
Agile Software Development

1Chapter 3 Agile software development

Agile

Chapter 3 Agile software development 2

Agile Development techniques should be aligned
with SE principles

But… Are they?

Tiago
Realce

Tiago
Realce

Tiago
Realce

Rapid software development

Chapter 3 Agile software development 3

Rapid development and delivery is
now often the most important

requirement for software systems

• Businesses operate in a fast –
changing environment and it is
practically impossible to
produce a set of stable software
requirements

• Software has to evolve quickly
to reflect changing business
needs.

Rapid software development

• Specification, design and
implementation are inter-
leaved

• System is developed as a series
of versions with stakeholders
involved in version evaluation

• User interfaces are often
developed using an IDE
(integrated development
environment) and graphical
toolset.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Agile methods

 Dissatisfaction with the overheads involved in software
design methods of the 1980s and 1990s led to the
creation of agile methods. These methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this
quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the
software process (e.g. by limiting documentation) and to
be able to respond quickly to changing requirements
without excessive rework.

4Chapter 3 Agile software development

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Agile manifesto

Chapter 3 Agile software development 5

Agile manifesto

We are uncovering better ways of developing software
by doing it and helping others do it.

 Through this work we have come to value:

 Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

 That is, while there is value in the items on the right, we
value the items on the left more.

Chapter 3 Agile software development 6

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the
development process. Their role is provide and prioritize new
system requirements and to evaluate the iterations of the
system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the
system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and
in the development process. Wherever possible, actively work
to eliminate complexity from the system.

7Chapter 3 Agile software development

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Agile method applicability

Chapter 3 Agile software development 8

Product development where a software company is developing a
small or medium-sized product for sale.

Custom system development within an organization, where there is a
clear commitment from the customer to become involved in the
development process and where there are not a lot of external rules
and regulations that affect the software.

However, because of their focus on small, tightly-integrated teams,
there are problems in scaling agile methods to large systems.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Problems with agile methods

 Difficult to keep the interest of customers who are
involved in the process

 Team members may be unsuited to the intense
involvement that characterises agile methods

 Prioritising changes can be difficult where there are
multiple stakeholders

Maintaining simplicity requires extra work

 Contracts may be a problem as with other approaches to
iterative development

Chapter 3 Agile software development 9

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Agile methods and software maintenance

Chapter 3 Agile software development 10

Problems may arise if original development team cannot be maintained

Two key issues:

Are systems that are developed using an agile approach
maintainable, given the emphasis in the development

process of minimizing formal documentation?

Can agile methods be used effectively for evolving a
system in response to customer change requests?

Most organizations spend more on maintaining existing software than they
do on new software development. So, if agile methods are to be successful,

they have to support maintenance as well as original development

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

What is a User Story?

A concise, written description
of a piece of functionality

that will be valuable to a user
(or owner) of the software.

Tiago
Realce

Tiago
Realce

User Story Description
(team at Connextra, 2001)

As a [user role] I want to [goal]
so I can [reason]

For example:
• As a registered user I want to log in

so I can access subscriber-only content

Tiago
Realce

User Story Description

Chapter 3 Agile software development 13

Who (user role)

What (goal)

Why (reason)
gives clarity as to why a feature is useful

can influence how a feature should function
can give you ideas for other useful features
that support the user's goals

Other formats

Chapter 3 Agile software development 14

• "As a <role>, I want <goal/desire>"
Mike Cohn, a well-known author
on user stories, regards the "so

that" clause as optional

Mike Cohn, a well-known author
on user stories, regards the "so

that" clause as optional

• "In order to <receive benefit> as a
<role>, I want <goal/desire>"

Chris Matts suggested that
"hunting the value" proposed

this alternative

Chris Matts suggested that
"hunting the value" proposed

this alternative

• "As <who> <when> <where>, I <what>
because <why>."

