
Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 1 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 2 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 3 / 79

Elements of an ontology language

Syntax
Alphabet
Languages constructs
Sentences to assert knowledge

Semantics
Formal meaning

Pragmatics
Intended meaning
Usage

September 29, 2020 4 / 79

Static vs. dynamic aspects

The aspects of the domain of interest that can be modeled by an ontology language can
be classified into:

Static aspects
Are related to the structuring of the domain of interest.
Supported by virtually all languages.

Dynamic aspects
Are related to how the elements of the domain of interest evolve over time.
Supported only by some languages, and only partially (cf. services).

Before delving into the dynamic aspects, we need a good understanding of the static ones.
In this course, we concentrate essentially on the static aspects.

September 29, 2020 5 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 6 / 79

Intensional level of an ontology language

An ontology language for expressing the intensional level usually includes:

Concepts

Properties of concepts

Relationships between concepts, and their properties

Axioms

Queries

Ontologies are typically rendered as diagrams (e.g., Semantic Networks,
Entity-Relationship schemas, UML Class Diagrams).

September 29, 2020 7 / 79

Example: ontology rendered as UML Class Diagram

September 29, 2020 8 / 79

Concepts

Definition (Concept)

A concept is an element of an ontology that denotes a collection of instances (e.g., the
set of “employees”).

We distinguish between:

Intensional definition:
specification of name, properties, relations,...

Extensional definition:
specification of the instances

Concepts are also called classes, entity types, frames.

September 29, 2020 9 / 79

Properties

Definition (Property)

A property is an element of an ontology that qualifies another element (e.g., a concept or
a relationship).

Property definition (intensional and extensional):

Name

Type: may be either
atomic (integer, real, string, enumerated,...), or
e.g., eye-color → { blue, brown, green, grey }
structured (date, set, list,...)
e.g., date → day/month/year

The definition may also specify a default value.

Properties are also called attributes, features, slots, data properties

September 29, 2020 10 / 79

Relationships

Definition (Relationship)

A relationship is an element of an ontology that expresses an association among concepts.

We distinguish between:

Intensional definition:
specification of involved concepts
e.g., worksFor is defined on Employee and Project

Extensional definition:
specification of the instances of the relationship, called facts
e.g., worksFor(domenico, tones)

Relationships are also called associations, relationship types, roles, object properties.

September 29, 2020 11 / 79

Axioms

Definition (Axiom)

An axiom is a logical formula that expresses at the intensional level a condition that must
be satisfied by the elements at the extensional level.

Different kinds of axioms/conditions:

subclass relationships, e.g., Manager v Employee

equivalences, e.g., Manager ≡ AreaManager t TopManager

disjointness, e.g., AreaManager u TopManager ≡⊥
(cardinality) restrictions, e.g., each Employee worksFor at least 1 Project

...

Axioms are also called assertions.
A special kind of axioms are definitions.

September 29, 2020 12 / 79

Extensional level of an ontology language

At the extensional level we have individuals and facts:

An instance represents an individual (or object) in the extension of a concept.
e.g., domenico is an instance of Employee

A fact represents a relationship holding between instances.
e.g., worksFor(domenico, tones)

September 29, 2020 13 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 14 / 79

Comparison with other formalisms

Ontology languages vs. knowledge representation languages:
Ontologies are knowledge representation schemas.

Ontology vs. logic:
Logic is the tool for assigning semantics to ontology languages.

Ontology languages vs. conceptual data models:
Conceptual schemas are special ontologies, suited for conceptualizing a single logical
model (database).

Ontology languages vs. programming languages:
Class definitions are special ontologies, suited for conceptualizing a single structure for
computation.

September 29, 2020 15 / 79

Classification of ontology languages

Graph-based
Semantic networks
Conceptual graphs
UML class diagrams, Entity-Relationship diagrams

Frame-based
Frame Systems
OKBC (Open Knowledge Base Connectivity), XOL (XML-based ontology language)

Logic-based
Description Logics (e.g., SHOIQ, DLR, DL-Lite , OWL,...)
Rules (e.g., RuleML, LP/Prolog, F-Logic)
First-Order Logic (e.g., KIF)
Non-classical logics (e.g., non-monotonic, probabilistic)

September 29, 2020 16 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 17 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 18 / 79

