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Relationship with First-Order Logic

Most DLs are well-behaved fragments of First-Order Logic.

Definition (From ALC TBox to FOL)

To translate an ALC TBox to FOL:

1 Introduce: a unary predicate A(x) for each atomic concept A
a binary predicate P (x, y) for each atomic role P

2 Translate complex concepts using translation functions tx, one for each variable x:

tx(A) = A(x) tx(C uD) = tx(C) ∧ tx(D)

tx(¬C) = ¬tx(C) tx(C tD) = tx(C) ∨ tx(D)

tx(∃P.C) = ∃y.P (x, y) ∧ ty(C)

tx(∀P.C) = ∀y.P (x, y)→ ty(C) (with y a new variable)

3 Translate a TBox T =
⋃

i{Ci v Di} as the FOL theory:

ΓT =
⋃

i{∀x.tx(Ci)→ tx(Di)}
4 Translate an ABox A =

⋃
i{Ai(ci)} ∪

⋃
j{Pj(c

′
j , c
′′
j )} as the FOL theory:

ΓA =
⋃

i{Ai(ci)} ∪
⋃

j{Pj(c
′
j , c
′′
j )}
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Relationship with First-Order Logic - Reasoning

There is a direct correspondence between DL reasoning services and FOL reasoning
services:

Theorem

C is satisfiable iff its translation tx(C) is satisfiable
C v D iff tx(C)→ tx(D) is valid

C is satisfiable w.r.t. T iff ΓT ∪ {∃x.tx(C)} is satisfiable
T |= C v D iff ΓT |= ∀x.(tx(C)→ tx(D))
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Relationship with First-Order Logic - Exercise

Exercise

Translate the following ALC concepts into FOL formulas:

1 Father u ∀child.(Doctor tManager)

2 ∃manages.(Company u ∃employs.Doctor)

3 Father u ∀child.(Doctor t ∃manages.(Company u ∃employs.Doctor))

Solution

1 Father(x) ∧ ∀y.(child(x, y)→ (Doctor(y) ∨Manager(y)))

2 ∃y.(manages(x, y) ∧ (Company(y) ∧ ∃w.(employs(y, w) ∧Doctor(w))))

3 Father(x) ∧ ∀y.(child(x, y)→ (Doctor(y) ∨ ∃w.(manages(y, w) ∧
(Company(w) ∧ ∃z.(employs(w, z) ∧Doctor(z)))))))
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DLs as fragments of First-Order Logic

The previous translation shows us that DLs are a fragment of First-Order Logic.
In particular, we can translate complex concepts using just two translation functions tx
and ty (thus reusing the same variables):

tx(A) = A(x) ty(A) = A(y)

tx(¬C) = ¬tx(C) ty(¬C) = ¬ty(C)

tx(C uD) = tx(C) ∧ tx(D) ty(C uD) = ty(C) ∧ ty(D)

tx(C tD) = tx(C) ∨ tx(D) ty(C tD) = ty(C) ∨ ty(D)

tx(∃P.C) = ∃y.P (x, y) ∧ ty(C) ty(∃P.C) = ∃x.P (y, x) ∧ tx(C)

tx(∀P.C) = ∀y.P (x, y)→ ty(C) ty(∀P.C) = ∀x.P (y, x)→ tx(C)

 ALC is a fragment of L2, i.e., FOL with 2 variables, known to be decidable
(NExpTime-complete).
Note: FOL with 2 variables is more expressive than ALC (tradeoff expressive power vs.
complexity of reasoning).
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DLs as fragments of First-Order Logic - Exercise

Exercise

Translate the following ALC concepts into FOL formulas: (i.e., into FOL formulas that
use only variables x and y):

1 Father u ∀child.(Doctor tManager)

2 ∃manages.(Company u ∃employs.Doctor)

3 Father u ∀child.(Doctor t ∃manages.(Company u ∃employs.Doctor))

Solution

1 Father(x) ∧ ∀y.(child(x, y)→ (Doctor(y) ∨Manager(y)))

2 ∃y.(manages(x, y) ∧ (Company(y) ∧ ∃x.(employs(y, x) ∧Doctor(x))))

3 Father(x) ∧ ∀y.(child(x, y)→ (Doctor(y) ∨ ∃x.(manages(y, x) ∧ (Company(x) ∧
∃y.(employs(x, y) ∧Doctor(y))))))
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DLs as fragments of First Order Logic (Cont’d)

The previous translations can be extended to other constructs:

For inverse roles, swap the variables in the role predicate, i.e.,
tx(∃P−.C) = ∃y.P (y, x) ∧ ty(C) with y a new variable
tx(∀P−.C) = ∀y.P (y, x)→ ty(C) with y a new variable
 ALCI is still a fragment of L2

For number restrictions, two variables do not suffice
 ALCQI is a fragment of C2 (i.e, L2+counting quantifiers)
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Relationship between DLs and ontology formalisms

DLs are nowadays advocated to provide the foundations for ontology languages.