Another template based on the
Five Ws specifies:

Another template based on the
Five Ws specifies:

• "As a <role>, I can <action with
system> so that <external benefit>"

A template developed at Capital
One in 2004

A template developed at Capital
One in 2004

Tiago
Realce

Examples

Chapter 3 Agile software development 15

Quiz Recall
As a manager, I want to browse my
existing quizzes so I can recall what I have
in place and figure out if I can just reuse or
update an existing quiz for the position I
need now.

Limited Backup
As a user, I can indicate folders not to
backup so that my backup drive isn't filled
up with things I don't need saved

User Story Cards have
3 parts

Chapter 3 Agile software development 16

CARD - A WRITTEN
DESCRIPTION OF THE

USER STORY FOR
PLANNING PURPOSES
AND AS A REMINDER

CONVERSATION - A
SECTION FOR CAPTURING
FURTHER INFORMATION
ABOUT THE USER STORY

AND DETAILS OF ANY
CONVERSATIONS

CONFIRMATION - A
SECTION TO CONVEY
WHAT TESTS WILL BE

CARRIED OUT TO
CONFIRM THE USER

STORY IS COMPLETE AND
WORKING AS EXPECTED

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

User Story Example: Front of Card

User Story Example: Back of Card

Limitations

Chapter 3 Agile software development 19

Scale-up problem

• User stories written
on small physical
(story) cards are hard
to maintain, difficult
to scale to large
projects and for
geographically
distributed teams.

Vague, informal and
incomplete

• User story cards are
regarded as
conversation starters.
Being informal, they
are open to many
interpretations.

• Being brief, they do
not state all of the
details necessary to
implement a feature.
Stories are
inappropriate for
formal agreements or
writing legal contracts

Lack of non-functional
requirements

• User stories rarely
include performance
or NFR details, so non-
functional tests (e.g.
response time) may
be overlooked

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Epics and User stories

 Epic

 Large stories or multiple user stories that are very closely related
are summarized as epics. A common explanation of epics is
also: a user story that is too big for a sprint.

 Ex. “Registration & Authentication”

 User stories for the epic “Registration &
Authentication”
 “Sign Up with Email”, “Sign Up with Facebook”, “Log In with

Email”, “Log In with Facebook” “Forgot Password”, and “Log
out”

Chapter 3 Agile software development 20

Tiago
Realce

Tiago
Realce

Issues

 HOW MANY USER STORIES SHOULD BE IN AN
EPIC?

 There is no exact number because every project is different. But
we would recommend adding no more than 10 user stories to an
epic.

 This will allow to complete it within 3 months and proceed with
further development.

WHAT INFORMATION SHOULD BE INCLUDED IN
EPICS?

 Epics should contain project, technical and design requirements.

 Also, there should be an introduction explaining what and why
should be added to your project, what metrics of your business
you want to improve.

Chapter 3 Agile software development 21

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Initiative and Themes

 Initiative

 Multiple epics or stories grouped together hierarchically

 Ex. Your rocket ship company wants to decrease the cost per launch
by 5% this year.

 Epics:
• “Decrease launch-phase fuel consumption by 1%,”
• “Increase launches per quarter from 3 to 4,”
• “Turn all thermostats down from 71 to 69 degrees

 Theme

 Multiple epics grouped together by a common theme or semantic
relationship.

 A theme for a rocket ship company would be something like “Safety
First.”

Chapter 3 Agile software development 22

Tiago
Realce

Tiago
Realce

Tiago
Realce

Initiative, Epics and User Stories

Chapter 3 Agile software development 23

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Themes, Initiatives, Epics, and User stories

Chapter 3 Agile software development 24

Tiago
Realce

Tiago
Realce

Tiago
Realce

Technical, human, organizational issues

Chapter 3 Agile software development 25

Most projects include elements of plan-driven and agile processes. Deciding on the
balance raises some issues

Is it important to have a very detailed specification and design before moving to
implementation? If so, you probably need to use a plan-driven approach.

