
Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 1 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 2 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 3 / 42

Recall the definition of ALC - Concept language

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

conjunction C1 u C2 Hum uMale CI1 ∩ CI2
value restriction ∀R.C ∀HasChild.Male {o | ∀o′.(o, o′) ∈ RI → o′ ∈ CI}
negation ¬C ¬∀hasChild.Male ∆I \ CI

(C1, C2 denote arbitrary concepts and R an arbitrary role)

We make also use of the following abbreviations:

Construct Stands for

⊥ A u ¬A (for some atomic concept A)

> ¬ ⊥
C1 t C2 ¬(¬C1 u ¬C2)

∃R.C ¬∀R.¬C

October 20, 2020 4 / 42

ALC ontology (or knowledge base)

Def.: ALC ontology

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

The TBox is a set of inclusion assertions on ALC concepts: C1 v C2

The ABox is a set of membership assertions on individuals:
Membership assertions for concepts: A(c)
Membership assertions for roles: P (c1, c2)

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

Example

TBox : Father≡ Human uMale u ∃hasChild
HappyFatherv Father u ∀hasChild.(Doctor t Lawyer tHappyPerson)

HappyAncv ∀descendant.HappyFather
Teacherv ¬Doctor u ¬Lawyer

ABox :Teacher(mary), hasFather(mary, john), HappyAnc(john)

October 20, 2020 5 / 42

From ALC to First-Order Logic

We have seen that ALC is a well-behaved fragment of function-free First-Order Logic
with unary and binary predicates only (FOLbin).
To translate an ALC TBox to FOLbin we proceed as follows:

1
Introduce: a unary predicate A(x) for each atomic concept A

a binary predicate P (x, y) for each atomic role P

2 Translate complex concepts as follows, using two translation functions tx and ty:

tx(A) = A(x) ty(A) = A(y)

tx(¬C) = ¬tx(C) ty(¬C) = ¬ty(C)

tx(C uD) = tx(C) ∧ tx(D) ty(C uD) = ty(C) ∧ ty(D)

tx(C tD) = tx(C) ∨ tx(D) ty(C tD) = ty(C) ∨ ty(D)

tx(∃P.C) = ∃y.P (x, y) ∧ ty(C) ty(∃P.C) = ∃x.P (y, x) ∧ tx(C)

tx(∀P.C) = ∀y.P (x, y)→ ty(C) ty(∀P.C) = ∀x.P (y, x)→ tx(C)

3 Translate a TBox T =
⋃

i{Ci v Di} as the FOL theory:

ΓT =
⋃

i{∀x.tx(Ci)→ tx(Di)}
4 Translate an ABox A =

⋃
i{Ai(ci)} ∪

⋃
j{Pj(c

′
j , c
′′
j)} as the FOL theory:

ΓA =
⋃

i{Ai(ci)} ∪
⋃

j{Pj(c
′
j , c
′′
j)}

October 20, 2020 6 / 42

From ALC to First-Order Logic - Reasoning

Via the translation to FOLbin, there is a direct correspondence between DL reasoning
services and FOL reasoning services:

C is satisfiable iff its translation tx(C) is satisfiable
C is satisfiable w.r.t. T iff ΓT ∪ {∃x.tx(C)} is satisfiable

T |=ALC C v D iff ΓT |=FOL ∀x.(tx(C)→ tx(D))
C v D iff |=FOL tx(C)→ tx(D)
> v D iff |=FOL tx(D)

(We use |=FOL ϕ to denote that ϕ is a valid FOL formula.)

October 20, 2020 7 / 42

From First-Order Logic to ALC?

Question

Is it possible to define a transformation τ(·) from FOLbin formulas to ALC concepts and
roles such that the following is true?

|=FOL ϕ implies > v τ(ϕ)

If yes, we should specify the transformation τ(·).

If not, we should provide a formal proof that τ(·) does not exist.

October 20, 2020 8 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 9 / 42

Distinguishability of interpretations

Def.: Distinguishing between models

If I and J are two interpretations of a logic L, then we say that I and J are
distinguishable in L if there is a formula ϕ of the language of L such that

I |=L ϕ and J 6|=L ϕ

Example

I = ({a}, ·I) with pI = {a} and J = ({b}, ·J) with pJ = {b} are not
distinguishable in first-order logic (all other predicates are interpreted as {} in both)

I = ({a, b}, ·I) with pI = {a, b} and J = ({a, b}, ·J) with pJ = {a} are
distinguishable in first-order logic

Proving non-equivalence:

To show that two logics L1 and L2 with the same class of interpretations are not
equivalent, it is enough to show that there are two interpretations I and J that are
distinguishable in L1 and not distinguishable in L2.