Different versions of the W3C standard Web Ontology Language (OWL) have been
defined as syntactic variants of certain DLs.

DLs are also ideally suited to capture the fundamental features of conceptual
modeling formalism used in information systems design:

Entity-Relationship diagrams, used in database conceptual modeling
UML Class Diagrams, used in the design phase of software applications

We briefly overview the correspondence with OWL, highlighting essential DL
constructs.

We will come back a bit later to the correspondence between UML Class Diagrams
and DLs.
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DLs vs. OWL

The Web Ontology Language (OWL) comes in different variants:

OWL1 Lite is a variant of the DL SHIF(D), where:
S stands for ALC extended with transitive roles,
H stands for role hierarchies (i.e., role inclusion assertions),
I stands for inverse roles,
F stands for functionality of roles,
(D) stand for data types, which are necessary in any practical knowledge
representation language.

OWL1 DL is a variant of SHOIN (D), where:
O stands for nominals, which means the possibility of using individuals in the TBox
(i.e., the intensional part of the ontology),
N stands for (unqualified) number restrictions.
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DLs vs. OWL2

The latest version standardized by the W3C is OWL2:

OWL2 DL is a variant of SROIQ(D), which adds to OWL1 DL several constructs,
while still preserving decidability of reasoning.

Q stands for qualified number restrictions.
R stands for regular role hierarchies, where role chaining might be used inthe left-hand
side of role inclusion assertions, with suitable acyclicity conditions.

OWL2 defines also three profiles: OWL2 QL, OWL2 EL, OWL2 RL.
Each profile corresponds to a syntactic fragment (i.e., a sub-language) of OWL2 DL
that is targeted towards a specific use.
The restrictions in each profile guarantee better computational properties than those
of OWL2 DL.
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DL constructs vs. OWL constructs

OWL contructor DL constructor Example

ObjectIntersectionOf C1 u · · · u cn Human uMale

ObjectUnionOf C1 t · · · t Cn Doctor t Lawyer

ObjectComplementOf ¬C ¬Male

ObjectOneOf {a1} t · · · t {an} {john} t {mary}
ObjectAllValuesFrom ∀P.C ∀hasChild.Doctor

ObjectSomeValuesFrom ∃P.C ∃hasChild.Lawyer

ObjectMaxCardinality (≤ nP ) (≤ 1hasChild)

ObjectMinCardinality (≥ nP ) (≥ 2hasChild)
. . .

Note: all constructs come also in the Data... instead of Object... variant.
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DL axioms vs. OWL axioms

OWL axiom DL syntax Example

SubClassOf C1 v C2 Human v Animal uBiped

EquivalentClasses C1 ≡ C2 Man ≡ Human uMale

DisjointClasses C1 v ¬C2 Man v ¬Female

SameIndividual {a1} ≡ {a2} {presBush} ≡ {G.W.Bush}
DifferentIndividuals {a1} v ¬{a2} {john} v ¬{peter}
SubObjectPropertyOf P1 v P2 hasDaughter v hasChild

EquivalentObjectProperties P1 ≡ P2 hasCost ≡ hasPrice

InverseObjectProperties P1 ≡ P−2 hasChild ≡ hasParent−

TransitiveObjectProperty P+ v P ancestor+ v ancestor

FunctionalObjectProperty > v (≤ 1P ) > v (≤ 1hasFather)
. . .
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Reasoning on UML Class Diagrams

We have seen that UML class diagrams are in tight correspondence with ontology
languages (in fact, they can be viewed as an ontology language). Let’s consider again the
two questions we asked before:

1. Can we develop sound, complete, and terminating procedures for reasoning on UML
Class Diagrams?

We can exploit the formalization of UML Class Diagrams in Description Logics.

We will see that reasoning on UML Class Diagrams can be done in ExpTime in
general (and actually, it can be carried out by current DLs-based systems such as
HERMIT, FACT++, PELLET, or RACER-PRO).

