
LOGIC PROGRAMMING
Well-Founded Semantics



Properties of SMs

¨ Stable models are minimal models
¨ Stable models are supported



Importance of Stable Models

¨ Stable Models were an important contribution:
¤ Introduced the notion of default negation (versus 

negation as failure)
¤ Allowed important connections to NMR. Started the 

area of LP&NMR
¤ Allowed for a better understanding of the use of LPs in 

Knowledge Representation

¨ It is considered as THE semantics of LPs by a 
significant part of the community.

¨ However…



Relevance

¨ A directly depends on B if B occurs in the body of 
some rule with head A. A depends on B if A directly 
depends on B or there is a C such that A directly 
depends on C and C depends on B.

¨ A semantics Sem is relevant iff for every program P, 
AÎSem(P) iff AÎSem(RelA(P))
¤ where RelA (P) contains all rules of P whose head is A or 

some B on which A depends.
¨ This property is required to allow for the usual top-

down execution of logic programs.



Cumulativity

¨ A semantics Sem is cumulative iff for every program 
P, if AÎSem(P) and BÎSem(P) then BÎSem(PÈ{A})
¤ i.e. all derived atoms can be added as facts without 

changing the program’s meaning.

¨ This property is very important for implementations.
¤ Without it, tabling methods cannot be used.



Problems with Stable Models

¨ The stable models semantics does not assign meaning to 
every program
¤ E.g. program {a¬ not a} has no stable models.

¨ The stable models semantics is not cumulative nor
relevant. Let P be
a¬not b. b¬not a. c¬not a. c¬not c.
whose unique stable model is {b,c}.
¤ Non-cumulative: b is not true in PÈ{c}.

n PÈ{c} has 2 stable models: {b,c} and {a,c}, so only c is true.
¤ Non-relevant:  b is not true in Relb(P).

n the rules in Relb(P) are a¬not b. and b¬not a.
n Relb(P) has 2 stable models: {b} and {a}, so b and a are not true.



Problems with Stable Models

¨ The computation of Stable Models is NP-Complete 
(for normal logic programs)

¨ The stable models semantics (taken as the 
intersection of all stable modes) is non-supported.
¤ Let P be  a¬not b      b¬not a. c¬a. c¬b.
P has two stable models: {a,c} and {b,c}, so c is true in P, 

even though there is no rule whose body is true in P 
(neither a nor b are true in P).



ASP vs. Prolog-like programming

¨ ASP is adequate for:
¤ NP-complete problems
¤ situations where the whole program is relevant for the 

problem at hand

¨ But if the problem is polynomial, why use such a 
complex system?

¨ If only part of the program is relevant for the 
desired query, why compute the entire model?



ASP vs. Prolog like programming

¨ For such problems, top-down, goal-driven 
mechanisms seem more adequate

¨ This type of mechanisms is used by Prolog
¤ Solutions come in variable substitutions rather than in 

complete models
¤ The system is activated by queries
¤ No global analysis is made

n only the relevant part of the program is visited



Problems with Prolog

¨ Declarative semantics of Prolog is the completion
¤ All the problems of completion are inherited by Prolog

¨ According to SLDNF, termination is not guaranteed
¤ even for Datalog programs (i.e. programs with finite 

ground version)

¨ A proper semantics is still needed



Well-Founded Semantics

¨ Defined in [GRS90], generalizes SMs to 3-valued 
models (true/undefined/false).

¨ Note that
¤ there are programs with no fixpoints of GP
¤ but all programs have fixpoints of GP

2

n recall that GP(I)= least(P/I)

¤ P={a¬ not a}
n GP({a})={} and GP({})={a} so there are no Stable Models
n But GP

2({a})={a} and GP
2({})={} 



Partial Stable Models

¨ A three-valued interpretation T È not F is a Partial Stable
Model (PSM) if:
¤ T=GP2(T)
¤ TÍ GP(T)
¤ F=HP-GP(T)
The 2nd condition guarantees that no atom is both true and false: 
T∪F = ∅

¨ P={a¬ not a}
¤ has a unique PSM: {}

¨ P={a¬not b. b¬not a. c¬not a. c¬not c.}
¤ Has three PSMs: {}, {a, not b} and {c, b, not a}
¤ The last one ({c, b, not a}) corresponds to the unique SM.



