal
A normal program is safe, if all of its rules are safe

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 41 / 136

Example

Safe ?
d(a) 4
d(c) 4
d(d) 4

p(a, b) 4
p(b, c) 4
p(c, d) 4
p(X ,Z) p(X ,Y), p(Y ,Z) 4

q(a) 4
q(b) 4
q(X) not r(X), d(X) 4

r(X) not q(X), d(X) 4
s(X) not r(X), p(X ,Y), q(Y) 4

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 42 / 136

Programs with Integrity Constraints: Syntax

Integrity constraints eliminate unwanted candidate solutions

Definition (Integrity Constraint)
An integrity constraint is a (special kind of) rule of the form

 A1, . . . ,Am, not Am+1, . . . , not An

where n � m � 1, and each Ai (1 i n) is an atom.

Example
The integrity constraint

 painted(X ,C), painted(Y ,C), adjacent(X ,Y)

intuitively, would prevent the existence of answer sets in which two adjacent
nodes (X and Y) are painted with the same colour (C).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 43 / 136

Programs with Integrity Constraints: Semantics

Definition (Semantics of Integrity Constraints)
An integrity constraint of the form

 A1, . . . ,Am, not Am+1, . . . , not An

is mapped to the rule (where x is a new atom not appearing anywhere else in
the program)

x A1, . . . ,Am, not Am+1, . . . , not An, not x

Example
Compare the answer sets of the following logic programs:

⇧ = { p not q q not p}
⇧0 = { p not q q not p p}
⇧00 = { p not q q not p not p}

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 44 / 136

Problem solving in ASP: Computation

Problem

Logic Program

Solution(s)

Answer set(s)
?

-

6

Modeling Interpretation

Computation

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 45 / 136

Standard Computation Scheme

Global parameters: Logic program ⇧ and its set of atoms A.

Definition (answerset⇧(T ,F))
1 (T ,F) propagation⇧(T ,F)
2 if (T \ F) 6= ; then fail
3 if (T [F) = A then return(X)
4 select A 2 A \ (T [F)
5 answerset⇧(T [{A},F)
6 answerset⇧(T ,F [{A})

Comments:

(T ,F) is supposed to be a 3-valued model such that T ✓ X and F \ X = ; for an
answer set X of ⇧.
Key operations: propagation⇧(T ,F) and ’select A 2 A \ (T [F)’
Worst case complexity: O(2|A|)

M.Knorr (DI/FCT/UNL) Answer Set Programming November 17, 2020 46 / 136

	Answer Set Programming
	Introduction
	Normal Logic Programs
	Modeling
	Disjunctive Logic Programs
	Nested Logic Programs
	Propositional Theories
	Computational Complexity

	Extensions
	Strong Negation
	Choice Rules
	Cardinality Constraints
	Cardinality Rules
	Weight Constraints (and more)
	Aggregates

	Bibliography

