
Architectural Design

Chapter 6 Architectural Design 110/05/2022

Tiago
Realce

Topics covered

• Architectural design
decisions

• Architectural views

• Architectural patterns

10/05/2022 Chapter 6 Architectural Design 2

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural design

10/05/2022 Chapter 6 Architectural Design 3

Architectural design is concerned with understanding how a
software system should be organized and designing the
overall structure of that system.

Architectural design is the critical link between design and
requirements engineering, as it identifies the main structural
components in a system and the relationships between them.

The output of the architectural design process is an
architectural model that describes how the system is
organized as a set of communicating components.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural design

Chapter 7 Design and Implementation 4

Once interactions between the system and its
environment have been understood, you use this
information for designing the system architecture

You identify the major components that make up
the system and their interactions

You then may organize the components using an
architectural pattern (e.g., a layered or client-server
model)

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Agility and architecture

10/05/2022 Chapter 6 Architectural Design 5

It is generally accepted that an early stage of
agile processes is to design an overall systems
architecture.

Refactoring the system architecture is usually
expensive because it affects so many
components in the system

Tiago
Realce

Tiago
Realce

Build or buy

Chapter 7 Design and Implementation 6

In a wide range of domains, it is
possible to buy off-the-shelf
systems (COTS) that can be
adapted and tailored to the users’
requirements.

For example, if you want to
implement a medical records
system, you can buy a package that
is already used in hospitals. It can
be cheaper and faster to use this
approach rather than developing a
system in a conventional
programming language.

When you develop an application in this way, the design
process becomes concerned with how to use the
configuration features of that system to deliver the system
requirements.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural abstraction

10/05/2022 Chapter 6 Architectural Design 7

• It is concerned with the architecture
of individual programs.

• At this level, we are concerned with
the way that an individual program
is decomposed into components.

Architecture in the small

• It is concerned with the architecture
of complex enterprise systems that
include other systems, programs,
and program components.

• These enterprise systems are
distributed over different
computers, which may be owned
and managed by different
companies.

Architecture in the large

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Advantages of explicit architecture

10/05/2022 Chapter 6 Architectural Design 8

Stakeholder
communication

Architecture may be used as
a focus of discussion by
system stakeholders.

System analysis
Means that analysis of
whether the system can meet
its NFRs is possible.

Large-scale reuse

The architecture may be
reusable across a range of
systems

Product-line architectures
may be developed.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural representations : Block diagrams

10/05/2022 Chapter 6 Architectural Design 9

Simple, informal block diagrams showing entities and
relationships are the most frequently used method for
documenting software architectures.

But these have been criticised because they lack semantics,
do not show the types of relationships between entities nor
the visible properties of entities in the architecture.

Depends on the use of architectural models. The
requirements for model semantics depends on how the
models are used.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

The architecture of a packing robot control

system

Chapter 6 Architectural Design 1010/05/2022

Box and line diagrams

10/05/2022 Chapter 6 Architectural Design 11

Very abstract - they do not show the nature of
component relationships nor the externally
visible properties of the sub-systems.

However, useful for communication with
stakeholders and for project planning.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Use of architectural models

10/05/2022 Chapter 6 Architectural Design 12

As a way of facilitating
discussion about the system
design

A high-level architectural view of a
system is useful for communication with
stakeholders and project planning
because it is not cluttered with detail.

Stakeholders can relate to it and
understand an abstract view of the
system.

They can then discuss the system as a
whole without being confused by detail.

As a way of documenting an
architecture that has been
designed

The aim here is to produce a
complete system model that
shows the different components
in a system, their interfaces and
their connections.

Tiago
Realce

Tiago
Realce

Architectural design decisions

Chapter 6 Architectural Design 1310/05/2022

Tiago
Realce

Architectural design decisions

• Architectural design is a
creative process so the
process differs depending
on the type of system
being developed.

• However, a number of
common decisions span
all design processes and
these decisions affect the
NF characteristics of the
system.

10/05/2022 Chapter 6 Architectural Design 14

…

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural design decisions

Chapter 6 Architectural Design 1510/05/2022

Architecture reuse

10/05/2022 Chapter 6 Architectural Design 16

Systems in the same domain often have similar architectures
that reflect domain concepts.

Application product lines are built around a core architecture
with variants that satisfy particular customer requirements.

The architecture of a system may
be designed around one of more
architectural patterns or ‘styles’.

These capture the essence of an
architecture and can be
instantiated in different ways.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Software quality attributes

Safety Understandability Portability

Security Testability Usability

Reliability Adaptability Reusability

Resilience Modularity Efficiency

Robustness Complexity Learnability

Chapter 24 Quality management 17

18

Architectural Choices

Response
Time

Availability

Security

.

