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Computational complexity

[J.E. Hopcroft, 2007; Papadimitriou, 1994]
Computational complexity theory aims at understanding how difficult it is to solve
specific problems.

A problem is considered as an (in general infinite) set of instances of the problem,
each encoded in some meaningful (i.e., compact) way.

Standard complexity theory deals with decision problems: i.e., problems that admit a
yes/no answer.

Algorithm that solves a decision problem:
input: an instance of the problem
output: yes or no

The difficulty (complexity) is measured in terms of the amount of resources (time,
space) that the algorithm needs to solve the problem.
 complexity of the algorithm, or upper bound

To measure the complexity of the problem, we consider the best possible algorithm
that solves it.
 lower bound
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Computational complexity

Worst-case complexity analysis: the complexity is measured in terms of a
(complexity) function f:

argument: the size n of an instance of the problem (i.e., the length of its encoding)
result: the amount f(n) of time/space needed in the worst-case to solve an instance of
size n

The asymptotic behaviour of the complexity function when n grows is considered.

To abstract away from contingent issues (e.g., programming language, processor
speed, etc.), we refer to an abstract computing model: Turing Machines (TMs).
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Complexity classes

To achieve robustness wrt. encoding issues, usually one does not consider specific
complexity functions f , but rather families C of complexity functions, giving rise to
complexity classes.

Definition (Time/space complexity class C)

A time/space complexity class C is the set of all problems P such that an instance of P
of size n can be solved in time/space at most C(n).

Note: Consider a (decision) problem P , and an encoding of the instances of P into
strings over some alphabet Σ.
Once we fix such an encoding, the problem actually corresponds to a language LP ,
namely the set of strings encoding those instances of the problem for which the answer is
yes.
Hence, in the technical sense, a complexity class is actually a set of languages.
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Reductions

To establish lower bounds on the complexity of problems, we make use of the notion of
reduction:

Definition (Reduction)

A reduction from a problem P1 to a problem P2 is a function R (the reduction) from
instances of P1 to instances of P2 such that:

1 R is efficiently computable (typically in logarithmic space), and

2 An instance I of P1 has answer yes iff R(I) has answer yes.

P1 reduces to P2 if there is a reduction R from P1 to P2.

Intuition: If P1 reduces to P2, then P2 is at least as difficult as P1, since we can solve an
instance I of P1 by reducing it to the instance R(I) of P2 and then solve R(I).
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Hardness and completeness

Definition (Hardness)

A problem P is hard for a complexity class C if every problem in C can be reduced to P .

Definition (Completeness)

A problem P is complete for a complexity class C if

1 it is hard for C, and

2 it belongs to C

Intuitively, a problem that is complete for C is among the hardest problems in C.
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Tractability and intractability: PTime and NP

Definition (PTime)

Set of problems solvable in polynomial time by a deterministic TM.

These problems are considered tractable, i.e., solvable for large inputs.

Is a robust class (PTime computations compose).

Definition (NP)

Set of problems solvable in polynomial time by a non-deterministic TM.

These problems are believed intractable, i.e., unsolvable for large inputs.

The best known algorithms actually require exponential time.

Corresponds to a large class of practical problems, for which the following type of
algorithm can be used:

1 Non-deterministically guess a possible solution of polynomial size.
2 Check in polynomial time that the guessed solutions is good.
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Complement of problemms in NP: coNP

Definition (coNP)

Set of problems whose complement is in NP, i.e., problems for which determining
whether an instance admits a no answer is in NP.

For problems whose complexity is characterized in terms of a non-deterministic
Turing machine, solving it and solving its complement might be different

A yes answer is returned if there exists a non-deterministic computation path of the
TM that leads to acceptance

A no answer requires that all no non-deterministic computation paths of the TM
lead to rejection

coNP is believed to be different from both NP and PTime
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Complexity classes above NP

Definition (PSpace)

Set of problems solvable in polynomial space by a deterministic TM.

Polynomial space is “not really good”, since these problems may require exponential
time.

These problems are considered to be more difficult than NP problems.

Practical algorithms and heuristics work less well than for NP problems.

Definition (ExpTime)

Set of problems solvable in exponential time by a deterministic TM.

This is the first provably intractable complexity class.

These problems are considered to be very difficult.

Definition (NExpTime)

Set of problems solvable in exponential time by a non-deterministic TM.
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Complexity classes below PTime

Definition (LogSpace and NLogSpace)

Set of problems solvable in logarithmic space by a (non-)deterministic TM.

Note: when measuring the space complexity, the size of the input does not count,
and only the working memory (TM tape) is considered.