Well-Founded Model

¨ Let P be a program. The Well-Founded Model 
(WFM) of P is the least Partial Stable Model (w.r.t. 
knowledge ordering i.e. Í).

¨ Given a program P, consider the following 
transfinite sequence:
¤ T0 = {}
¤ Ti+1 = GP

2(Ti)
¤ Td = Èa<dTa
¤ …and let T be its least fixpoint.

¨ I = T È not (HP-GP(T)) is the Well-Founded Model 
of P.



Well-Founded Semantics

¨ Let I = T È not F be the Well-Founded Model of P. 
Then, according to the well-founded semantics:
¤ A is true in P iff A Î I
¤ A is false in P iff not A Î I (i.e. if A Î F)
¤ A is undefined in P otherwise (i.e. A Ï I and not A Ï I), 



Properties of the Well-Founded
Semantics

¨ Every program is assigned a meaning
¨ For each SM, there is a PSM extending it

¤ If WFM is total, it coincides with the single SM

¨ It is sound w.r.t. the SM semantics
¤ If P has stable models and A is true (resp. false) in the 

WFM, it is also true (resp. false) in all SMs

¨ WFM coincides with the least model in definite 
programs



Properties of the Well-Founded
Semantics

¨ The WFM is supported
¨ WFS is cumulative and relevant
¨ Its computation is polynomial 

¤ on the number of instantiated rules of P

¨ There are top-down proof-procedures, and sound 
implementations



Stable Models Problems Revisited

¨ The previously mentioned problems of the Stable 
Models are not necessarily problematic
¤ Relevance is not desired when analyzing global 

problems
¤ If the SMs correspond to the solutions of a problem, 

programs without SMs simply correspond to problems 
without solutions.

¤ Some problems are in NP. So using an NP language is 
not a problem.

¤ In case of NP problems, the efficiency gains from 
cumulativity are not really an issue.



Stable Models vs. Well-Founded
Model
¨ Yield different forms of programming and of 

representing knowledge, for usage with different 
purposes

¨ Well-Founded Model:
¤ Closer to that of Prolog
¤ Local reasoning (and relevance) are important
¤ When efficiency is an issue even at the cost of expressivity

¨ Stable Models
¤ For dealing with NP-complete problems
¤ Global reasoning
¤ Different form of programming, not close to that of Prolog

n Solutions are models, rather than answer/substitutions



Adding Strong Negation

¨ In Normal LPs all the negative information is implicit. 
¨ Though that is desired in some cases (e.g. the database with flight 

connections), sometimes an explicit form of negation, is needed for 
Knowledge Representation.

¨ For example, we may want to say that penguins do not fly using the rule:
no_fly(X) ¬ penguin(X)

¨ But if we also have a rule:
fly(X) ¬ bird(X)

¨ We do not have any logical relation between no_fly(X) and fly(X).
¨ We would like to have ¬ (strong negation) to be able to write:

¬fly(X) ¬ penguin(X)
¨ …and deal with it in a way that fly(X) and ¬fly(X) are related (and 

inconsistent).



Adding Strong Negation

¨ Also, in rule bodies one form of negation does not seem to 
be enough…

¨ For example, it is fine to define innocence in terms of guilt 
as follows:

innocent(X) ¬ not guilty(X)
¨ But what if we want to define guilt in terms of innocence? 