October 20, 2020 10 / 42

Bisimulation

The notion of bisimulation in description logics is intended to capture equivalence of
objects and their properties.

Def.: Bisimulation

A bisimulation ∼B between two ALC interpretations I and J is a relation in ∆I ×∆J

such that, for every pair of objects o1 ∈ ∆I and o2 ∈ ∆J , if o1 ∼B o2, then the following
hold:

for every atomic concept A : o1 ∈ AI if and only if o2 ∈ AJ (local condition);

for every atomic role P :
for each o′1 with (o1, o′1) ∈ PI , there is an o′2 with (o2, o′2) ∈ PJ such that
o′1 ∼B o′2 (forth property);

for each o′2 with (o2, o′2) ∈ PJ , there is an o′1 with (o1, o′1) ∈ PI such that
o′1 ∼B o′2 (back property).

(I, o1) ∼ (J , o2) means that there is a bisimulation ∼B between I and J such that
o1 ∼B o2.

October 20, 2020 11 / 42

Bisimulation and ALC

Lemma

ALC cannot distinguish o1 in interpretation I and o2 in interpretation J when
(I, o1) ∼ (J , o2).
In other words, if (I, o1) ∼ (J , o2), then for every ALC concept C we have that

o1 ∈ CI if and only if o2 ∈ CJ

Proof.

By induction on the structure of concepts. [Exercise]

October 20, 2020 12 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 13 / 42

Tree model property of DLs

Theorem

An ALC concept C is satisfiable w.r.t. a TBox T if and only if there is a tree-shaped
model I of T and an object o such that o ∈ CI .

Proof.

The “if” direction is obvious. For the “only-if” direction, we exploit the fact that an
interpretation and its unraveling into a tree are bisimilar.

October 20, 2020 14 / 42

Expressive power of ALC

Exercise

Prove, using the tree model property, that the FOLbin formula ∀x.P (x, x) cannot be
translated into ALC. In other words, prove that there is no ALC TBox T such that

I |=ALC T if and only if I |=FOL ∀x.P (x, x)

A consequence of the above fact, and of the fact that ALC can be expressed in FOLbin

is that:

Expressive power of ALC
ALC is strictly less expressive than FOLbin.

October 20, 2020 15 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 16 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 17 / 42

Tableau algorithms for DLs

Tableau-based techniques

Determine the satisfiability of a formula (or theory) by using rules to construct (a
representation of) a model

Used in FOL and modal logics for many years;

For DLs, extensively explored since the late 1990s;

Well-suited for implementation;

Many of the most sucessful DL reasoners implement tableau techniques or variants
thereof; e.g. , RACER, FaCT++, Pellet, Hermit, etc.

October 20, 2020 18 / 42

Tableau algorithm for ALC concepts - Overview

We describe an algorithm that decides concept satisfiability in ALC.

For a given ALC concept C0, it tries to build a graph representation of a model I of C0:

It works with labeled tree-shaped graphs:
the nodes are labeled with concepts, and
the edges are labeled with roles.

At each moment, the algorithm stores a set G of labeled graphs.

It starts with the set G0 containing one graph with just one node labeled C0.

It uses tableau rules corresponding to the constructors, to infer a new set G′ of
graphs from the previous set G.

Intuitively, each new graph makes explicit some constraint (on the model) resulting
from C0 that was still implicit in the previous step.

October 20, 2020 19 / 42

Tableau algorithm for ALC concepts - Overview (continued)

Each rule, when applied to a graph G in the current set G may:
add new nodes to G, or
add new labels to the existing nodes of G.

The rules are non-deterministic in general, i.e., they may be applied in more than
one way, resulting in different possible graphs.

If a graph contains a clash, i.e., an explicit contradiction, it is dropped and not
expanded further.

When no rule can be applied anymore to a graph, the graph is called complete. The
algorithm continues

until some graph G in the current set is complete and clash-free, or
until all graphs contain a clash.

A complete and clash-free graph G represents a model I of C0.

Note: Such graphs can be viewed as ABoxes, and to ease notation, we will adopt this
convention.

October 20, 2020 20 / 42

Negation Normal Form

Definition

A concept C is in negation normal form (NNF) if the ′¬′ operator is applied only to
atomic concepts

Lemma

Every concept C can be transformed in linear time into an equivalent concept in NNF.