.

Concerns Architecture Choices

…

…

…

.

.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

19

Where Does the Final Architecture Reside?

Multi-access

Availability

S
ec

u
ri

ty

C
o
rr

ec
tn

es
s

Architecture

20

Conflicts between quality attributes

Concerns

Response

Time

Availa-

bility Security

Legal

Issues

Compat-

ibility

Correct-

ness

Multi-

Access

Response

Time − − −

Availability + - +

Security - + -

Legal Issues

Compatibility + + + + +

Correctness - + + -

Multi-Access - - - -

+

+

+

+

+

Architecture and quality attributes

10/05/2022 Chapter 6 Architectural Design 21

• Localise critical operations and minimise communications.
Use large rather than fine-grain components.Performance

• Use a layered architecture with critical assets in the inner
layers.Security

• Localise safety-critical features in a small number of sub-
systems.Safety

• Include redundant components and mechanisms for fault
tolerance.Availability

• Use fine-grain, replaceable components.Maintainability

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural views

Chapter 6 Architectural Design 2210/05/2022

Architectural views

 What views or perspectives are useful

when designing and documenting a

system’s architecture?

 What notations should be used for

describing architectural models?

 Each architectural model only shows

one view or perspective of the system.

▪ It might show how a system is

decomposed into modules, how the run-

time processes interact or the different

ways in which system components are

distributed across a network.

▪ For both design and documentation, you

usually need to present multiple views of

the software architecture.
Chapter 6 Architectural Design 2310/05/2022

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Views and UML diagrams

Chapter 6 Architectural design 24

Or Use Case View

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural views and SysML

Chapter 6 Architectural Design 2510/05/2022

Block / Internal
Block diagrams

Block
diagrams

Use Case
Sequence

Activity
State

diagrams

Block / Internal
Block diagrams

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the

system as objects or object classes.

 A process view, which shows how, at run-time, the

system is composed of interacting processes.

 A development view, which shows how the software is

decomposed for development.

 A physical (deployment) view, which shows the system

hardware and how software components are distributed

across the processors in the system.

 Use case view, shows use cases (+1)

Chapter 6 Architectural Design 2610/05/2022

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Architectural patterns

Chapter 6 Architectural Design 2710/05/2022

Architectural patterns

10/05/2022 Chapter 6 Architectural Design 28

Patterns are a means of representing, sharing and reusing knowledge.

An architectural pattern is a stylized description of good design
practice, which has been tried and tested in different environments.

Patterns should include information about when they are and when
they are not useful.

Patterns may be represented using tabular and graphical descriptions.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The

Model component manages the system data and associated operations on

that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction

(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model. See Figure 6.3.

Example Next Figure shows the architecture of a web-based application system

organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are

unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made

in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple, i.e. the complexity is high to develop the applications

using this pattern.

Not right suitable for small applications which has adverse effect in the

application’s performance and design.
Chapter 6 Architectural Design 2910/05/2022

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

The organization of the Model-View-Controller

Chapter 6 Architectural Design 3010/05/2022

Web application architecture using the MVC

pattern

Chapter 6 Architectural Design 3110/05/2022

Layered architecture

10/05/2022 Chapter 6 Architectural Design 32

Used to model the interfacing of sub-systems.

Organises the system into a set of layers (or abstract machines) each of
which provide a set of services.

Supports the incremental development of sub-systems in different layers.
When a layer interface changes, only the adjacent layer is affected.

However, often artificial to structure systems in this way.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

The Layered architecture pattern

Name Layered architecture

Description • Organizes the system into layers with related functionality associated

with each layer.

• A layer provides services to the layer above it so the lowest-level

layers represent core services that are likely to be used throughout

the system.

Example • A layered model of a system for sharing copyright documents held in

different libraries.

When used • Used when building new facilities on top of existing systems;

• when the development is spread across several teams with each

team responsibility for a layer of functionality;

• when there is a requirement for multi-level security.

Advantages • Allows replacement of entire layers so long as the interface is

maintained.

• Redundant facilities (e.g., authentication) can be provided in each

layer to increase the dependability of the system.

Disadvantages • In practice, providing a clean separation between layers is often

difficult and a high-level layer may have to interact directly with lower-

level layers rather than through the layer immediately below it.

• Performance can be a problem because of multiple levels of

interpretation of a service request as it is processed at each layer.
Chapter 6 Architectural Design 3310/05/2022

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

A generic layered architecture

Chapter 6 Architectural Design 3410/05/2022

The architecture of the iLearn system

Chapter 6 Architectural Design 3510/05/2022

The architecture of the Library system

10/05/2022 Chapter 6 Architectural Design 36

Repository architecture

 Sub-systems must exchange data. This may be done in
two ways:

▪ Shared data is held in a central database or repository and may
be accessed by all sub-systems;

▪ Each sub-system maintains its own database and passes data
explicitly to other sub-systems.