2. How hard is it to reason on UML Class Diagrams in general?

We will see that it is ExpTime-hard in general.

However, we can single out interesting fragments on which to reason efficiently
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DLs vs. UML Class Diagrams

There is a tight correspondence between variants of DLs and UML Class Diagrams
[Berardi et al., 2005; Artale et al., 2007].

We can devise two transformations:
one that associates to each UML Class Diagram D a DL TBox TD.
one that associates to each DL TBox T a UML Class Diagram DT .

The transformations are not model-preserving, but are based on a correspondence
between instantiations of the Class Diagram and models of the associated TBox.

The transformations are satisfiability-preserving, i.e., a class C is consistent in D iff
the corresponding concept is satisfiable in T .
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Encoding UML Class Diagrams in DLs

The ideas behind the encoding of a UML Class Diagram D in terms of a DL TBox TD
are quite natural:

Each class is represented by an atomic concept.

Each attribute is represented by a role.

Each binary association is represented by a role.

Each non-binary association is reified, i.e., represented as a concept connected to its
components by roles.

Each part of the diagram is encoded by suitable assertions.
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Encoding of classes and attributes

Definition (Encoding of UML classes and attributes)

A UML class C is represented by an atomic concept C

Each attribute a of type T for C is represented by an atomic role aC .
To encode the typing of a:

∃aC v C ∃a−C v T

To encode the multiplicity [m..n] of a:

C v (≥ m aC) u (≤ n aC)

When m is 0, we omit the first conjunct.
When n is ∗, we omit the second conjunct.
When the multiplicity is [0..∗] we omit the whole assertion.
When the multiplicity is missing (i.e., [1..1]), the assertion becomes:

C v ∃aC u (≤ 1 aC)

Note: The class name C in aC takes into account that different classes may share
attributes.

The encoding can be extended also to operations of classes.
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Encoding of classes and attributes - Example

Example

To encode the class Phone, we introduce a concept Phone.

Encoding of the attributes number and brand:
∃numberP v Phone ∃number−P v String
∃brandP v Phone ∃brand−P v String

Encoding of the multiplicities of the attributes number and brand:

Phone v ∃numberP

Phone v ∃brandP u (≤ 1 brandP )

We do not consider the encoding of the operations: lastDialed() and
callLength(String).
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Encoding of associations

The encoding of associations depends on:

the presence/absence of an association class;

the arity of the association.

Without With
Arity association class association class

Binary via a DL role via reification
Non-binary via reification via reification

Note: an aggregation is just a particular kind of binary association without association
class and is encoded via a DL role.
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Encoding of binary associations without association class

Definition (Encoding of UML binary associations without association class)

An association A between C1 and C2 is represented by a DL role A, with:

∃A v C1 ∃A− v C2

To encode the multiplicities of A:
each instance of class C1 is connected through association A to at least min1 and at
most max1 instances of C2:

C1 v (≥ min1 A) u (≤ max1 A)

each instance of class C2 is connected through association A− to at least min2 and at
most max2 instances of C1:

C2 v (≥ min2 A−) u (≤ max2 A−)
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Encoding of associations via reification

Definition (Encoding of UML associations via reification)

An association A is represented by a concept A.

Each instance a of A represents an instance (o1, . . . , on) of the association.

n (binary) roles A1 . . . An are used to connect an object a representing a tuple to
objects o1 . . . on representing the components of the tuple.

To ensure that the instances of A correctly represent tuples:

∃Aiv A, for i ∈ {1, . . . , n}

∃A−i v Ci, for i ∈ {1, . . . , n}
Av ∃A1 u · · · u ∃An u (≤ 1 A1) u · · · u (≤ 1 An)

Note: when the roles of A are explicitly named in the class diagram, we can use such role
names instead of A1 . . . An.
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Encoding of associations via reification

We have not ruled out the existence of two instances a1, a2 of concept A representing
the same instance (o1, . . . , on) of association A:

To rule out such a situation we could add an
identification assertion (see later):
(id A A1, . . . , An)

Note: in a tree-model the above situation cannot occur.
 By the tree-model property of DLs, when reasoning on a KB, we can restrict the
attention to tree-models. Hence we can ignore the identification assertions.
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Multiplicities of binary associations with association class

Definition (Encoding of multiplicities of UNL binary associations with association class)

We can encode the multiplicities of association A by means of number restrictions on the
inverses of roles A1 and A2:

each instance of class C1 is connected through association A to at least min1 and
at most max1 instances of C2:

C1 v (≥ min1 A−1 ) u (≤ max1 A−1 )

each instance of class C2 is connected through association A− to at least min2 and
at most max2 instances of C1:

C2 v (≥ min2 A−2 ) u (≤ max2 A−2 )
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Encoding of ISA and generalization

Definition (Encoding of UML ISA and generalization)

C1 v C

C1 v C

...