Is an incremental delivery strategy, where you deliver the software to customers and
get rapid feedback from them, realistic? If so, consider using agile methods.

How large is the system that is being developed? Agile methods are most effective
when the system can be developed with a small co-located team who can
communicate informally. This may not be possible for large systems that require larger
development teams so a plan-driven approach may have to be used.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Technical, human, organizational issues

Chapter 3 Agile software development 26

What type of system is being
developed?
• Plan-driven approaches may be

required for systems that require a lot
of analysis before implementation
(e.g. real-time system with complex
timing requirements).

What type of system is being
developed?
• Plan-driven approaches may be

required for systems that require a lot
of analysis before implementation
(e.g. real-time system with complex
timing requirements).

What is the expected system
lifetime?
• Long-lifetime systems may require

more design documentation to
communicate the original intentions of
the system developers to the support
team.

What is the expected system
lifetime?
• Long-lifetime systems may require

more design documentation to
communicate the original intentions of
the system developers to the support
team.

What technologies are
available to support system
development?
• Agile methods rely on good tools to

keep track of an evolving design

What technologies are
available to support system
development?
• Agile methods rely on good tools to

keep track of an evolving design

How is the development team
organized?
• If the development team is distributed

or if part of the development is being
outsourced, then you may need to
develop design documents to
communicate across the development
teams.

How is the development team
organized?
• If the development team is distributed

or if part of the development is being
outsourced, then you may need to
develop design documents to
communicate across the development
teams.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Technical, human, organizational issues

Chapter 3 Agile software development 27

• Traditional engineering organizations have a culture of plan-based
development, as this is the norm in engineering.

Are there cultural or organizational issues that may affect the
system development?
Are there cultural or organizational issues that may affect the
system development?

• It is sometimes argued that agile methods require higher skill levels than plan-
based approaches in which programmers simply translate a detailed design into
code

How good are the designers and programmers in the
development team?
How good are the designers and programmers in the
development team?

• If a system has to be approved by an external regulator (e.g. the FAA (Federal
Aviation Administration) approve software that is critical to the operation of an
aircraft) then you will probably be required to produce detailed documentation
as part of the system safety case.

Is the system subject to external regulation? Is the system subject to external regulation?

Tiago
Realce

Tiago
Realce

Tiago
Realce

Scrum

Chapter 3 Agile software development 28

Scrum

Chapter 3 Agile software development 29

The Scrum approach is a general agile method but its focus is on managing
iterative development rather than specific agile practices. There are three
phases in Scrum.

The initial phase is an outline planning phase where you establish the general
objectives for the project and design the software architecture.

This is followed by a series of sprint cycles, where each cycle develops an
increment of the system.

The project closure phase wraps up the project, completes required
documentation such as system help frames and user manuals and assesses the
lessons learned from the project.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

The Scrum process

30Chapter 3 Agile software development

Tiago
Realce

Tiago
Realce

Chapter 3 Agile software development 31

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Product and Sprint Backlogs

Chapter 3 Agile software development 33

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Chapter 3 Agile software development 34

Tiago
Realce

Tiago
Realce

Tiago
Realce

Chapter 3 Agile software development 35

Tiago
Realce

Tiago
Realce

Teamwork in Scrum

Chapter 3 Agile software development 36

The whole team attends short daily meetings where all team members share
information, describe their progress since the last meeting, problems that have

arisen and what is planned for the following day.

This means that everyone on the team knows what is going on and, if
problems arise, can re-plan short-term work to cope with them.

The ‘Scrum master’ is a facilitator who arranges daily meetings, tracks the
backlog of work to be done, records decisions, measures progress against the
backlog and communicates with customers and management outside of the

team.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Chapter 3 Agile software development 37

Tiago
Realce

The Sprint cycle

Chapter 3 Agile software development 38

Sprints are fixed length, normally 1–4 weeks. They
correspond to the development of a release of the
system in XP.