Let’s start with an exercise

Exercise

Requirements: We are interested in building a software application to manage filmed
scenes for realizing a movie, by following the so-called “Hollywood Approach”.
Every scene is identified by a code (a string) and is described by a text in natural
language.
Every scene is filmed from different positions (at least one), each of this is called a setup.
Every setup is characterized by a code (a string) and a text in natural language where the
photographic parameters are noted (e.g., aperture, exposure, focal length, filters, etc.).
Note that a setup is related to a single scene.
For every setup, several takes may be filmed (at least one). Every take is characterized by
a (positive) natural number, a real number representing the number of meters of film
that have been used for shooting the take, and the code (a string) of the reel where the
film is stored. Note that a take is associated to a single setup.
Scenes are divided into internals that are filmed in a theater, and externals that are
filmed in a location and can either be “day scene” or “night scene”. Locations are
characterized by a code (a string) and the address of the location, and a text describing
them in natural language.
Write a precise specification of this domain using any formalism you like!

September 29, 2020 19 / 79

Solution 1: Use conceptual modeling diagrams (UML)!

September 29, 2020 20 / 79

Solution 1: Use conceptual modeling diagrams - Discussion

Good points:

Easy to generate (it’s the standard in software design).

Easy to understand for humans.

Well disciplined, well-established methodologies available.

Bad points:

No precise semantics (people that use it wave hands about it).

Verification (or better validation) done informally by humans.

Machine incomprehensible (because of lack of formal semantics).

Automated reasoning and query answering out of question.

Limited expressiveness.a

aNot really a bad point, in fact.

September 29, 2020 21 / 79

Use logic!!!

Alphabet

Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stpForScn(x, y),
tkOfStp(x, y), located(x, y),...

Axioms

∀x, y.codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y.description(x, y)→ Scene(x) ∧ Text(y)
∀x, y.codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y.photographicPars(x, y)→ Setup(x) ∧ Text(y)
∀x, y.nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y.filmedMeters(x, y)→ Take(x) ∧Real(y)
∀x, y.reel(x, y)→ Take(x) ∧ String(y)
∀x, y.theater(x, y)→ Internal(x) ∧ String(y)
∀x, y.nightScene(x, y)→ External(x) ∧Boolean(y)
∀x, y.name(x, y)→ Location(x) ∧ String(y)
∀x, y.address(x, y)→ Location(x) ∧ String(y)
∀x, y.description(x, y)→ Location(x) ∧ Text(y)
∀x.Scene(x)→ (1 ≤]{y|codeScene(x, y)} ≤ 1)
∀x.Internal(x)→ Scene(x)
∀x.External(x)→ Scene(x)
∀x.Internal(x)→ ¬External(x)
∀x.Scene(x)→ Internal(x) ∨ External(x)

∀x, y.stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y.tkOfStp(x, y)→
Take(x) ∧ Setup(y)
∀x, y.located(x, y)→
External(x) ∧ Location(y)
∀x.Setup(x)→
(1 ≤]{y|stpForScn(x, y)} ≤ 1)
∀y.Scene(y)→
(1 ≤]{x|stpForScn(x, y))}
∀x.Take(x)→
(1 ≤]{y|tkOfStp(x, y)} ≤ 1)
∀x.Setup(y)→
(1 ≤]{x|stpForScn(x, y)})
∀x.External(x)→
(1 ≤]{y|located(x, y)} ≤ 1)
. . .

September 29, 2020 22 / 79

Solution 2: Use logic - Discussion

Good points:

Precise semantics.

Formal verification.

Allows for query answering.

Machine comprehensible.

Virtually unlimited expressiveness a.

aNot necessarily a good point, in fact.

Bad points:

Difficult to generate.

Difficult to understand for humans.

Too unstructured (making reasoning difficult), no well-established methodologies
available.

Automated reasoning may be impossible.

September 29, 2020 23 / 79

Solution 3: Use both!!!

Note these two approaches seem to be orthogonal, but in fact they can be used together
cooperatively!!!

Basic idea

Assign formal semantics to constructs of the conceptual design diagrams.

Use conceptual design diagrams as usual, taking advantage of methodologies
developed for them in Software Engineering.

Read diagrams as logical theories when needed, i.e., for formal understanding,
verification, automated reasoning, etc.

Added value

Inherited from conceptual modeling diagrams: ease-to-use for humans

inherit from logic: formal semantics and reasoning tasks, which are needed for
formal verification and machine manipulation.