Ck v C

When the generalization is disjoint:

Ci v ¬Cj for 1 ≤ i < j ≤ k

When the generalization is complete:

C v C1 t · · · t Ck
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Encoding of ISA between associations

Definition (Encoding of UML ISA between associations)

Without reification:

Role inclusion assertion: A′ v A

With reification:

Concept inclusion assertions: A′ v A
Role inclusion assertions: A′1 v A1

A′2 v A2
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Encoding UML Class Diagrams in DLs - Example 2

Example

Manager v Employee

AreaManager v Manager

TopManager v Manager

AreaManager v ¬TopManager

Manager v AreaManager t TopManager

∃salary− v Integer

∃salary v Employee

Employee v ∃salary u (≤ 1 salary)

∃worksFor v Employee

∃worksFor− v Project

Employee v ∃worksFor

Project v (≥ 3 worksFor−)

manages v worksFor

. . .
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Reducing reasoning in ALC to reasoning in UML

We show how to reduce reasoning over ALC TBoxes to reasoning on UML Class
Diagrams:

We restrict the attention to so-called primitive ALC− TBoxes, where the concept
inclusion assertions have a simplified form:

there is a single atomic concept on the left-hand side;
there is a single concept constructor on the right-hand side.

Given a primitive ALC− TBox T , we construct a UML Class Diagram DT such
that:

an atomic concept A in T is satisfiable
iff

the corresponding class A in DT is satisfiable.

Note: We preserve satisfiability, but do not have a direct correspondence between models
of T and instantiations of DT .

October 13, 2020 33 / 41



Encoding DL TBoxes in UML Class Diagrams

Given a primitive ALC− TBox T , we construct DT as follows:

For each atomic concept A in T , we introduce in DT a class A.

We introduce in DT an additional class O that generalizes all the classes
corresponding to atomic concepts.

For each atomic role P, we introduce in DT :
a class CP (that reifies P);
two functional associations P1, P2, representing the two components of P .

For each inclusion assertion in T , we introduce suitable parts of DT , as shown in
the following.

We need to encode the following kinds of inclusion assertions:

A v B
A v ¬B
A v B1 tB2

A v ∃P.B
A v ∀P.B
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Encoding of inclusion and of disjointness

For each assertion A v B of T , add the following to DT :

For each assertion A v ¬B of T , add the following to DT :
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Encoding of union

For each assertion A v B1 tB2 of T , introduce an auxiliary class B, and add the
following to DT :

October 13, 2020 36 / 41



Encoding of existential quantification

For each assertion A v ∃P.B of T , introduce an auxiliary class CPAB and the
associations PAB1 and PAB2, and add the following DT :
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Encoding of universal quantification

For each assertion A v ∀P.B of T , introduce an auxiliary classes A,CPAB , and CPAB ,
and the associations PAB1,PAB1 and PAB2, and add the following DT :
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Complexity of reasoning on UML Class Diagrams

Lemma

An atomic concept A in a primitive ALC− TBox T is satisfiable if and only if the class A
is satisfiable in the UML Class Diagram DT .

Reasoning over primitive ALC− TBoxes is ExpTime-hard.
From this, we obtain:

Theorem

Reasoning over UML Class Diagrams is ExpTime-hard.
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Reasoning on UML Class Diagrams using DLs

The two encodings show that DL TBoxes and UML Class Diagrams essentially have
the same computational properties.

Hence, reasoning over UML Class Diagrams has the same complexity as reasoning
over ontologies in expressive DLs, i.e., ExpTime-complete.

This is somewhat surprising, since UML Class Diagrams are so widely used and yet
reasoning on them (and hence fully understanding the implication they may give rise
to), in general is a computationally very hard task.

The high complexity is caused by:
1 the possibility to use disjunction (covering constraints)
2 the interaction between role inclusions and functionality constraints (maximum 1

cardinality - see encoding of universal and existential quantification)

Note: Without (1) and restricting (2), reasoning becomes simpler [Artale et al., 2007]:

NLogSpace-complete in combined complexity

in LogSpace in data complexity
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