Non-monotonic Reasoning

- Closed-World Assumption
- Minimal entailment
- Default Logic

Non-monotonic Reasoning

Closed-World Assumption

- Minimal entailment
- Default Logic

Strictness of FOL

To reason from P(a) to Q(a), need either

- $\bullet\,$ further facts about a itself
- universals, e.g. $\forall x(P(x) \supset Q(x))$
 - something that applies to all instances
 - all or nothing!

But most of what we learn about the world is in terms of generics

• e.g., encyclopedia entries for ferris wheels, wildflowers, violins, turtles.

Properties are not strict for all instances, because of

- genetic / manufacturing varieties
 - early ferris wheels
- cases in exceptional circumstances
 - dried wildflowers
- borderline cases
 - toy violins
- imagined cases
 - flying turtles
- etc.

✓ Violins have four strings.

VS.

X All violins have four strings.

VS.

? All violins that are not E_1 or E_2 or ... have four strings

(exceptions usually cannot be enumerated)

Goal: be able to say a P is a Q in general, but not necessarily

• It is reasonable to conclude Q(a) given P(a), unless there is a good reason not to.

Here: qualitative version (no numbers)

General statements

- prototypical: The prototypical P is a Q.
 - Owls hunt at night.
- normal: Under typical circumstances, P's are Q's.
 - People work close to where they live.
- statistical: Most P's are Q's.
 - The people in the waiting room are growing impatient.

Lack of information to the contrary

- group confidence: All known P's are Q's.
 - Natural languages are easy for children to learn.
- familiarity: If a P was not a Q, you would know it.
 - an older brother
 - very unusual individual, situation or event

Conventional

- \bullet conversational: Unless I tell you otherwise, a P is a Q
 - "There is a gas station two blocks east" the default: the gas station is open.
- representational: Unless otherwise indicated, a P is a Q
 - the speed limit in a city

Persistence

- inertia: A P is a Q if it used to be a Q.
 - colours of objects
 - locations of parked cars (for a while!)

Here: we will use "Birds fly" as a typical default.

Reiter's observation

• There are usually many more negative facts than positive facts!

Example

Airline flight guide provides

DirectConnect(cleveland,toronto) DirectConnect(toronto,winnipeg) DirectConnect(toronto,northBay)

but not: ¬DirectConnect(cleveland,northBay)

Conversational default, called Closed World Assumption (CWA)

Only positive facts will be given, relative to some vocabulary

• But note: $KB \not\models$ negative facts (would have to answer: "I don't know")

Proposal: a new version of entailment:

 $KB \models_c \alpha \text{ iff } KB \cup Negs \models \alpha$

- where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$
- a common pattern $KB' = KB \cup \Delta$

Closed World Assumption (CWA)

$$KB \models_c \alpha \text{ iff } KB \cup Negs \models \alpha$$

Gives: $KB \models_c$ positive facts and negative facts

CWA is an assumption about **complete** knowledge

Never any unknowns, relative to vocabulary For every α (without quantifiers), $KB \models_c \alpha$ or $KB \models_c \neg \alpha$

- Why? Inductive argument:
 - immediately true for atomic sentences
 - push \neg in, e.g. $KB \models \neg \neg \alpha$ iff $KB \models \alpha$
 - $KB \models (\alpha \land \beta)$ iff $KB \models \alpha$ and $KB \models \beta$
 - Say $KB \not\models_c (\alpha \lor \beta)$. Then $KB \not\models_c \alpha$ and $KB \not\models_c \beta$ So by induction, $KB \models_c \neg \alpha$ and $KB \models_c \neg \beta$. Thus, $KB \models_c \neg (\alpha \lor \beta)$.

In general, a KB has *incomplete* knowledge.

• Let KB be $(p \lor q)$.