The following rule does not seem appropriate:
guilty(X) ¬ not innocent(X)

¨ We should require that someone is (really) not innocent, 
instead of not innocent by default. The rule should be 
something like:

guilty(X) ¬ ¬innocent(X)



Adding Strong Negation

¨ The difference between not p and ¬p is essential 
whenever information about p cannot be assumed.
¤ Open vs. Closed World Assumption



Adding Strong Negation to Stable
Models

¨ Historically, the addition of Strong Negation to the 
Stable Model Semantics coincided with the change 
in name from Stable Models to Answer Sets.

¨ The simpler way to extend the Stable Models 
semantics is to:
¤ Extend the Herbrand base HP with the set {¬A | AÎHP}
¤ Extend every program with the ICs, for every AÎHP

¬ ¬A, A.
¤ Treat ¬A and A as if they are both unrelated atoms.



Adding Strong Negation to the
Well-Founded Semantics
¨ Generalizing the WFS the same way is not

appropriate. Consider for example the program:
pacifist(X)¬ not hawk(X).
hawk(X) ¬ not pacifist(X).
¬pacifist(kissinger)

¨ Using the same method, the WFS would be
{¬pacifist(kissinger)}. Despite the fact that we are 
explicitely stating that kissinger is not a pacifist, we
cannot conclude that he is a hawk!

¨ Coherence needs to be imposed, i.e., ¬LÎTÞLÎF
¤ For L = A or L = ¬A and ¬¬A=A



WFSX

¨ The semi-normal version of P, PS, is obtained by adding
not ¬L to every rule of P with head L.
¤ So, pacifist(X )¬ not hawk(X). becomes

pacifist(X) ¬ not hawk(X), not ¬pacifist(X).
¨ A three-valued interpretation T È not F is a Partial

Stable Model of P:
¤ T=GPGPS

(T)
¤ TÍ GPS

(T)
¤ F=HP-GPS 

(T)
¨ Let P be a program. The WFSX model of P is the least 

Partial Stable Model (w.r.t. knowledge ordering i.e. Í).



WFSX Example

P:

pacifist(X)¬not hawk(X).

hawk(X)¬not pacifist(X).

¬pacifist(k).

PS:

pacifist(X)¬not hawk(X), not ¬pacifist(X).

hawk(X)¬not pacifist(X), not ¬ hawk(X).

¬pacifist(k)¬ not pacifist(k).

The well-founded model is:

{¬pacifist(k), hawk(k), not pacifist(k), not ¬hawk(k), not ¬pacifist(b), not ¬hawk(b)}

Assume we have another person b.

T0 = {}

GPS(T0) = {¬p(k),p(k),h(k),p(b),h(b)}

T1=GPGPS(T0) = {¬p(k)}

GPS(T1) = {¬p(k),h(k),p(b),h(b)}

T2= GPGPS(T1) = {¬p(k),h(k)}

GPS(T2) = {¬p(k),h(k),p(b),h(b)}

T3= GPGPS(T2) = {¬p(k),h(k)}

T3 = T2



Properties of WFSX

¨ Complies with the coherence principle
¨ Coincides with WFS for normal programs
¨ If WFSX is total, it coincides with the unique answer 

set
¨ It is sound w.r.t. answer sets
¨ It is supported, cumulative, and relevant
¨ Its computation is polynomial
¨ It has sound implementations



Inconsistent Programs

¨ Some programs have no WFSX model.
a ¬ ¬a ¬

¨ Three alternatives:
¨ Explosive approach: everything follows from contradiction

¤ like in First-Order Logic
¤ provides no information in the presence of contradiction

¨ Belief revision approach: remove contradiction by revising P
¤ computationally expensive

¨ Paraconsistent approach: isolate contradiction
¤ efficient
¤ allows to reason about the non-contradictory part



WFSXp

¨ A three-valued interpretation T È not F is a Paraconsistent
Partial Stable Model of P (the condition TÍ GPS(T) is
dropped):
¤ T=GPGPS(T)
¤ F=HP-GPS 

(T)

¨ Let P be a program. The WFSXp model of P is the 
least Paraconsistent Partial Stable Model (w.r.t. 
knowledge ordering i.e. Í).