 When large amounts of data are to be shared, the
repository model of sharing is most commonly used as
this is an efficient data sharing mechanism.

Chapter 6 Architectural Design 3710/05/2022

Tiago
Realce

Tiago
Realce

Tiago
Realce

The Repository pattern

Name Repository

Description • All data in a system is managed in a central repository that is accessible

to all system components.

• Components do not interact directly, only through the repository.

Example • IDE where the components use a repository of system design information.

• Each software tool generates information which is then available for use

by other tools.

When used • You should use this pattern when you have a system in which large

volumes of information are generated to be stored for a long time.

• You may also use it in data-driven systems where the inclusion of data in

the repository triggers an action or tool.

Advantages • Components can be independent—they do not need to know of the

existence of other components.

• Changes made by one component can be propagated to all components.

• All data can be managed consistently (e.g., backups done at the same

time) as it is all in one place.

Disadvantages • The repository is a single point of failure so problems in the repository

affect the whole system.

• May be inefficiencies in organizing all communication through the

repository.

• Distributing the repository across several computers may be difficult.

Chapter 6 Architectural Design 3810/05/2022

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

A repository architecture for an IDE

Chapter 6 Architectural Design 3910/05/2022

Client-server architecture

10/05/2022 Chapter 6 Architectural Design 40

Distributed system model which shows how data and
processing is distributed across a range of components.

Set of stand-alone servers which provide specific services
such as printing, data management, etc.

Set of clients which call on these services.

Network which allows clients to access servers.

The Client–server pattern
Name Client-server

Description • In a client–server architecture, the functionality of the system is organized

into services, with each service delivered from a separate server.

• Clients are users of these services and access servers to make use of them.

Example • A film and video/DVD library organized as a client–server system.

When used • Used when data in a shared database has to be accessed from a range of

locations.

• Because servers can be replicated, may also be used when the load on a

system is variable.

Advantages • The principal advantage of this model is that servers can be distributed

across a network.

• General functionality (e.g., a printing service) can be available to all clients

and does not need to be implemented by all services.

Disadvantages • Each service is a single point of failure so susceptible to denial of service,

attacks or server failure.

• Performance may be unpredictable because it depends on the network as

well as the system.

• May be management problems if servers are owned by different

organizations.

Chapter 6 Architectural Design 4110/05/2022

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

A client–server architecture for a film library

Chapter 6 Architectural Design 4210/05/2022

Control models

 Are concerned with the control flow between sub-

systems. Distinct from the system decomposition model

 Centralised control

▪ One sub-system has overall responsibility for control and starts

and stops other sub-systems

 Event-based control

▪ Each sub-system can respond to externally generated events

from other sub-systems or the system’s environment

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Centralised control

 A control sub-system takes responsibility for managing

the execution of other sub-systems

 Call-return model

▪ Top-down subroutine model where control starts at the top of a

subroutine hierarchy and moves downwards. Applicable to

sequential systems

 Manager model

▪ Applicable to concurrent systems. One system component

controls the stopping, starting and coordination of other system

processes. Can be implemented in sequential systems as a case

statement

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Call-return model

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program

Real-time system control

System
controller

User
interface

Fault
handler

Computation
processes

Actuator
processes

Sensor
processes

Event-driven systems

10/05/2022 Chapter 6 Architectural Design 47

Driven by externally generated events where the
timing of the event is outwith the control of the
sub-systems which process the event

Example: Broadcast models. An event is
broadcast to all sub-systems. Any sub-system
which can handle the event may do so

Tiago
Realce

Tiago
Realce

Tiago
Realce

Broadcast model

 Effective in integrating sub-systems on different

computers in a network

 Sub-systems register an interest in specific events.

When these occur, control is transferred to the sub-

system which can handle the event

 Control policy is not embedded in the event and

message handler. Sub-systems decide on events of

interest to them

 However, sub-systems don’t know if or when an event

will be handled

Tiago
Realce

Tiago
Realce

Selective broadcasting

Sub-system
1

Event and message handler

Sub-system
2

Sub-system
3

Sub-system
4

Key points

 A software architecture is a description of how a software

system is organized.

 Architectural design decisions include decisions on the

type of application, the distribution of the system, the

architectural styles to be used.

 Architectures may be documented from several different

perspectives or views such as a conceptual view, a

logical view, a process view, and a development view.

 Architectural patterns are a means of reusing knowledge

about generic system architectures. They describe the

architecture, explain when it may be used and describe

its advantages and disadvantages.
Chapter 6 Architectural Design 5010/05/2022