• Then $KB \models (p \lor q)$, but $KB \not\models p$, $KB \not\models \neg p$, $KB \not\models q$, $KB \not\models \neg q$

- With CWA, if $KB \models_c (\alpha \lor \beta)$, then $KB \models_c \alpha$ or $KB \models_c \beta$
 - similar argument to above

Properties of entailment

With CWA, we can reduce queries (without quantifiers) to the atomic case:

- $KB \models_c (\alpha \land \beta)$ iff $KB \models_c \alpha$ and $KB \models_c \beta$
- $KB \models_c (\alpha \lor \beta)$ iff $KB \models_c \alpha$ or $KB \models_c \beta$
- $KB \models_c \neg(\alpha \land \beta)$ iff $KB \models_c \neg \alpha$ or $KB \models_c \neg \beta$
- $KB \models_c \neg(\alpha \lor \beta)$ iff $KB \models_c \neg \alpha$ and $KB \models_c \neg \beta$
- $KB \models_c \neg \neg \alpha$ iff $KB \models_c \alpha$

reduces any query about $KB \models_c \alpha$ to a set of queries $KB \models_c \rho$ about the literals ρ in α

If $KB \cup Negs$ is consistent, we get $KB \models_c \neg \alpha$ iff $KB \not\models_c \alpha$

• reduces to: $KB \models_c p$, where p is atomic

If atoms stored as a table, deciding if $KB \models_c \alpha$ is like DB-retrieval:

- reduce query to set of atomic queries
- solve atomic queries by table lookup

Different from ordinary logic reasoning (e.g. no reasoning by cases)

Just because a KB is consistent, does not mean that $KB \cup Negs$ is also consistent.

Non-problematic cases

- $\bullet~$ If KB is a set of atoms, then $KB \cup Negs$ is always consistent
- ${\ensuremath{\, \bullet }}$ Also works if KB has conjunctions and if KB has only negative disjunctions
 - If KB contains $\neg(p \lor q)$. Add both $\neg p, \neg q$.

Problem

When $KB \models (\alpha \lor \beta)$, but $KB \not\models \alpha$ and $KB \not\models \beta$

• e.g. $KB = (p \lor q) Negs = \{\neg p, \neg q\} KB \cup Negs$ is inconsistent.

Solution: Generalised Closed World Assumption (GCWA)

Only apply CWA to atoms that are "uncontroversial".

•
$$Negs = \{\neg p \mid \text{If } KB \models (p \lor q_1 \lor \cdots \lor q_n) \text{ then } KB \models (q_1 \lor \cdots \lor q_n)\}$$

When KB is consistent, get:

- $KB \cup Negs$ consistent
- everything derivable is also derivable by CWA

Quantifiers and equality

Problem

So far, results do not extend to well-formed formulas with quantifiers

- can have $KB \not\models_c \forall x.\alpha$ and $KB \not\models_c \neg \forall x.\alpha$ e.g. just because for every t, we have $KB \models_c \neg \text{DirectConnect}(\text{myHome}, t)$
 - does not mean that $KB \models_c \forall x [\neg \text{DirectConnect}(myHome, x)]$

Solution

We may want to treat KB as providing complete information about what individuals exist Define: $KB \models_{cd} \alpha$ iff $KB \cup Negs \cup Dc \models \alpha$

- where Dc is <u>domain closure</u>: $\forall x[x = c_1 \lor \cdots \lor x = c_n]$,
- and c_i are all the constants appearing in KB (assumed finite)
- $\begin{array}{lll} \mathsf{Get:} & KB \models_{cd} \exists x.\alpha \text{ iff } KB \models_{cd} \alpha[x/c], \text{ for some } c \text{ appearing in the } KB \\ & KB \models_{cd} \forall x.\alpha \text{ iff } KB \models_{cd} \alpha[x/c], \text{ for all } c \text{ appearing in the } KB \\ \end{array}$
 - We have $KB \models_{cd} \alpha$ or $KB \models_{cd} \neg \alpha$, even with quantifiers

Then add: Un is <u>unique names</u>: $(c_i \neq c_j)$, for $i \neq j$ Get: $KB \models_{cdu} (c = d)$ iff c and d are the same constant \rightarrow full recursive query evaluation Ordinary entailment is monotonic

If $KB \models \alpha$, then $KB^* \models \alpha$, for any $KB \subseteq KB^*$

CWA entailment is not monotonic

Can have $KB \models_c \alpha$, $KB \subseteq KB'$, but $KB' \not\models_c \alpha$

• e.g. $\{p\} \models_c \neg q$, but $\{p,q\} \not\models_c \neg q$

Suggests study of non-monotonic reasoning

- start with explicit beliefs
- generate implicit beliefs non-monotonically, taking defaults into account
- implicit beliefs may not be uniquely determined (vs. monotonic case)

Will consider two approaches:

- minimal entailment: interpretations that minimize abnormality
- default logic: KB as facts + default rules of inference