The starting point for planning is the product backlog,
which is the list of work to be done on the project.

The selection phase involves all of the project team
who work with the customer to select the features
and functionality to be developed during the sprint.

Tiago
Realce

Tiago
Realce

The Sprint cycle

Chapter 3 Agile software development 39

Once these are agreed, the team organize themselves to develop the
software.
During this stage the team is isolated from the customer and the
organization, with all communications channelled through the so-
called ‘Scrum master’.

The role of the Scrum master is to protect the development team
from external distractions.

At the end of the sprint, the work done is reviewed and presented to
stakeholders. The next sprint cycle then begins.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Chapter 3 Agile software development 40

Tiago
Realce

Sprint burndown chart

Chapter 3 Agile software development 41

Burndown chart (Release)

Chapter 3 Agile software development 42

Chapter 3 Agile software development 43

Stand-up meetings:
Daily Scrum

Tiago
Realce

Tiago
Realce

Sprint Review x Sprint Retrospective

Chapter 3 Agile software development 44

The Sprint Review is equivalent to a user acceptance test. It is
where the project team demonstrates the results of the work that
they have done in the sprint and the Product Owner and any
required stakeholders accept the work or not.

A Sprint Retrospective is equivalent to a project post-mortem
except that it is done at the end of a sprint. The purpose of the
meeting is to reflect on what went well and what didn't go well in
the previous sprint and determine how it can be improved in the
next sprint.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Sprint retrospective

Chapter 3 Agile software development 45

During the Sprint Retrospective, the team discusses:

What went well in the Sprint What could be improved What will we commit to
improve in the next Sprint

This is the opportunity for the Scrum Team to improve and all member should be in
attendance.

The Scrum Master ensures that the event takes place and that attendants understand
its purpose.

The Sprint Retrospective occurs after the Sprint Review and prior to the next Sprint
Planning.

This is at most a three-hour meeting for one-month Sprints. For shorter Sprints, the event is
usually shorter.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Scrum benefits

Chapter 3 Agile software development 46

The product is broken down into a set of manageable and
understandable chunks.

Unstable requirements do not hold up progress.

The whole team have visibility of everything and consequently team
communication is improved.

Customers see on-time delivery of increments and gain feedback on how
the product works.

Trust between customers and developers is established and a positive
culture is created in which everyone expects the project to succeed.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Chapter 3 Agile software development 47

Scrum x Kanban

 https://www.youtube.com/watch?v=HNd1_irOL5k

Chapter 3 Agile software development 48

Tiago
Realce

Chapter 3 Agile software development 49

Extreme programming

Chapter 3 Agile software development 50

Extreme programming

Chapter 3 Agile software development 51

Extreme Programming (XP) takes an ‘extreme’ approach to iterative
development.

New versions may be built
several times per day;

Increments are delivered to
customers every 2 weeks;

All tests must be run for every
increment and the incement is

only accepted if tests run
successfully.

One of the best-known and most widely used agile method.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

XP and agile principles

Chapter 3 Agile software development 52

Incremental development is supported through small, frequent system
releases.

Customer involvement means full-time customer engagement with the
team.

People not process through pair programming, collective ownership and
a process that avoids long working hours.

Change supported through regular system releases.

Maintaining simplicity through constant refactoring of code.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

XP Process

Chapter 3 Agile software development 53

Tiago
Realce

The extreme programming release cycle

54Chapter 3 Agile software development

Tiago
Realce

Extreme programming practices (a)

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be
included in a release are determined by the time available and
their relative priority. The developers break these stories into
development ‘Tasks’.

Small releases The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent
and incrementally add functionality to the first release.

Simple design Enough design is carried out to meet the current requirements
and no more.

Test-first development An automated unit test framework is used to write tests for a
new piece of functionality before that functionality itself is
implemented.