WFSXp Example

P:

c¬not b.

b¬a.

d¬not e.

a¬.

¬a¬.

PS:

c¬not b, not ¬c.

b¬a, not ¬b.

d¬not e, not ¬d.

a¬not ¬a.

¬a¬not a.

T0 = {}

GPS(T0) = {¬a, a, b, c, d}

T1=GPGPS(T0) = {¬a, a, b, d}

GPS(T1) = {d}

T2= GPGPS(T1) = {¬a, a, b, c, d}

GPS(T2) = {d}

T3= GPGPS(T2) = {¬a, a, b, c, d}

T3 = T2

The well-founded model is 

{¬a, a, b, c, d, not a, not ¬a, not b, 

not ¬b, not c, not ¬c, not ¬d, not e}



House M.D.

¨ A patient arrives with: sudden epigastric pain; abdominal 
tenderness; signs of peritoneal irritation

¨ The rules for diagnosing are:
¨ if he has sudden epigastric pain, abdominal tenderness, and signs of 

peritoneal irritation, then he has perforation of a peptic ulcer or an 
acute pancreatitis

¨ the former requires major surgery, the latter therapeutic treatment
¨ if he has high amylase levels, then a perforation of a peptic ulcer 

can be exonerated
¨ if he has Jobert’s manifestation, then pancreatitis can be exonerated
¨ In both situations, the patient should not be nourished, but should 

take H2 antagonists



House M.D.

perforation ¬ pain, abd-tender, per-irrit, not high-amylase
pancreat ¬ pain, abd-tender, per-irrit, not jobert
¬nourish ¬ perforation h2-ant ¬ perforation
¬nourish ¬ pancreat h2-ant ¬ pancreat
surgery ¬ perforation anesthesia ¬ surgery
¬surgery ¬ pancreat
pain. per-irrit. ¬high-amylase.
abd-tender. ¬jobert.
¨ The WFSXp model is:

{pain, not ¬pain, abd-tender, not ¬abd-tender, per-irrit, not ¬per-irrit, ¬high-am, 
not high-am, ¬jobert, not jobert, perforation, not ¬perforation, pancreat, not 
¬pancreat, ¬nourish, not nourish, h2-ant, not ¬h2-ant, surgery, ¬surgery, not 
surgery, not ¬surgery, anesthesia, not anesthesia, not ¬anesthesia}



House M.D.

The WFSXp model is:
{pain, not ¬pain, abd-tender, not ¬abd-tender, per-irrit, not ¬per-
irrit, ¬high-am, not high-am, ¬jobert, not jobert, perforation, not 
¬perforation, pancreat, not ¬pancreat, ¬nourish, not nourish, h2-
ant, not ¬h2-ant, surgery, ¬surgery, not surgery, not ¬surgery, 
anesthesia, not anesthesia, not ¬anesthesia}

¨ The symptoms are derived and non-contradictory
¨ Both perforation and pancreatitis are concluded
¨ He should not be fed (¬nourish), but should take H2 antagonists
¨ The information about surgery is contradictory
¨ Anesthesia, though not explicitly  contradictory (¬anesthesia does 

not belong to WFM) relies on contradiction (both anesthesia and not 
anesthesia belong to WFM)



Representing Knowledge with WFSX



A methodology for KR

¨ WFSXp provides mechanisms for representing usual 
KR problems:
¤ logic language
¤ non-monotonic mechanisms for defaults
¤ forms of explicitly representing negation
¤ paraconsistency handling
¤ ways of dealing with undefinedness

¨ In what follows, we propose a methodology for KR 
using WFSXp



Representation method (1)

Definite rules If A, then B:
¤ B ¬ A

n penguins are birds: bird(X) ¬ penguin(X)