Proof.

A concept C can be transformed in NNF by the following rewriting rules that push inside
the ¬ operator:

¬(C uD) ≡ ¬C t ¬D
¬(C tD) ≡ ¬C u ¬D
¬(¬C) ≡ C
¬∀P.C ≡ ∃P.¬C
¬∃P.C ≡ ∀P.¬C

October 20, 2020 21 / 42

Tableaux rules for checking concept satisfiability

Let C0 be an ALC concept in NNF.
To test satisfiability of C0, a tableaux algorithm:

1 starts with A0 := {C0(x0)}, and

2 constructs new ABoxes, by applying the following tableaux rules:

Rule Condition → Effect

→u (C1 u C2)(x)∈ A → A := A∪{C1(x), C2(x)}
→t (C1 t C2)(x)∈ A → A := A∪{C1(x)} or A := A∪{C2(x)}
→∃ (∃P.C)(x)∈ A → A := A∪{P (x, y), C(y)} where y is fresh

→∀ (∀P.C)(x), P (x, y)∈ A → A := A∪{C(y)}
Note:

A rule is applicable to an ABox A only if it has an effect on A , i.e., if it adds some
new assertion; otherwise it is not applicable to A.

Since the →t rule is non-deterministic, starting from A0, we obtain after each rule
application a set S of ABoxes.

October 20, 2020 22 / 42

Complete and clash-free ABoxes

Definition

An ABox A
is complete if none of the tableaux rules applies to it.

has a clash if {C(x),¬C(x)} ⊆ A, and is clash-free otherwise.

A clash represents an obvious contradiction. Hence, it is immediate so see that an ABox
containing a clash is unsatisfiable.

October 20, 2020 23 / 42

Tableaux for concept satisfiability - Example

Consider concept C0 = (A1 u

C3︷ ︸︸ ︷
∃P.(A2 tA3))︸ ︷︷ ︸

C1

u∀P.¬A2︸ ︷︷ ︸
C2

A0 = {C0(x0)}
|

A1 = A0 ∪ {C1(x0), C2(x0)}
|

A2 = A1 ∪ {A1(x0), C3(x0)}
|

A3 = A2 ∪ {P (x0, x1), (A2 tA3(x1)}
|

A4 = A3 ∪ {¬A2(x1)}
↙ ↘

A5 = A4 ∪ {A2(x1)}X A6 = A4 ∪ {A3(x1)}
√

October 20, 2020 24 / 42

Termination, soundness, and completeness

For a finite set S of ABoxes, we say that S is consistent if it contains at least one
satisfiable ABox.

Lemma

1 Termination: There cannot be an infinite sequence of rule applications

S = {{C0(x0)}} → S1 → S2 → . . .

2 Soundness:
If by applying a tableaux rule to the set S of ABoxes we obtain the set S′, then S is
consistent iff S′ is consistent.
If the tableau algorithm builds a complete and clash-free ABox for an ALC concept
C0, then C0 is satisfiable.

3 Completeness: If C0 is satisfiable, then the tableau algorithm builds a complete and
clash-free ABox for C0.

October 20, 2020 25 / 42

Canonical interpretation and decidability of satisfiability

To show that every complete and clash-free ABox A is satisfiable, we describe how to
generate from such an A an interpretation IA that is a model of A.
This interpretation is called...

Def.: Canonical interpretation IA of a complete and clash-free ABox A

∆IA = {x | C(x), P (x, y), or P (y, x) ∈ A}.
AIA = {x | A(x) ∈ A}, for every atomic concept A.

P IA = {(x, y) | P (x, y) ∈ A}, for every atomic role P.

Theorem

Satisfiability of ALC concepts is decidable.

Proof.

Is based on showing that the canonical interpretation of an ABox A obtained starting
from a concept C is indeed a model of C.

October 20, 2020 26 / 42

Satisfiability of ALC concepts - Exercises

Exercise

Check the satisfiability of the following concepts:

1 ¬(∀R.A t ∃R.(¬A u ¬B))

2 ∃R.(∀S.C) u ∀R.(∃S.¬C)

3 ∃S.C u ∃S.D u ∀S.(¬C t ¬D)

4 ∃S.(C uD) u (∀S.¬C t ∃S.¬D)

5 C u ∃R.A u ∃R.B u ¬∃R.(A uB)

Exercise

Check if the following subsumption is valid:

¬∀R.A u ∀R.((∀R.B) tA) v ∀R.¬(∃R.A) u ∃R.(∃R.B)

October 20, 2020 27 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 28 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 29 / 42

TBox reasoning

TBox Satisfiability: T is satisfiable, if it admits at least one model.