Closed-World Assumption

- Minimal entailment
- Default Logic

Minimizing abnormality

- CWA makes the extension of all predicates as small as possible
 - by adding negated literals
- Generalize: do this only for selected predicates
 - · Ab predicates used to talk about typical cases

Example

 $Bird(chilly), \neg Flies(chilly),$

 $Bird(tweety), (chilly \neq tweety),$

 $\forall x[Bird(x) \land \neg Ab(x) \supset Flies(x)] \qquad \longleftarrow All \ birds \ that \ are \ normal \ fly$

Would like to conclude by default Flies(tweety), but $KB \not\models Flies(tweety)$

- because there is an interpretation \Im where $I[tweety] \in I[Ab]$
- \bullet Solution: consider only interpretations where I[Ab] is as small as possible, relative to KB
 - $\bullet\,$ this is sometimes called "circumscription" since we circumscribe the Ab predicate.
 - for example, require that $I[chilly] \in I[Ab]$
- Generalizes to many Ab_i predicates

Minimal entailment

Definition

Given two interpretations over the same domain, \mathfrak{I}_1 and \mathfrak{I}_2

- $\mathfrak{I}_1 \leq \mathfrak{I}_2$ iff $I_1[Ab] \subseteq I_2[Ab]$, for every Ab predicate
- $\mathfrak{I}_1 < \mathfrak{I}_2$ iff $\mathfrak{I}_1 \leq \mathfrak{I}_2$ but not $\mathfrak{I}_2 \leq \mathfrak{I}_1$
 - $\bullet\,$ read: \mathfrak{I}_1 is more normal than \mathfrak{I}_2

Definition (Minimal Entailment)

Define a new version of entailment, \models_{\leq} as follows: $KB \models_{\leq} \alpha$ iff for every \mathfrak{I} , if $\mathfrak{I} \models KB$ and no $\mathfrak{I}^* < \mathfrak{I}$ s.t $\mathfrak{I}^* \models KB$, then $\mathfrak{I} \models \alpha$

- \bullet With minimal entailment, α must be true in all interpretations satisfying KB that are *minimal* in abnormalities
- Get: $KB \models_{\leq} Flies(tweety)$
 - because if interpretation satisfies KB and is minimal, only I[chilly] will be in I[Ab]
- Note: Minimization need not produce a *unique* interpretation:
 - $Bird(a), Bird(b), [\neg Flies(a) \lor \neg Flies(b)]$ yields two minimal interpretations
 - $KB \not\models_{\leq} Flies(a), KB \not\models_{\leq} Flies(b), \text{ but } KB \models_{\leq} Flies(a) \lor Flies(b)$

Different from the CWA: no inconsistency! But stronger than GCWA: conclude a or b flies

Let's extend the previous example with

 $\forall x [Penguin(x) \supset Bird(x) \land \neg Flies(x)]$

Get: $KB \models \forall x [Penguin(x) \supset Ab(x)]$ So minimizing Ab also minimizes penguins: $KB \models_{\leq} \forall x \neg Penguin(x)$

Definition (McCarthy's definition)

Let ${\bf P}$ and ${\bf Q}$ be sets of predicates. $\mathfrak{I}_1 \leq \mathfrak{I}_2$ iff they are over the same domain and

- $I_1[P] \subseteq I_2[P], \text{ for every } P \in \mathbf{P} \qquad Ab \ predicates$
- $I_1[Q] = I_2[Q]$, for every $Q \in \mathbf{Q}$ fixed predicates

so only predicates apart from ${\bf P}$ and ${\bf Q}$ are allowed to vary

- $\models_{<}$ becomes parameterized by what is minimized *and* what is allowed to vary.
 - Previous example: minimize Ab and fix Penguin, and allow only Flies to vary.
- Problems:
 - need to decide what to allow to vary
 - cannot conclude ¬*Flies*(tweety) by default!
 - only get default $(\neg Penguin(tweety) \supset Flies(tweety))$

Non-monotonic Reasoning

• Closed-World Assumption

- Minimal entailment
- Default Logic

- We want to state something like "typically birds fly"
- ... and we want to reason with such statements
- Add non-logical inference rule:

$$\frac{bird\left(x\right) \ : \ can_{-}fly\left(x\right)}{can_{-}fly\left(x\right)}$$

with the intended meaning:

If x is a bird and if it is consistent to assume that x can fly, then conclude that x can fly.