September 29, 2020 24 / 79

Solution 3: Use both!!! (cont’d)

Important

The logical theories that are obtained from conceptual modeling diagrams are of a
specific form.

Their expressiveness is limited (or better, well-disciplined).

One can exploit the particular form of the logical theory to simplify reasoning.

The aim is getting:
decidability, and
reasoning procedures that match the intrinsic computational complexity of reasoning
over the conceptual modeling diagrams.

September 29, 2020 25 / 79

Conceptual models vs. logic

We illustrate now what we get from interpreting conceptual modeling diagrams in logic.
We will use:

as conceptual modeling diagrams: UML Class Diagrams. Note: we could
equivalently use Entity-Relationship Diagrams instead of UML.

as logic: First-Order Logic to formally capture semantics and reasoning.

September 29, 2020 26 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 27 / 79

The Unified Modeling Language (UML)

The Unified Modeling Language (UML) was developed in 1994 by unifying and
integrating the most prominent object-oriented modeling approaches:

Booch

Rumbaugh: Object Modeling Technique (OMT)

Jacobson: Object-Oriented Software Engineering (OOSE)

History:

1995, version 0.8, Booch, Rumbaugh; 1996, version 0.9, Booch, Rumbaugh,
Jacobson; version 1.0 BRJ + Digital, IBM, HP,...

UML 1.4.2 is industrial standard ISO/IEC 19501.

Current version: 2.5.1 (December 2017): http://www.omg.org/spec/UML/

1999-today: de facto standard object-oriented modeling language.

References:

Grady Booch, James Rumbaugh, Ivar Jacobson, “The unified modeling language
user guide”, Addison Wesley, 1999 (2nd ed., 2005)

http://www.omg.org/ → UML

http://www.uml.org/

September 29, 2020 28 / 79

http://www.omg.org/spec/UML/
http://www.omg.org/
http://www.uml.org/

UML Class Diagrams

In this course we deal only with one of the most prominent components of UML: UML
Class Diagrams.
A UML Class Diagram is used to represent explicitly the information on a domain of
interest (typically the application domain of software).
Note: This is exactly the goal of all conceptual modeling formalism, such as
Entity-Relationship Diagrams (standard in Database design) or Ontologies.

September 29, 2020 29 / 79

UML Class Diagrams (cont’d)

The UML class diagram models the domain of interest in terms of:

objects grouped into classes;

associations, representing relationships between classes;

attributes, representing simple properties of the instances of classes;
Note: here we do not deal with “operations”.

sub-classing, i.e., ISA and generalization relationships.

September 29, 2020 30 / 79

Example of a UML Class Diagram

September 29, 2020 31 / 79

Use of UML Class Diagrams

UML Class Diagrams are used in various phases of a software design:

1 During the so-called analysis, where an abstract precise view of the domain of
interest needs to be developed.
 the so-called “conceptual perspective”.

2 During software development, to maintain an abstract view of the software to be
developed.
 the so-called “implementation perspective”.

In this course we focus on 1!

September 29, 2020 32 / 79

UML Class Diagrams and ER Schemas

UML class diagrams (when used for the conceptual perspective) closely resemble
Entity-Relationship (ER) Diagrams.
Example of UML vs. ER:

September 29, 2020 33 / 79

Classes in UML

Definition (Class)

A class in UML models a set of objects (its “instances”) that share certain common
properties, such as attributes, operations, etc.

Each class is characterized by:

a name (which must be unique in the whole class diagram),

a set of (local) properties, namely attributes and operations (see later).

Example

- the name of the class is ’Book’
- the class has two properties (attributes)

September 29, 2020 34 / 79

Classes in UML: instances

Definition (Instances)

The objects that belong to a class are called instances of the class. They form a so-called
instantiation (or extension) of the class.

Example

Here are some possible instantiations of our class Book:

{booka, bookb, bookc, bookd, booke}
{bookα, bookβ}
{book1, book2, book3, . . . , book500, . . . }

Which is the actual instantiation?
We will know it only at run-time!!! - We are now at design time!

September 29, 2020 35 / 79

Classes in UML: formalization

A class represents a set of objects. ... But which set? We don’t actually know.
So, how can we assign a semantics to such a class?

Definition (Class representation)

We represent a class as a FOL unary predicate!

Example

For our class Book, we introduce a predicate Book(x).

September 29, 2020 36 / 79

Associations

Definition (Association)

An association in UML models a relationship between two or more classes.