Default rules Normally, if A, then B:
¤ B ¬ A, rule_name, not ¬B

rule_name ¬ not ¬rule_name
n birds normally fly: fly(X) ¬ bird(X), bf(X), not ¬fly(X)

bf(X) ¬ not ¬bf(X)



Representation method (2)

Exception to default rules Under conditions COND, do not 
apply the rule named rule_name:
¤ ¬rule_name ¬ COND

n Penguins are an exception to the birds-fly rule ¬bf(X) ¬ 
penguin(X)

Preference rules Under conditions COND, prefer rule 
RULE+ (named rule_pref) to RULE-: named rule_unpref)
¤ ¬rule_unpref ¬ COND, rule_pref

n for penguins, prefer the penguins-do-not-fly to the birds-fly 
rule: ¬bf(X) ¬ penguin(X), pdf(X)



Representation method (3)

Hypothetical rules “If A, then B” may or not apply:
¤ B ¬ A, rule_name, not ¬B

rule_name ¬ not ¬rule_name
¬rule_name ¬ not rule_name
n quakers might be pacifists:

pacifist(X) ¬ quaker(X), qp(X), not ¬pacifist(X)
qp(X) ¬ not ¬qp(X)
¬qp(X) ¬ not qp(X)

For a quaker, there is a PSM with pacifist, another with not pacifist. In 
the WFM pacifist is undefined



Taxonomy example

¨ The taxonomy
¤ Mammals are animals

¤ Bats are mammals

¤ Birds are animals

¤ Penguins are birds

¤ Dead animals are animals

¨ The preferences
¤ Dead bats don’t fly though bats do

¤ Dead birds don’t fly though birds do

¤ Dracula is an exception to the above

¤ In general, more specific information 
is preferred

¤ Normally animals don’t fly

¤ Normally bats fly

¤ Normally birds fly

¤ Normally penguins don’t fly

¤ Normally dead animals don’t fly

¨ The elements
¤ Pluto is a mammal

¤ Joe is a penguin

¤ Tweety is a bird

¤ Dracula is a dead bat



The taxonomy

flies

animal

bird

penguin

mammal

bat

dead animal

plutotweety draculajoe

Definite rules
Default rules

Negated default rules



Taxonomy representation
Taxonomy
animal(X) ¬ mammal(X)
mammal(X) ¬ bat(X)
animal(X) ¬ bird(X)
bird(X) ¬ penguin(X)
deadAn(X) ¬ dead(X)

Default rules
¬flies(X) ¬ animal(X), adf(X), not flies(X)
adf(X) ¬ not ¬adf(X)
flies(X) ¬ bat(X), btf(X), not ¬flies(X)
btf(X) ¬ not ¬btf(X) 
flies(X) ¬ bird(X), bf(X), not ¬flies(X)
bf(X) ¬ not ¬bf(X) 
¬flies(X) ¬ penguin(X), pdf(X), not flies(X)
pdf(X) ¬ not ¬pdf(X)
¬flies(X) ¬ deadAn(X), ddf(X), not flies(X)
ddf(X) ¬ not ¬ddf(X)

Facts
mammal(pluto).
bird(tweety). deadAn(dracula).
penguin(joe). bat(dracula).

Explicit preferences
¬btf(X) ¬ deadAn(X), bat(X), r1(X)
r1(X) ¬ not ¬r1(X)
¬btf(X) ¬ deadAn(X), bird(X), r2(X)
r2(X) ¬ not ¬r2(X)
¬r2(dracula)
¬r1(dracula)
Implicit preferences
¬adf(X) ¬ bat(X), btf(X)
¬adf(X) ¬ bird(X), bf(X)
¬bf(X) ¬ penguin(X), pdf(X)



Taxonomy semantics

joe dracula pluto tweety
deadAn not  not not
bat not  not not
penguin  not not not
mammal not   not
bird  not not 
animal    

adf  ¬  ¬
btf  ¬  
bf ¬   
pdf    
ddf  ¬  
r1  ¬  
r2  ¬  

flies ¬  ¬ 