• Exceptions can be represented using simple logical implications:

$$\begin{aligned} \forall x : penguin(x) \supset \neg can_{-}fly(x) \\ \forall x : emu(x) \supset \neg can_{-}fly(x) \\ \forall x : kiwi(x) \supset \neg can_{-}fly(x) \end{aligned}$$

• FOL with classical logical consequence relation \models and deductive closure Cn such that $Cn(E) = \{A \mid E \models A\}$

Definition (Default)

A Default d is an expression

 $\frac{A : B_1, ..., B_n}{C}$

where A, B_i and C are formulas in first-order logic.

- A: Prerequisite must be true before rule can be applied
- B_i : Consistency Condition the negation must not be true
- C : Consequence will be concluded
 - A default rule is called closed if it does not contain free variables.
 - We denote A, $\{B_1, ..., B_n\}$ and C, by pre(d), just(d) and cons(d), respectively.

Definition ((Closed) Default Theory)

A (closed) default theory is a pair (D, W), where D is a countable set of (closed) defaults and W is a countable set of sentences in first-order logic. We interpret non-closed defaults as schemata representing all of their ground instances. • Default theories extend the theories given by W using the default rules

 $D \rightsquigarrow Extensions.$

Example

$$W = \{a, \neg b \lor \neg c\}$$
$$D = \left\{\begin{array}{c} \frac{a:b}{b} & \frac{a:c}{c} \end{array}\right\}$$

One possible extension should contain b, another one c. Having them together is impossible.

- Intuitively: An extension is a belief context resulting from W and D.
- In general, a default theory can have more than one extension.

- What do we do if we have more than one extension?
- Credulous Reasoning If φ holds in one extension, we accept φ as a credulous default conclusion.
- Skeptical Reasoning If φ holds in all extensions, we accept φ as a skeptical default conclusion.
- Choice Reasoning We compute one arbitrary extension and stick to it.

-

Desirable properties of an extension E of (D, W):

- Contains all facts W i.e. $W \subseteq E$.
- Is deductively closed i.e. Cn(E) = E.
- All applicable default rules are applied:

If

$$A \in B_1, \dots, B_n \in D$$

 $A \in E$
 $\neg B_i \notin E$
Then $C \in E$.

• Some condition of groundedness: each formula in an extension needs sufficient reasons to be there.

Question Would minimality wrt. the previous requirements be enough?

Desirable properties of an extension E of (D, W):

- Contains all facts W i.e. $W \subseteq E$.
- Is deductively closed i.e. Cn(E) = E.
- All applicable default rules are applied:

$$\begin{array}{ccc} \text{If} & \textcircled{0} & \frac{A: : B_1, \dots, B_n}{A \in D} \in D \\ & \textcircled{0} & A \in E \\ & \textcircled{0} & \neg B_i \notin E \\ & \textcircled{0} & \neg B_i \notin E \\ & \hline \\ & \text{Then} & C \in E. \end{array}$$

Example

Consider

$$D = \left\{ \frac{:a}{b} \right\} \quad W = \emptyset$$

 $Cn(\{\neg a\})$ is a minimal set satisfying the previous properties but the theory (D,W) gives no support for $\neg a$.

Reiter's proposal

- Rests on the observation that, given a set S of formulas to use to test for consistency
 of justifications, there is a unique least theory, say Γ (S), containing W, closed under
 classical provability and also under defaults (in a certain sense determined by S).
- For theory S to be grounded in (D, W), S must be precisely what (D, W) implies, given that S is used to test the consistency of justifications.

Definition (Default Extension)

Let (D,W) be a default theory. The operator Γ assigns to every set S of formulas the smallest set of formulas such that:

- $W \subseteq \Gamma(S).$
- $On (\Gamma (S)) = \Gamma (S).$
- $\textbf{ If } \frac{A:B_1,\ldots,B_n}{C} \in D \text{ and } \Gamma(S) \models A, S \not\models \neg B_i, 1 \leq i \leq n, \text{ then } C \in \Gamma(S).$

A set E of formulas is an extension of (D, W) iff $E = \Gamma(E)$.