At the instance level, an association is a relation between the instances of two or
more classes.

Associations model properties of classes that are non-local, in the sense that they
involve other classes.

An association between n classes is a property of each of these classes.

Example

September 29, 2020 37 / 79

Associations: formalization

Definition (Association representation)

We can represent an n-ary association A among classes C1, . . . , Cn as an n-ary predicate
A in FOL.
We assert that the components of the predicate must belong to the classes participating
in the association:

∀x1, . . . , xn.A(x1, . . . , xn)→ C1(x1) ∧ · · · ∧ Cn(xn)

Example

∀x1, x2.writtenBy(x1, x2)→ Book(x1) ∧Author(x2)

September 29, 2020 38 / 79

Associations: multiplicity

Definition (Multiplicity Constraints)

On binary associations, we can place multiplicity constraints, i.e., a minimal and maximal
number of tuples in which every object participates as first (second) component.

Example

Note: UML multiplicities for associations are look-across and are not easy to use in an
intuitive way for n-ary associations. So typically they are not used at all.
In contrast, in ER Schemas, multiplicities are not look-across and are easy to use, and
widely used.

September 29, 2020 39 / 79

Associations: formalization of multiplicities

Definition (Multiplicity constraint representation)

Multiplicities of binary associations are easily expressible in FOL:

∀x1.C1(x1)→ (min1 ≤]{x2|A(x1, x2)} ≤ max1)

∀x2.C2(x2)→ (min2 ≤]{x1|A(x1, x2)} ≤ max2)

Example

∀x.Book(x)→ (1 ≤]{y|writtenby(x, y)})

Note: this is an abreviation for a FOL formula expressing the cardinality of the set of
possible values for y.

September 29, 2020 40 / 79

Expressing multiplicities in FOL

We use expressions m ≤]{x|ϕ(x)} and]{x|ϕ(x)} ≤ n as abbreviations.

Minimum cardinality m ≤]{x|ϕ(x)}

m ≤]{x|ϕ(x)} = ∃x1, . . . , xm.(ϕ(x1) ∧ · · · ∧ ϕ(xm) ∧
∧

1≤i<m
i<j≤m

xi 6= xj)

Maximum cardinality]{x|ϕ(x)} ≤ n

]{x|ϕ(x)} ≤ n = ∀x1, . . . , xn, xn+1.((ϕ(x1) ∧ · · · ∧ ϕ(xn+1)→
∨

1≤i<n
i<j≤n+1

xi = xj)

Note: We need FOL with equality

September 29, 2020 41 / 79

In our example . . .

September 29, 2020 42 / 79

In our example...

Alphabet

Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stpForScn(x, y),
tkOfStp(x, y), located(x, y),...

Axioms

∀x, y.codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y.description(x, y)→ Scene(x) ∧ Text(y)
∀x, y.codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y.photographicPars(x, y)→ Setup(x) ∧ Text(y)
∀x, y.nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y.filmedMeters(x, y)→ Take(x) ∧Real(y)
∀x, y.reel(x, y)→ Take(x) ∧ String(y)
∀x, y.theater(x, y)→ Internal(x) ∧ String(y)
∀x, y.nightScene(x, y)→ External(x) ∧Boolean(y)
∀x, y.name(x, y)→ Location(x) ∧ String(y)
∀x, y.address(x, y)→ Location(x) ∧ String(y)
∀x, y.description(x, y)→ Location(x) ∧ Text(y)
∀x.Scene(x)→ (1 ≤]{y|codeScene(x, y)} ≤ 1)
∀x.Internal(x)→ Scene(x)
∀x.External(x)→ Scene(x)
∀x.Internal(x)→ ¬External(x)
∀x.Scene(x)→ Internal(x) ∨ External(x)

∀x, y.stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y.tkOfStp(x, y)→
Take(x) ∧ Setup(y)
∀x, y.located(x, y)→
External(x) ∧ Location(y)
∀x.Setup(x)→
(1 ≤]{y|stpForScn(x, y)} ≤ 1)
∀y.Scene(y)→
(1 ≤]{x|stpForScn(x, y))}
∀x.Take(x)→
(1 ≤]{y|tkOfStp(x, y)} ≤ 1)
∀x.Setup(y)→
(1 ≤]{x|stpForScn(x, y)})
∀x.External(x)→
(1 ≤]{y|located(x, y)} ≤ 1)
. . .