Refactoring All developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

55Chapter 3 Agile software development

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Extreme programming practices (b)

Pair programming Developers work in pairs, checking each other’s work and
providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers take
responsibility for all of the code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into
the whole system. After any such integration, all the unit tests in
the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as
the net effect is often to reduce code quality and medium term
productivity

On-site customer A representative of the end-user of the system (the customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of
the development team and is responsible for bringing system
requirements to the team for implementation.

56Chapter 3 Agile software development

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Requirements scenarios

Chapter 3 Agile software development 57

In XP, a customer or user is part of the XP team and is responsible for making
decisions on requirements.

User requirements are expressed as scenarios or user stories.

These are written on cards and the development team break them down into
implementation tasks. These tasks are the basis of schedule and cost
estimates.

The customer chooses the stories for inclusion in the next release based on
their priorities and the schedule estimates.

XP and change

Chapter 3 Agile software development 58

Conventional wisdom in software engineering is to design for
change. It is worth spending time and effort anticipating
changes as this reduces costs later in the life cycle.

XP, however, maintains that this is not worthwhile as changes
cannot be reliably anticipated.

Rather, it proposes constant code improvement (refactoring)
to make changes easier when they have to be implemented.

Tiago
Realce

Tiago
Realce
otimizar o código constantemente para tornar mudanças o mais simples possível

Tiago
Realce

Refactoring

Chapter 3 Agile software development 59

Programming team look for possible software improvements and make
these improvements even where there is no immediate need for them.

This improves the understandability of the software and so reduces the
need for documentation.

Changes are easier to make because the code is well-structured and clear.

However, some changes requires architecture refactoring and this is much
more expensive.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Examples of refactoring

Chapter 3 Agile software development 60

Re-organization of a class hierarchy to remove
duplicate code.

Tidying up and renaming attributes and methods to
make them easier to understand.

The replacement of inline code with calls to
methods that have been included in a program
library.

Testing in XP

Chapter 3 Agile software development 61

Testing is central to
XP and XP has
developed an

approach where the
program is tested

after every change
has been made. XP testing features:

Test-first
development.

Incremental test
development from

scenarios.

User involvement in
test development and

validation.

Automated test
harnesses are used to

run all component
tests each time that a
new release is built.

Test-first development

Chapter 3 Agile software development 62

Writing tests before
code clarifies the
requirements to be
implemented.

Tests are written as
programs rather than
data so that they can
be executed
automatically.
The test includes a
check that it has
executed correctly.
Usually relies on a testing
framework such as Junit.

All previous and new
tests are run
automatically when
new functionality is
added, thus checking
that the new
functionality has not
introduced errors.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Customer involvement

Chapter 3 Agile software development 63

The role of the customer in the testing process is to help develop acceptance
tests for the stories that are to be implemented in the next release of the
system.

The customer who is part of the team writes tests as development proceeds.
All new code is therefore validated to ensure that it is what the customer
needs.

However, people adopting the customer role have limited time available and
so cannot work full-time with the development team.

They may feel that providing the requirements was enough of a contribution
and so may be reluctant to get involved in the testing process.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Test case description for dose checking

64Chapter 3 Agile software development

Test automation

Chapter 3 Agile software development 65

Test automation means that tests
are written as executable

components before the task is
implemented

• These testing components should
be stand-alone, should simulate
the submission of input to be
tested and should check that the
result meets the output
specification.

• An automated test framework (e.g.
Junit) is a system that makes it
easy to write executable tests and
submit a set of tests for execution.

As testing is automated, there is
always a set of tests that can be

quickly and easily executed

• Whenever any functionality is
added to the system, the tests can
be run and problems that the new
code has introduced can be caught
immediately.

Tiago
Realce

Tiago
Realce

Tiago
Realce

XP testing difficulties

Chapter 3 Agile software development 66

Programmers prefer programming to testing and sometimes they
take short cuts when writing tests. For example, they may write
incomplete tests that do not check for all possible exceptions that
may occur.