Note 2: logarithmic space computations compose (this is not trivial).

Correspond to reachability in undirected and directed graphs, respectively.

Definition (AC0)

Set of problems solvable in constant time using a polynomial number of processors.

These problems are solvable efficiently even for very large inputs.

Corresponds to the complexity of model checking a fixed FO formula when the input
is the model only.
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Relationship between the complexity classes

The following relationships are known:

AC0 ( LogSpace ⊆ NLogSpace ⊆ PTime ⊆

⊆ NP ⊆ PSpace ⊆

⊆ ExpT ime ⊆ NExpT ime

Moreover, we know that:
PTime ( ExpT ime
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What are Description Logics?

Description Logics (DLs) [Baader et al., 2003] are logics specifically designed to represent
and reason on structured knowledge.

The domain of interest is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary relations on
objects

The knowledge is asserted through so-called assertions, i.e., logical axioms.
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Origins of Description Logics

Description Logics stem from early days knowledge representation formalisms (late ’70s,
early ’80s):

Semantic Networks: graph-based formalism, used to represent the meaning of
sentences.

Frame Systems: frames used to represent prototypical situations, antecedents of
object-oriented formalisms.

Problems: no clear semantics, reasoning not well understood.

Description Logics (a.k.a. Concept Languages, Terminological Languages) developed
starting in the mid ’80s, with the aim of providing semantics and inference techniques to
knowledge representation systems.
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What are Description Logics about?

Abstractly, DLs allow one to predicate about labeled directed graphs:

Vertexes represents real world objects.

Vertexes’s labels represents qualities of objects.

Edges represents relations between (pairs of) objects.

Edges’ labels represents the types of relations between objects.

Every fragment of the world that can be abstractly represented in terms of a labeled
directed graph is a good candidate for being represented by DLs.
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What are Description Logics about? - Example 1

Exercise

Represent Metro lines in Lisbon in a labelled directed graph.
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What are Description Logics about? - Example 2

Exercise

Represent some aspects of Facebook as a labelled directed graph.
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What are Description Logics about? - Example 3

Exercise

Represent some aspects of human anatomy as a labelled directed graph.
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What are Description Logics about? - Example 4

Exercise

Represent some aspects of document classification as a labelled directed graph.
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Ingredients of a Description Logic

A DL is characterized by:

1 A description language: how to form concepts and roles
Human uMale u ∃hasChild u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to specify knowledge about concepts and roles (i.e., a TBox)
T = {Father ≡ Human uMale u ∃hasChild,
HappyFather v Father u ∀hasChild.(Doctor t Lawyer)}

3 A mechanism to specify properties of objects (i.e., an ABox)
A = {HappyFather(john), hasChild(john,mary)}

4 A set of inference services: how to reason on a given KB
T |= HappyFather v ∃hasChild.(Doctor t Lawyer)
T ∪ A |= (Doctor t Lawyer)(mary)
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Architecture of a Description Logic system
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Description language

A description language provides the means for defining:

concepts, corresponding to classes: interpreted as sets of objects;

roles, corresponding to relationships: interpreted as binary relations on objects.

To define concepts and roles:

We start from a (finite) alphabet of atomic concepts and atomic roles, i.e., simply
names for concept and roles.

Then, by applying specific constructors, we can build complex concepts and roles,
starting from the atomic ones.

A description language is characterized by the set of constructs that are available for that.

October 6, 2020 27 / 49



Many description logics
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Formal semantics of a description language

The formal semantics of DLs is given in terms of interpretations.

Definition (Interpretation)

An interpretation I = (∆I , ·I) consists of:

a nonempty set ∆I , called the interpretation domain (of I)

an interpretation function ·I , which maps
each atomic concept A to a subset AI of ∆I

each atomic role P to a subset PI of ∆I ×∆I

The interpretation function is extended to complex concepts and roles according to their
syntactic structure.
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AL Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I\AI

conjunction C uD Human uMale CI ∩DI

(unqual.) exist. res. ∃R ∃hasChild {o|∃o′.(o, o′) ∈ RI}

value restriction ∀R.C ∀hasChild.Male {o|∀o′.(o, o′) ∈ RI → o′ ∈ CI}

bottom ⊥ ∅

(C, D denote arbitrary concepts and R an arbitrary role)
The above constructs form the basic language AL of the family of AL languages.
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Additional concept and role constructors