September 29, 2020 43 / 79

Associations: most interesting multiplicities

The most interesting multiplicities are:

0..∗ : unconstrained

1..∗ : mandatory participation

0..1 : functional participation (the association is a partial function)

1..1 : mandatory and functional participation (the association is a total faction)

Definition (In FOL)

0..∗ : no constraint

1..∗ : ∀x.(C1(x)→ ∃y.A(x, y))

0..1 : ∀x.(C1(x)→ ∀y, y′.(A(x, y) ∧A(x, y′)→ y = y′))
(or simply ∀x, y, y′(A(x, y) ∧A(x, y′)→ y = y′))

1..1 : (∀x.(C1(x)→ ∃y.A(x, y))) ∧ (∀x, y, y′((A(x, y) ∧A(x, y′))→ y = y′))

September 29, 2020 44 / 79

Attributes

Definition (Attribute)

An attribute models a local property of a class.

It is characterized by:

a name (which is unique only in the class it belongs to),

a type (a collection of possible values),

and possibly a multiplicity.

Example

-The name of one of the attributes is ’title’.
-Its type is ’String’.

September 29, 2020 45 / 79

Attributes as functions

Attributes (without explicit multiplicity) are:

mandatory (must have at least a value), and

single-valued (can have at most one value).

That is, they are total functions from the instances of the class to the values of the type
they have.

Example

book3 has as value for the attribute ’title’ the String: “The little digital video book”.

September 29, 2020 46 / 79

Attributes with multiplicity

More generally, attributes may have an explicit multiplicity (similar to that of
associations).

Example

-The attribute ’title’ has an implicit multiplicity of 1..1.
-The attribute ’keywords’ has an explicit multiplicity of 1..5.

Note: When the multiplicity is not specified, then it is assumed to be 1..1

September 29, 2020 47 / 79

Attributes: formalization

Since attributes may have a multiplicity different from 1..1, they are better formalized as
binary predicates, with suitable assertions representing types and multiplicity.

Definition (Attribute representation)

Given an attribute att of a class C with type T and multiplicity i..j, we capture it in FOL
as a binary predicate attC(x, y) with the following assertions:

An assertion for the attribute type:

∀x, y.attC(x, y)→ C(x) ∧ T (y)

An assertion for the multiplicity:

∀x.C(x)→ (i ≤]{y|attC(x, y)} ≤ j)

September 29, 2020 48 / 79

Attributes: example of formalization

Example

∀x, y.titleB(x, y)→ Book(x) ∧ String(y)

∀x.Book(x)→ (1 ≤]{y|titleB(x, y)} ≤ 1)

∀x, y.pagesB(x, y)→ Book(x) ∧ Integer(y)

∀x.Book(x)→ (1 ≤]{y|pagesB(x, y)} ≤ 1)

∀x, y.keywordsB(x, y)→ Book(x) ∧ String(y)

∀x.Book(x)→ (1 ≤]{y|keywordsB(x, y)} ≤ 5)

September 29, 2020 49 / 79

In our example...

September 29, 2020 50 / 79

In our Example

Alphabet

Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stpForScn(x, y),
tkOfStp(x, y), located(x, y),...

Axioms

∀x, y.codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y.description(x, y)→ Scene(x) ∧ Text(y)
∀x, y.codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y.photographicPars(x, y)→ Setup(x) ∧ Text(y)
∀x, y.nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y.filmedMeters(x, y)→ Take(x) ∧Real(y)
∀x, y.reel(x, y)→ Take(x) ∧ String(y)
∀x, y.theater(x, y)→ Internal(x) ∧ String(y)
∀x, y.nightScene(x, y)→ External(x) ∧Boolean(y)
∀x, y.name(x, y)→ Location(x) ∧ String(y)
∀x, y.address(x, y)→ Location(x) ∧ String(y)
∀x, y.description(x, y)→ Location(x) ∧ Text(y)
∀x.Scene(x)→ (1 ≤]{y|codeScene(x, y)} ≤ 1)
∀x.Internal(x)→ Scene(x)
∀x.External(x)→ Scene(x)
∀x.Internal(x)→ ¬External(x)
∀x.Scene(x)→ Internal(x) ∨ External(x)

∀x, y.stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y.tkOfStp(x, y)→
Take(x) ∧ Setup(y)
∀x, y.located(x, y)→
External(x) ∧ Location(y)
∀x.Setup(x)→
(1 ≤]{y|stpForScn(x, y)} ≤ 1)
∀y.Scene(y)→
(1 ≤]{x|stpForScn(x, y))}
∀x.Take(x)→
(1 ≤]{y|tkOfStp(x, y)} ≤ 1)
∀x.Setup(y)→
(1 ≤]{x|stpForScn(x, y)})
∀x.External(x)→
(1 ≤]{y|located(x, y)} ≤ 1)
. . .