Some tests can be very difficult to write incrementally. For example,
in a complex user interface, it is often difficult to write unit tests for
the code that implements the ‘display logic’ and workflow between
screens.

It is difficult to judge the completeness of a set of tests. Although you
may have a lot of system tests, your test set may not provide
complete coverage.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Pair programming

Chapter 3 Agile software development 67

IN XP,
PROGRAMMERS
WORK IN PAIRS,

SITTING TOGETHER
TO DEVELOP CODE.

THIS HELPS
DEVELOP

COMMON
OWNERSHIP OF

CODE AND
SPREADS

KNOWLEDGE
ACROSS THE TEAM.

IT SERVES AS AN
INFORMAL REVIEW
PROCESS AS EACH
LINE OF CODE IS
LOOKED AT BY
MORE THAN 1

PERSON.

IT ENCOURAGES
REFACTORING AS

THE WHOLE TEAM
CAN BENEFIT FROM

THIS.

MEASUREMENTS
SUGGEST THAT
DEVELOPMENT
PRODUCTIVITY

WITH PAIR
PROGRAMMING IS
SIMILAR TO THAT
OF TWO PEOPLE

WORKING
INDEPENDENTLY.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Pair programming

Chapter 3 Agile software development 68

In pair programming, programmers sit together at the same workstation to
develop the software.

Pairs are created dynamically so that all team members work with each other
during the development process.

The sharing of knowledge that happens during pair programming is very
important as it reduces the overall risks to a project when team members
leave.

Pair programming is not necessarily inefficient and there is evidence that a pair
working together is more efficient than 2 programmers working separately.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Advantages of pair programming

Chapter 3 Agile software development 69

It helps support refactoring, which is a process of software improvement.

Where pair programming and collective ownership are used, others benefit immediately from
the refactoring so they are likely to support the process.

It acts as an informal review process because each line of code is looked at
by at least two people.

It supports the idea of collective ownership and responsibility for the system.

Individuals are not held responsible for problems with the code. Instead, the team has collective
responsibility for resolving these problems.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Plan-driven and agile specification

70Chapter 3 Agile software development

71

REQUIREMENTS PRACTICE EVOLUTION

Catarina Gralha , Daniela E. Damian, Anthony I. Wasserman, Miguel Goulão, João Araújo:
The evolution of requirements practices in software startups. ICSE 2018: 823-833

72

REQUIREMENTS ARTEFACTS:
content of information and user orientation matters

73

REQUIREMENTS ARTEFACTS:
content of information and user orientation matters

Tiago
Realce

Tiago
Realce

74

“It was mainly because we had more and more
clients (...) We need to know their needs when

we are writing code, so (...) user stories are
important”

75

KNOWLEDGE MANAGEMENT:
project communication and documentation matters

Tiago
Realce

76

“It’s possible to have good practices and
improve the knowledge dissemination earlier
because the tools are there (...) but there were

more important things to do.”

77

REQUIREMENTS-RELATED ROLES:
focusing on customer-facing roles matters

Tiago
Realce

78

REQUIREMENTS-RELATED ROLES:
focusing on customer-facing roles matters

79

“We started hiring more people for specific roles.
We had developers (…) we hired a client

success manager to stay on track of all of our
clients. We still need to be more specialised.”

Tiago
Realce

80

PLANNING:
company / product vision and alignment with it matters

Tiago
Realce

81

TECHNICAL DEBT:
understanding the impact of technical debt in product / service matters

Tiago
Realce

82

PRODUCT QUALITY:
tradeoffs between quality and speed start to matter

Tiago
Realce

Agile project management

Chapter 3 Agile software development 83

The principal responsibility of software project managers is to
manage the project so that the software is delivered on time and
within the planned budget for the project.

The standard approach to project management is plan-driven.
Managers draw up a plan for the project showing what should be
delivered, when it should be delivered and who will work on the
development of the project deliverables.

Agile project management requires a different approach, which is
adapted to incremental development and the particular strengths of
agile methods.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