Construct AL Syntax Semantics

disjunction U C tD CI ∪DI

top > ∆I

qual. exist. res. E ∃R.C {o|∃o′.(o, o′) ∈ RI ∧ o′ ∈ CI}

(full) negation C ¬C ∆I\CI

number N (≥ kR) {o|]{o′|(o, o′) ∈ RI} ≥ k}
restriction (≤ kR) {o|]{o′|(o, o′) ∈ RI} ≤ k}

qual. number Q (≥ kR.C) {o|]{o′|(o, o′) ∈ RI ∧ o′ ∈ CI} ≥ k}
restriction (≤ kR.C) {o|]{o′|(o, o′) ∈ RI ∧ o′ ∈ CI} ≤ k}

inverse role I R− {(o, o′)|(o′, o) ∈ RI}

role closure reg R∗ (RI)∗

Note: Many different DL constructs and their combinations have been investigated.

October 6, 2020 31 / 49



Further examples of DL constructs

Disjunction: ∀hasChild.(Doctor t Lawyer)
Qualified existential restriction: ∃hasChild.Doctor
Full negation: ¬(Doctor t Lawyer)
Number restrictions: (≥ 2 hasChild) t (≤ 1 sibling)

Qualified number restrictions: (≥ 2 hasChild.Doctor)

Inverse role: ∀hasChild−.Doctor
Reflexive-transitive role closure: ∃hasChild∗.Doctor
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Reasoning on concept expressions

An interpretation I is a model of a concept C if CI 6= ∅.

Basic reasoning tasks

1 Concept satisfiability: does C admit a model?

2 Concept subsumption C v D: does CI ⊆ DI hold for all interpretations I?

Subsumption is used to build the concept hierarchy:

Exercise

Show that if DL is propositionally closed, then (1) and (2) are mutually reducible.
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Complexity of reasoning on concept expressions

Complexity of concept satisfiability [Donini et al., 1997]

AL,ALN PTime
ALU ,ALUN NP-complete
ALE coNP-complete
ALC,ALCN ,ALCI,ALCQI PSpace-complete

Two sources of complexity:
union (U) of type NP,
(qualified) existential quantification (E) of type coNP.

When they are combined, the complexity jumps to PSpace.

Number restrictions (N ) do not add to the complexity.
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Structural properties vs. asserted properties

We have seen how to build complex concept and roles expressions, which allow one to
denote classes with a complex structure.

However, in order to represent real world domains, one needs the ability to assert
properties of classes and relationships between them (e.g., as done in UML class
diagrams).

The assertion of properties is done in DLs by means of an ontology (or knowledge base).
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Description Logics ontology

Definition (Description Logics ontology (or knowledge base))

A Description Logics ontology (or knowledge base) is a pair O = 〈T ,A〉, where T is a
TBox and A is an ABox.

Definition (Description Logics TBox)

A Description Logic TBox consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P ) (symmetric P ) (domain P C)
(functional P ) (reflexive P ) (range P C) . . .

Definition (Description Logics ABox)

A Description Logics ABox consists of a set of assertions on individuals: (we use ci to
denote individuals)

Membership assertions for concepts: A(c)

Membership assertions for roles: P (c1, c2)

Equality and distinctness assertions: c1 ≈ c2, c1 6≈ c2
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Description Logics ontology - Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

Example (TBox assertions)

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer tHappyPerson)
HappyAnc v ∀descendant.HappyFather
Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant),(reflexive descendant),(functional hasFather)

Example (ABox membership assertions)

Teacher(mary), hasFather(mary; john), HappyAnc(john)
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Semantics of a Description Logics ontology

The semantics is given by specifying when an interpretation I satisfies an assertion α,
denoted I |= α.

Definition (Satisfiability of TBox Assertions)

I |= C1 v C2 if CI1 ⊆ CI2
I |= R1 v R2 if RI1 ⊆ RI2
I |= (prop P ) if P I is a relation that has the property prop.

(Note: domain and range assertions can be expressed by means of concept inclusion
assertions.)

Definition (Satisfiability of ABox Assertions)

We first need to extend the interpretation function ·I , so that it maps each individual c
to an element cI of ∆I .

I |= A(c) if cI ∈ AI .

I |= P (c1, c2) if (cI1 , c
I
2 ) ∈ P I

I |= c1 ≈ c2 if cI1 = cI2

I |= c1 6≈ c2 if cI1 6= cI2
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Model of a Description Logics ontology

Definition (Model)

An interpretation I is a model of:

an assertion α, if it satisfies α.

a TBox T , if it satisfies all assertions in T .

an ABox A, if it satisfies all assertions in A.

an ontology O = 〈T ,A〉 if it is a model of both T and A.