September 29, 2020 51 / 79

ISA and generalizations

The ISA relationship is of particular importance in conceptual modeling: a class C ISA a
class C′ if every instance of C is also an instance of C′.

Generalization

In UML, the ISA relationship is modeled through the notion of generalization.

Example

The attibute ’name’ is inherited by ’Author’.

September 29, 2020 52 / 79

Generalizations

A generalization involves a superclass (base class) and one or more subclasses: every
instance of each subclass is also an instance of the superclass.

Example

September 29, 2020 53 / 79

Generalizations with constraints

The ability of having more subclasses in the same generalization, allows for placing
suitable constraints on the classes involved in the generalization.

Example

September 29, 2020 54 / 79

Generalizations with constraints (cont’d)

Most notable and used constraints:

Disjointness, which asserts that different subclasses cannot have common instances
(i.e., an object cannot be at the same time instance of two disjoint subclasses).

Completeness (aka “covering”), which asserts that every instance of the superclass
is also an instance of at least one of the subclasses.

Example

September 29, 2020 55 / 79

Generalizations: formalization

Definition (Generalization representation)

ISA: ∀x.Ci(x)→ C(x), for 1 ≤ i ≤ k
Disjointness: ∀x.Ci(x)→ ¬Cj(x), for 1 ≤ i < j ≤ k

Completeness: ∀x.C(x)→
∨k
i=1 Ci(x)

September 29, 2020 56 / 79

Generalizations: example of formalization

Example

∀x.Child(x)→ Person(x)

∀x.Teenager(x)→ Person(x)

∀x.Adult(x)→ Person(x)

∀x.Child(x)→ ¬Teenager(x)

∀x.Child(x)→ ¬Adult(x)

∀x.Teenager(x)→ ¬Adult(x)

∀x.Person(x)→ (Child(x) ∨ Teenager(x) ∨Adult(x))

September 29, 2020 57 / 79

In our example ...

September 29, 2020 58 / 79

In our Example

Alphabet

Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stpForScn(x, y),
tkOfStp(x, y), located(x, y),...

Axioms

∀x, y.codeScene(x, y)→ Scene(x) ∧ String(y)
∀x, y.description(x, y)→ Scene(x) ∧ Text(y)
∀x, y.codeSetup(x, y)→ Setup(x) ∧ String(y)
∀x, y.photographicPars(x, y)→ Setup(x) ∧ Text(y)
∀x, y.nbr(x, y)→ Take(x) ∧ Integer(y)
∀x, y.filmedMeters(x, y)→ Take(x) ∧Real(y)
∀x, y.reel(x, y)→ Take(x) ∧ String(y)
∀x, y.theater(x, y)→ Internal(x) ∧ String(y)
∀x, y.nightScene(x, y)→ External(x) ∧Boolean(y)
∀x, y.name(x, y)→ Location(x) ∧ String(y)
∀x, y.address(x, y)→ Location(x) ∧ String(y)
∀x, y.description(x, y)→ Location(x) ∧ Text(y)
∀x.Scene(x)→ (1 ≤]{y|codeScene(x, y)} ≤ 1)
∀x.Internal(x)→ Scene(x)
∀x.External(x)→ Scene(x)
∀x.Internal(x)→ ¬External(x)
∀x.Scene(x)→ Internal(x) ∨ External(x)

∀x, y.stpForScn(x, y)→
Setup(x) ∧ Scene(y)
∀x, y.tkOfStp(x, y)→
Take(x) ∧ Setup(y)
∀x, y.located(x, y)→
External(x) ∧ Location(y)
∀x.Setup(x)→
(1 ≤]{y|stpForScn(x, y)} ≤ 1)
∀y.Scene(y)→
(1 ≤]{x|stpForScn(x, y))}
∀x.Take(x)→
(1 ≤]{y|tkOfStp(x, y)} ≤ 1)
∀x.Setup(y)→
(1 ≤]{x|stpForScn(x, y)})
∀x.External(x)→
(1 ≤]{y|located(x, y)} ≤ 1)
. . .