Concept Satisfiability w.r.t. a TBox: C is satisfiable w.r.t. T if there is a model I of
T such that CI is not empty, i.e., T 6|= C ≡⊥.

Subsumption: C1 is subsumed by C2 w.r.t. T if, for every model I of T , we have
CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent w.r.t. T if, for every model I of T , we have
CI1 = CI2 , i.e., T |= C1 ≡ C2.

We can reduce all reasoning tasks to concept satisfiability w.r.t. a TBox.
[Exercise]

October 20, 2020 30 / 42

Acyclic TBox

Def.: Concept definition

A definition of an atomic concept A is an assertion of the form A ≡ C, where C is an
arbitrary concept expression in which A does not occur.

Def.: Cyclic concept definitions

A set of concept definitions is cyclic if it is of the form

A1 ≡ C1[A2], A2 ≡ C2[A3], . . . , An ≡ Cn[A1]

where C[A] means that A occurs in the concept expression C.

Def.: Acyclic TBox

A TBox is acyclic if it is a set of concept definitions that neither contains multiple
definitions of the same concept, nor a set of cyclic definitions.

October 20, 2020 31 / 42

Unfolding w.r.t. an acyclic TBox

Satisfiability of a concept C w.r.t. an acyclic TBox T can be reduced to pure concept
satisfiability by unfolding C w.r.t. T :

1 We start from the concept C to check for satisfiability.

2 Whenever T contains a definition A ≡ C′, and A occurs in C, then in C we
substitute A with C′.

3 We continue until no more substitutions are possible.

Theorem

Let UnfoldT (C) be the result of unfolding C w.r.t T .
Then C is satisfiable w.r.t. T iff UnfoldT (C) is satisfiable.

Proof.

By induction on the number of unfolding steps. [Exercise]

October 20, 2020 32 / 42

Complexity of unfolding w.r.t. an acyclic TBox

Unfolding a concept w.r.t. an acyclic TBox might lead to an exponential blow up.
For each n, let Tn be the acyclic TBox:

A0 ≡ ∀P.A1 u ∀R.A1

A1 ≡ ∀P.A2 u ∀R.A2

. . .
An−1 ≡ ∀P.An u ∀R.An

It is easy to see that UnfoldT (A0) grows exponentially with n.

October 20, 2020 33 / 42

Concept satisfiability w.r.t. an acyclic TBox

We adopt a smarter strategy: unfolding on demand

Rule Condition → Effect

→u (C1 u C2)(x)∈ A → A := A∪{C1(x), C2(x)}
→t (C1 t C2)(x)∈ A → A := A∪{C1(x)} or A := A∪{C2(x)}
→∃ (∃P.C)(x)∈ A → A := A∪{P (x, y), C(y)}where y is fresh

→∀ (∀P.C)(x), P (x, y)∈ A → A := A∪{C(y)}
→T A(x) ∈ A and A ≡ C ∈ T → A := A ∪ {NNF (C)(x)}
→T ¬A(x) ∈ A and A ≡ C ∈ T → A := A ∪ {NNF (¬C)(x)}

Theorem

In ALC, concept satisfiability w.r.t. acyclic TBoxes is PSpace-complete.

October 20, 2020 34 / 42

Outline

1 Properties of ALC
ALC and First-Order Logic
Bissimulation
Properties of ALC

2 Reasoning over ALC concept expressions
Tableaux for concept satisfiability

3 Reasoning over ALC ontologies
Reasoning w.r.t. acyclic TBoxes
Reasoning w.r.t. arbitrary TBoxes

October 20, 2020 35 / 42

Tableaux rule for arbitrary TBox axioms

When the TBox may contain cycles, unfolding cannot be used, since in general it would
not terminate.
Instead, we modify the tableaux by relying on the following observations:

C v D is equivalent to > v ¬C tD.
Hence,

⋃
i{Ci v Di} is equivalent to a single inclusion > v ⊔i(¬Ci tDi).

If > v C is in T then for every ABox A generated by the tableaux and for every
occurrence of some x in A, we have to add also the fact C(x).

