
Interpretation	and	Compilation		/	MIEI	/	FCT	UNL		
Midterm	Test	6	NOV	2018	

	
STUDENT	NUMBER	[_______]	NAME	[__]	
	
ONE.	Consider	the	following	expression	language	defined	by	the	abstract	syntax	
	
E	:=						stringliteral	 	 	 %	string	constant	
|	 booleanliteral	 	 %	boolean	constant	
|	 E@E	 	 	 	 %	string	concatenation	
|	 empty	E	 	 	 %	empty	string	test	
|	 head	E	 	 	 %	head	of	string	
|	 tail	E	 	 	 	 %	tail	of	string	
	
This	is	a	tiny	toy	language	to	manipulate	strings.		
	
A	String	literal	is	an	expression	such	as	“”,	“hello”,	“icl”,	“foo123”	(a	sequence	of	
characters	between	quotes).		
A	boolean	is	either	true	or	false.		
The	operation	empty	E	returns	true	if	E	evaluates	to	the	empty	string,	and	false	
otherwise.		
If	E	evaluates	to	a	non-empty	string,	the	operation	head	E	returns	the	one-
character	length	string	with	the	first	character	in	such	string	(e.g.	head	“hello”	
evaluates	to	the	string	“h”).	If	E	evaluates	to	the	empty	string	then	head	E	
produces	an	error.		
If	E	evaluates	to	a	non-empty	string,	the	operation	tail	E	returns	the	string	
obtained	by	removing	the	first	character	on	it	(e.g.	tail	“hello”	evaluates	to	the	
string	“ello”).	If	E	evaluates	to	the	empty	string	then	tail	E	produces	an	error.		
E1@E2	evaluates	to	the	result	of	concatenating	the	strings	that	result	from	
evaluating	E1	and	E2	(e.g.,		tail	“hello”	@	head	“hello”	evaluates	to	“elloh”).	
Operations	E@E,	head	E,	empty	E	and	tail	E	are	only	defined	on	string	values,	if	
something	else	is	given,	that	will	produce	an	error!	
	
0.	Explain	the	diference	between	concrete	syntax	and	abstract	syntax.	
	
1.	Define,	as	best	as	you	can,	the	token	stringliteral	in	javacc	syntax	as	a	regular	
expression.		
	
2.	The	values	of	the	language	are	strings	and	booleans.	Define	them	using	a	Java	
class	hierarchy	implementing	interface	IValue.	
	
3.	Define,	as	a	Java	class	hierarchy	the	abstract	syntax	of	the	language.	All	classes	
should	implement	the	interface	ASTNode,	and	support	an	evaluation	method	
with	the	following	signature.	
	
IValue eval() throw RuntimeError;
		
	

TWO.		Consider	the	programming	language	studied	in	the	course	till	now.	This	is	
an	imperative-functional	language.	Consider	the	following	program.		
	
0. let f =
1. fun x, b ->
2. let
3. x = new x
4. s = new b
5. in
6. while !x>0 do
7. s := !s + !x ; x := !x – 1
8. end;
9. !s
10. end
11. end
12. in
13. f(4,0)+f(6,1)
14. end
	
Answer	to	the	following	questions	about	declarations	and	scope.	
	
0.	For	each	identifier	declaration	in	the	program	(either	as	a	fun	parameter	or	as	
a	let	definition)	indicate	its	scope	(stating	what	is	the	number	of	the	line	where	
the	scope	starts	and	the	line	where	the	scope	ends).	
	
1.	Draw	as	a	picture	the	state	of	the	interpreter	environment	when	x := !x – 1	is	
evaluated	for	the	second	time	(assume	right-to-left	evaluation	of	arithmetic	
expressions).	
	
THREE.		Consider	again	the	programming	language	studied	in	the	course	till	
now.		Explain	ALL	you	would	need	to	do	to	extend	it	with	the	following	new	
construct	representing	iteration.	The	abstract	syntax	is	as	follows.	
	
from id = E1 to E2 do E3 end
	
The	intended	semantics	is	as	follows.	First	E1	and	E2	are	evaluated,	and	should	
produce	integer	values	v1	and	v2.	Then,	the	body	E3	should	be	evaluated	for	
every	integer	between	v1	and	v2	(inclusively).	For	instance,	the	code	
	
let S = new 0 in from x = -2 to 2 do S := !S + x; !S end end
	
will	evaluate	to	0.	Notice	that	in	this	construct	the	identifier	id is	declared	locally	
with	scope	the	body	E3.	In	each	iteration	id is	bound	to	a	different	integer	value.	
In	case	some	type	error	occurs,	a	runtime	error	should	be	signaled.	
	
Define	the	ASTFrom	class	representing	the	abstract	syntax	of	the	from	
construct,	and	the	evaluation	method	in	it,	using	the	signature	
	
IValue eval(Environment) throw RuntimeError

	

	

	

	

	

	