September 29, 2020 59 / 79

Association classes

Sometimes we may want to assert properties of associations. In UML to do so we resort
to association classes:

That is, we associate to an association a class whose instances are in bijection with
the tuples of the association.

Then, we use the association class exactly as a UML class (modeling local and
non-local properties).

September 29, 2020 60 / 79

Association class - Example

September 29, 2020 61 / 79

Association class - Example (cont’d)

September 29, 2020 62 / 79

Association classes: formalization

Definition (Reification)

The process of putting in correspondence objects of a class (the association class) with
tuples in an association is formally described as reification.
That is:

We introduce a unary predicate A for the association class A.

We introduce n new binary predicates A1, . . . , An, one for each of the components
of the association.

We introduce suitable assertions so that objects in the extension of the
unary-predicate A are in bijection with tuples in the n-ary association A.

September 29, 2020 63 / 79

Association classes: formalization (cont’d)

Definition

Association Class Representation FOL Assertions are needed for stating a bijection
between instances of the association class and instances of the association:

∀x, y.Ai(x, y)→ A(x) ∧ Ci(y), for i ∈ {1, . . . , n}
∀x.A(x)→ ∃y.Ai(x, y), for i ∈ {1, . . . , n}
∀x, y, y′.Ai(x, y) ∧Ai(x, y

′)→ y = y′, for i ∈ {1, . . . , n}

∀x, x′, y1, . . . , yn.
n∧
i=1

(Ai(x, yi) ∧Ai(x
′, yi))→ x = x′

September 29, 2020 64 / 79

Association classes: example of formalization

Example

∀x, y.wb1(x, y)→ writtenBy(x) ∧Book(y)

∀x, y.wb2(x, y)→ writtenBy(x) ∧Author(y)

∀x.writtenBy(x)→ ∃y.wb1(x, y)

∀x.writtenBy(x)→ ∃y.wb2(x, y)

∀x, y, y′.wb1(x, y) ∧ wb1(x, y′)→ y = y′

∀x, y, y′.wb2(x, y) ∧ wb2(x, y′)→ y = y′

∀x, x′, y1, y2.wb1(x, y1) ∧ wb1(x′, y1) ∧ wb2(x, y2) ∧ wb2(x′, y2)→ x = x′

September 29, 2020 65 / 79

Outline

1 Ontology Languages
Elements of an ontology language
Intensional and extensional level of an ontology language
Ontologies vs. other formalisms

2 UML class diagrams as FOL ontologies
Approaches to conceptual modelling
Formalising UML class diagram in FOL
Reasoning on UML class diagrams

September 29, 2020 66 / 79

Forms of reasoning: class consistency

Definition (Class Consistency)

A class is consistent, if the class diagram admits an instantiation in which the class has a
non-empty set of instances.

Theorem

Let Γ be the set of FOL assertions corresponding to the UML Class Diagram, and C(x)
the predicate corresponding to a class C of the diagram.
Then C is consistent iff

Γ 6|= ∀x.C(x)→ false

i.e., there exists a model of Γ in which the extension of C(x) is not the empty set.

Note: Corresponding FOL reasoning task: satisfiability.

September 29, 2020 67 / 79

Class consistency: example (by E. Franconi)

Γ |= ∀x.LatinLover(x)→ false

September 29, 2020 68 / 79

Forms of reasoning: whole diagram consistency

Definition (Class Diagram Consistency)

A class diagram is consistent, if it admits an instantiation, i.e., if its classes can be
populated without violating any of the conditions imposed by the diagram.

Theorem

Let Γ be the set of FOL assertions corresponding to the UML Class Diagram.
Then, the diagram is consistent iff

Γ is satisfiable

i.e., Γ admits at least one model. (Remember that FOL models cannot be empty.)

Note: Corresponding FOL reasoning task: satisfiability.

September 29, 2020 69 / 79

Forms of reasoning: class subsumption

Definition (Class Subsumption)

A class C1 is subsumed by a class C2 (or C2 subsumes C1), if the class diagram implies
that C2 is a generalization of C1.