We can obtain this effect by adding a suitable rule to the tableaux rules:

Rule Condition → Effect

→u (C1 u C2)(x)∈ A → A := A∪{C1(x), C2(x)}
→t (C1 t C2)(x)∈ A → A := A∪{C1(x)} or A := A∪{C2(x)}
→∃ (∃P.C)(x)∈ A → A := A∪{P (x, y), C(y)}where y is fresh
→∀ (∀P.C)(x), P (x, y)∈ A → A := A∪{C(y)}
→T x occurs in A → A := A ∪ { ⊔CvD∈T NNF (¬C tD)(x)}

October 20, 2020 36 / 42

Tableaux rule for arbitrary TBox axioms - Example

Exercise

Check if C is satisfiable w.r.t. the TBox {C v ∃R.C}

Solution

{C(x0)} →T {C(x0), (¬C t ∃R.C)(x0)}
→t {C(x0), . . . , (∃R.C)(x0)}
→∃ {C(x0), . . . , R(x0, x1), C(x1)}
→T {C(x0), . . . , R(x0, x1), C(x1), (¬C t ∃R.C)(x1)}
→t {C(x0), . . . , R(x0, x1), C(x1), . . . , ∃R.C(x1)}
→∃ {C(x0), . . . , R(x0, x1), C(x1), . . . , R(x1, x2), C(x2)}
→T . . .

Termination is no longer guaranteed!

Due to the application of the →T -rule, the nesting of the concepts does not decrease
with each rule-application step.

October 20, 2020 37 / 42

Blocking

To guarantee termination, we need to understand when it is not necessary anymore to
create new objects.

Def.: Blocking

y is an ancestor of x in an ABox A, if A contains

R0(y, x1), R1(x1, x2), . . . , Rn(xn, x)

We label objects with sets of concepts: L(x) = {C | C(x) ∈ A}
x is directly blocked in A if it has an ancestor y with L(x) ⊆ L(y)

If y is the closest such node to x, we say that x is blocked by y.

A node is blocked if it is directly blocked or one of its ancestors is blocked.

The application of all rules is restricted to nodes that are not blocked.
With this blocking strategy, one can show that the algorithm is guaranteed to terminate.

October 20, 2020 38 / 42

Blocking - Exercise

Exercise

Check if C is satisfiable w.r.t. the TBox {C v ∃R.C}.

Solution

{C(x0)} →T {C(x0), (¬C t ∃R.C)(x0)}
→t {C(x0), (¬C t ∃R.C)(x0), (∃R.C)(x0)}
→∃ {C(x0), (¬C t ∃R.C)(x0), (∃R.C)(x0), R(x0, x1), C(x1)}

x1 is blocked by x0 since L(x1) = {C} and L(x0) = {C,¬C t ∃R.C, ∃R.C}, hence
L(x1) ⊆ L(x0).

October 20, 2020 39 / 42

Complexity of concept satisfiability w.r.t. a TBox

Cyclic interpretations

The interpretation IA generated from an ABox A obtained by the tableaux algorithm
with blocking strategy is defined as follows:

∆IA = {x | C(x) ∈ A and x is not blocked }
AIA = {x |x ∈ ∆IA and A(x) ∈ A}
P IA = {(x, y) | {x, y} ⊆ ∆IA and P (x, y) ∈ A}∪

{(x, y) | x ⊆ ∆IA , P (x, y′) ∈ A, and y′ is blocked by y}

Complexity

The algorithm runs no longer in PSpace since it may generate role paths of exponential
length before blocking occurs.

October 20, 2020 40 / 42

Finite model property

Theorem

A satisfiable ALC TBox has a finite model.

Proof.

The model constructed via tableaux is finite.
Completeness of the tableaux procedure implies that if a TBox is satisfiable, then the
algorithm will find a model, which is indeed finite.

October 20, 2020 41 / 42

Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning over concept
expressions:
Bad news:

without restrictions on the form of TBox assertions, reasoning over DL ontologies is
already ExpTime-hard, even for very simple DLs (see, e.g., [Donini, 2003]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs seen so far), while
still staying within the ExpTime upper bound [Pratt, 1979; Schild, 1991; Calvanese
and De Giacomo, 2003].

There are DL reasoners that perform reasonably well in practice for such DLs (e.g,
Racer, Pellet, Fact++, HermiT, . . .)

October 20, 2020 42 / 42

	Properties of ALC
	ALC and First-Order Logic
	Bissimulation
	Properties of ALC

	Reasoning over ALC concept expressions
	Tableaux for concept satisfiability

	Reasoning over ALC ontologies
	Reasoning w.r.t. acyclic TBoxes
	Reasoning w.r.t. arbitrary TBoxes