- The definition does not tell us how to construct an extension
- However, it tells us how to check whether a set is an extension
 - 0 Guess a set S
 - **2** Now construct a minimal set $\Gamma(S)$ by starting with W
 - Add conclusions from default rules D when necessary
 - 0 If, in the end, when no more conclusions can be added, $S=\Gamma\left(S\right)$, then S must be an extension of $\left(D,W\right)$

$D = \left\{ \frac{a:b}{b}, \frac{b:a}{a} \right\}$	$W = \{a \lor b\}$
$D = \left\{ \frac{a:b}{\neg b} \right\}$	$W = \emptyset$
$D = \left\{ \frac{a:b}{\neg b} \right\}$	$W = \{a\}$
$D = \left\{ \frac{:a}{a}, \frac{:b}{b}, \frac{:c}{c} \right\}$	$W = \{b \supset \neg a \land \neg c\}$
$D = \left\{ \frac{:c}{\neg d}, \frac{:d}{\neg e}, \frac{:e}{\neg f} \right\}$	$W = \emptyset$
$D = \left\{ \frac{:c}{\neg d}, \frac{:d}{\neg c} \right\}$	$W = \emptyset$
$D = \left\{ \frac{a:b}{c}, \frac{a:d}{e} \right\}$	$W = \{a, (\neg b \vee \neg d)\}$

- Can we say something about the existence of extensions?
- Is it possible to characterise the set of extensions more intuitively?
- How do the different extensions relate to each other?
 - Can one extension be a subset of another one?
 - Are extensions pairwise incompatible (i.e. jointly inconsistent)?
- Is it possible that an extension is inconsistent?

A more intuitive characterisation of extensions:

Theorem

Let (D, W) be a default theory and E a set of formulas. Let:

$$E_{0} = W$$

$$E_{k+1} = Cn(E_{k}) \cup \left\{ C \mid \frac{A : B_{1}, \dots, B_{n}}{C} \in D, E_{k} \models A, E \not\models \neg B_{i}, 1 \le i \le n \right\}$$

• Then, $\Gamma(E) = \bigcup_{k=0}^{\infty} E_k$.

• Moreover, a set E of formulas is an extension of (D, W) iff

$$E = \bigcup_{k=0}^{\infty} E_k$$

Question Why is this characterisation non-constructive?

Definition

Let *E* be a set of formulas. A default *d* is generating for *E* if $E \models pre(d)$ and, for every $B_i \in just(d)$, $E \not\models \neg B_i$. If *D* is a set of defaults, we write GD(D, E) for the set of defaults in *D* that are generating for *E*.

Theorem

Let E be an extension of a default theory (D, W). Then

 $E = Cn\left(W \cup \{cons\left(d\right) \mid d \in GD\left(D, E\right)\}\right)$

This result turns out to be fundamental for algorithms to compute extensions.

Corollary

Let (D, W) be a default theory.

- If W is inconsistent, then (D, W) has a single extension which consists of all formulas in the language.
- If W is consistent and every default in D has at least one justification, then every extension of (D, W) is consistent.

Theorem

If E and F are extensions of (D, W) such that $E \subseteq F$ then E = F.

Proof sketch.

 $E = \bigcup_{k=0}^{\infty} E_k$ and $F = \bigcup_{k=0}^{\infty} F_k$. It suffices to show that $F_k \subseteq E_k$. Induction:

- Trivially $E_0 = F_0$.
- Assume $C \in F_{k+1}$.
 - $C \in Cn(F_k)$ implies $C \in Cn(E_k)$ (because $F_k \subseteq E_k$) i.e., $C \in E_{i+1}$.
 - Otherwise $\frac{A:B_1,...,B_n}{C} \in D$, $F_k \models A$, $F \not\models \neg B_i$, $1 \le i \le n$. However, then we have $E_k \models A$ (because $F_k \subseteq E_k$) and $E \not\models \neg B_i$, $1 \le i \le n$ (because $E \subseteq F$), i.e., $C \in E_{i+1}$.

Definition

A default is normal if it has the form $\frac{A:B}{B}$

Theorem

Let (D, W) be a normal default theory.

- (D, W) has at least one extension.
- **2** if E and F are extensions of (D, W) and $E \neq F$, then $E \cup F$ is inconsistent.
- If E is an extension of (D, W), then for every set D' of normal defaults, the normal default theory (D ∪ D', W) has an extension E' such that E ⊆ E'.

The last property is often called <u>semi-monotonicity</u> of normal default logic. It asserts that adding normal defaults to a normal default theory <u>does not destroy</u> existing extensions but <u>possibly only augments</u> them.

Theorem

Let (D, W) be a normal default theory.

2 if E and F are extensions of (D, W) and $E \neq F$, then $E \cup F$ is inconsistent.