Theorem

Let Γ be the set of FOL assertions corresponding to the UML Class Diagram, and C1(x),
C2(x) the predicates corresponding to the classes C1, and C2 of the diagram.
Then C1 is subsumed by C2 iff

Γ |= ∀x.C1(x)→ C2(x)

Note: Corresponding FOL reasoning task: logical implication.

September 29, 2020 70 / 79

Class subsumption: example

Γ |= ∀x.LatinLover(x)→ false

Γ |= ∀x.Italian(x)→ Lazy(x)

September 29, 2020 71 / 79

Class subsumption: another example (by E. Franconi)

Γ |= ∀x.ItalianProf(x)→ LatinLover(x)

Note: this is an example of reasoning by cases.

September 29, 2020 72 / 79

Forms of reasoning: class equivalence

Definition (Class Equivalence)

Two classes C1 and C2 are equivalent, if C1 and C2 denote the same set of instances in
all instantiations of the class diagram.

Theorem

Let Γ be the set of FOL assertions corresponding to the UML Class Diagram, and
C1(x), C2(x) the predicates corresponding to the classes C1, and C2 of the diagram.
Then C1 and C2 are equivalent iff

Γ |= ∀x.C1(x)↔ C2(x)

Note:

If two classes are equivalent, then one of them is redundant.

Determining equivalence of two classes allows for their merging, thus reducing the
complexity of the diagram.

September 29, 2020 73 / 79

Class equivalence: example

Γ |= ∀x.ItalianLover(x)→ false

Γ |= ∀x.Italian(x)→ Lazy(x)

Γ |= ∀x.Lazy(x) ≡ Italian(x)

September 29, 2020 74 / 79

Forms of reasoning: implicit consequence

The properties of various classes and associations may interact to yield stricter
multiplicities or typing than those explicitly specified in the diagram.
More generally...

Definition (Implicit Consequence)

A property P is an (implicit) consequence of a class diagram if P holds whenever all
conditions imposed by the diagram are satisfied.

Theorem

Let Γ be the set of FOL assertions corresponding to the UML Class Diagram, and P (the
formalization in FOL of) the property of interest
Then P is an implicit consequence iff

Γ |= P

i.e., the property P holds in every model of Γ.

Note: Corresponding FOL reasoning task: logical implication.

September 29, 2020 75 / 79

Implicit consequences: example

Γ |= ∀x.AdvCourse(x2)→]{x1|gradAttends(x1, x2)} ≤ 15

Γ |= ∀x.GradStudent(x)→ Student(x)

Γ 6|= ∀x.AdvCourse(x)→ Course(x)

September 29, 2020 76 / 79

Unrestricted vs. finite model reasoning

Due to the multiplicities, the classes NaturalNumber and EvenNumber are in
bijection.
As a consequence, in every instantiation of the diagram, “the classes
NaturalNumber and EvenNumber contain the same number of objects”.

Due to the ISA relationship, every instance of EvenNumber is also an instance of
NaturalNumber, i.e., we have that

Γ |= ∀x.EvenNumber(x)→ NaturalNumber(x)

September 29, 2020 77 / 79

Unrestricted vs. finite model reasoning (cont’d)

Question: Does also the reverse implication hold, i.e.,

Γ |= ∀x.NaturalNumber(x)→ EvenNumber(x) ?

if the domain is infinite, the implication does not hold.

If the domain is finite, the implication does hold.

Finite model reasoning: means reasoning only with respect to models with a finite
domain.

Finite model reasoning is interesting for standard databases.

The previous example shows that in UML Class Diagrams, finite model reasoning is
different from unrestricted model reasoning.

September 29, 2020 78 / 79

Questions

In the above examples reasoning could be easily carried out on intuitive grounds.
However, two questions come up.

1. Can we develop sound, complete, and terminating procedures for reasoning on UML
Class Diagrams?

We cannot do so by directly relying on FOL!

But we can use specialized logics with better computational properties. A form of
such specialized logics are Description Logics.

2. How hard is it to reason on UML Class Diagrams in general?

What is the worst-case situation?

Can we single out interesting fragments on which to reason efficiently?

Note: all what we have said holds for Entity-Relationship Diagrams as well

September 29, 2020 79 / 79

	Ontology Languages
	Elements of an ontology language
	Intensional and extensional level of an ontology language
	Ontologies vs. other formalisms

	UML class diagrams as FOL ontologies
	Approaches to conceptual modelling
	Formalising UML class diagram in FOL
	Reasoning on UML class diagrams