Note: We use I |= β to denote that interpretation I is a model of β (where β stands for
an assertion, TBox, ABox, or ontology).
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Interpretation of individuals

We may make some assumptions on how individuals are interpreted.

Definition (Unique name assumption (UNA))

When c1 and c2 are two individuals such that c1 6= c2, then cI1 6= cI2 .

Note: When the UNA holds, equality and distinctness assertions are meaningless.

Definition (Standard name assumption (SNA))

The UNA holds, and moreover individuals are interpreted in the same way in all
interpretations.
Hence, we may assume that ∆I contains the set of individuals, and that for each
interpretation I, we have that cI = c (then, c is called a standard name).
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Logical implication

The fundamental reasoning service from which all other ones can be easily derived is . . .

Definition (Logical implication)

An ontology O logically implies an assertion α , written O |= α if α is satisfied by all
models of O.

We can provide an analogous definition for a TBox T instead of an ontology O.
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TBox reasoning

TBox Satisfiability: T is satisfiable if it admits at least one model.

Concept Satisfiability: C is satisfiable wrt. T if there is a model I of T such that
CI is not empty, i.e., T 6|= C ≡⊥
Subsumption: C1 is subsumed by C2 wrt. T if for every model I of T we have
CI1 ⊆ CI2 , i.e., T |= C1 v C2

Equivalence: C1 and C2 are equivalent wrt. T if for every model I of T we have
CI1 = CI2 , i.e., T |= C1 ≡ C2

Disjointness: C1 and C2 are disjoint wrt. T if for every model I of T we have
CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡⊥
Functionality implication: A functionality assertion (funct R) is logically implied by
T if for every model I of T , we have that (o, o1) ∈ RI and (o, o2) ∈ RI implies
o1 = o2, i.e., T |= (funct R)

Note: Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.
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Reasoning over an ontology

Ontology Satisfiability: Verify whether an ontology O is satisfiable, i.e., whether O
admits at least one model.

Concept Instance Checking: Verify whether an individual c is an instance of a
concept C in every model of O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of individuals is an instance of
a role R in every model of O, i.e., whether O |= R(c1, c2).
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Reasoning in Description Logics - Example

Example (TBox)

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer tHappyPerson)
HappyAnc v ∀descendant.HappyFather
Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

The above TBox logically implies: HappyAnc v Father.

Example (ABox)

Membership assertions:
Teacher(mary), hasFather(mary; john), HappyAnc(john)

The above TBox and ABox logically imply: HappyPerson(mary)
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Relationship among TBox reasoning tasks

The TBox reasoning tasks are mutually reducible to each other, provided the description
language is propositionally closed:

Theorem (TBox satisfiability to concept satisfiability to concept non-subsumption)

T satisfiable iff T 6|= > ≡ ⊥ iff not T |= > v ⊥
(i.e., > satisfiable w.r.t. T )

Theorem (Concept subsumption to concept unsatisfiability)

T |= C1 v C2 iff T |= C1 u ¬C2 ≡ ⊥
(i.e., |= C1 u ¬C2 unsatisfiable w.r.t. T )

Theorem (Concept satisfiability to TBox satisfiability)

T 6|= C ≡ ⊥ iff T ∪ {> v ∃Pnew u ∀Pnew.C} satisfiable
(where Pnew is a new atomic role)
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Relationship among reasoning tasks

TBox reasoning can be reduced to reasoning over an ontology:

Theorem (Concept satisfiability to ontology satisfiability)

C satisfiable wrt T iff 〈T ∪ {Anew v C}, {A(cnew)}〉 is satisfiable
(where Anew is a new atomic concept and
cnew is a new individual)

Exercise

Show mutual reductions between the remaining (TBox and ontology) reasoning tasks.

Internalization of the TBox

In some (very expressive) DLs, it is possible to reduce reasoning wrt. a TBox to
reasoning over concept expressions only, i.e., the whole TBox can be internalized
into a single concept.

Whether this is possible depends on the available role and concept constructors, and
the details differ for each DL.
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Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning over concept
expressions:
Bad news:

without restrictions on the form of TBox assertions, reasoning over DL ontologies is
already ExpTime-hard, even for very simple DLs (see, e.g.,[Donini, 2003]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs seen so far), while
still staying within the ExpTime upper bound.

There are DL reasoners that perform reasonably well in practice for such DLs (e.g.,
Konclude, Hermit, Racer, Pellet, Fact++, . . . )

For certain application domains, well-designed fragments of DLs can be used for
which reasoning is polynomial – OWL profiles.
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