Proof sketch.

Let
$$E = \bigcup_{k=0}^{\infty} E_k$$
 and $F = \bigcup_{k=0}^{\infty} F_k$ with

$$E_{0} = W$$

$$E_{k+1} = Cn(E_{k}) \cup \left\{ B \mid \frac{A : B}{B} \in D, E_{k} \models A, E \not\models \neg B_{i}, 1 \le i \le n \right\} \text{ for } k \ge 0$$

and the same for F_k . Since $E \neq F$, there must exist a smallest k such that $E_k \neq F_k$. This means that there exists $\frac{A:B}{B} \in D$ with $E_k = F_k \models A$ but $B \in E_{k+1}$ and $B \notin F_{k+1}$. This is only possible if $\neg B \in F$ (so that $F \models \neg B$). This means that $B \in E$ and $\neg B \in F$, i.e., $E \cup F$ is inconsistent.

This property is often called orthogonality of normal default logic.

Question Can we have top-down goal-driven reasoning?

Example

Consider the default theory

$$D = \left\{ d_1 = \frac{p:q}{r}, d_2 = \frac{r:q}{s}, d_3 = \frac{\cdot}{\neg q} \right\} \quad W = \{p\}$$

and suppose we are interested in testing whether s is supported (for now we take this to be equivalent to existence of an extension that contains s) by the default theory. An argument could be:

- \bullet s is the consequent of d_2 so let's try to derive its prerequisite r.
- **2** r is the consequent of d_1 so let's try to derive its prerequisite p.
- \bigcirc p is included in W so we are done.

We did not pay attention to the consistency, but this should not be a problem because there are no conflicts among W, d_1 and d_2 .

So, we could be tempted to answer the question positively.

However, the only extension is $Cn(\{p, \neg q\})$ which does not include s.

Fortunately, the previous problem cannot arise in normal default theories.

Definition (Default Proofs)

A default proof of B in a normal default theory (D, W) is a finite sequence of defaults $\left(d_i = \frac{A_i : B_i}{B_i}\right)_{i=1,\ldots,n}$ such that:

•
$$W \cup \{B_1, ..., B_n\} \models B$$

- $W \cup \{B_1, ..., B_n\}$ is consistent
- $W \cup \{B_1, ..., B_k\} \models A_{k+1}$, for $0 \le k \le n-1$

Theorem

A formula B has a default proof in a normal default theory (D, W) iff there exists an extension E of (D, W) such that $B \in E$.

Consider the default theory (D,W) with $W=\{q\wedge r\supset p\}$ and $D=\{d_1,d_2,d_3,d_4,d_5,d_6\}$ with

$$d_1 = \frac{:d}{d} \quad d_2 = \frac{d:\neg c \wedge b}{\neg c \wedge b} \quad d_3 = \frac{d:c}{c} \quad d_4 = \frac{:a}{a} \quad d_5 = \frac{a \wedge b:q}{q} \quad d_6 = \frac{\neg c:r}{r}$$

We want to know whether p is included in some extension of (D, W). One default proof is d1, d2, d4, d6, d5.

Consider the default theory (D, W) with $W = \emptyset$ and $D = \{d_1, d_2, d_3\}$ with

$$d_1 = \frac{q:p}{p} \quad d_2 = \frac{\neg p:q}{q} \quad d_3 = \frac{:\neg p}{\neg p}$$

Question Why is d3, d2, d1 not a default proof for p? Answer Because $W \cup cons(d3) \cup cons(d2) \cup cons(d1) = W \cup \{p, q, \neg p\}$ is inconsistent.

Suppose we are given the information: Bill is a high school dropout. Typically, high school dropouts are adults. Typically, adults are employed. These facts are naturally represented by the default theory (D, W) with $W = \{dropout (bill)\}$ and

$$D = \left\{ \frac{dropout(X): adult(X)}{adult(X)}, \frac{adult(X): employed(X)}{employed(X)} \right\}$$

which has the single extension $Cn(\{dropout(bill), adult(bill), employed(bill)\})$. It is counterintuitive to assume that Bill is employed! Whereas the second default seems accurate on its own, we want to prevent its application in case the adult X is a dropout i.e.

$$\frac{adult\left(X\right):employed\left(X\right)\wedge\neg dropout\left(X\right)}{employed\left(X\right)}$$

Question? Why not simply add $\neg dropout(X)$ to the prerequisite of the default to keep it normal?