
INSTRUCTIONS FOR THE FINAL ONLINE ICL EVALUATION

Dear all,

16 January 2021 (14:00), you will start the final online evaluation session.

A zoom session will be opened at 14:00.

https://videoconf-colibri.zoom.us/j/81109451903?pwd=cWtYNDgwdVhNM2hmTXgwV29NZWhZdz09

After that, I will open a (google) form that you will need to fill and submit.

The web link is here (clickable)

https://docs.google.com/forms/d/e/1FAIpQLSdabzdMfMUVBhsUTLOMgF9u3CDZbCKtMtRao7War7ws10Z7tw/viewform		

	
The form only contains the fields for you to write down the answers, not the
questions. There are three questions (some with several items)

The questions will be available in a PDF file uploaded to the CLIP before the
test starts.

To access the form you will need to authenticate with
your official student FCT NOVA email, which will be recorded in the form.

---@campus.fct.unl.pt

The evaluation will take place 14:15-16:00.

You may edit and re-submit your form several times until the end of the test.

During the evaluation, I will be answering questions on the zoom chat.

Thanks, all the best!

Luis Caires
	 	

Interpretation	and	Compilation	/	MIEI	/	FCT	UNL		
ONLINE	Final	Test	2020	–	16	Jan	2021	

	
The	language	we	have	studied	in	the	course	allows	the	programmer	to	define	
imperative	cells	using	the	expression	new	E.		For	instance,	the	program:	
	
def	y=new	1	in	
				y	:=	!y	+	1;	
				!y	
end	
	
evaluates	to	2.	It	first	allocates	a	reference	cell	initialized	with	the	value	1,	and	
then	increments	it,	and	returns	its	value.		
This	final	test	is	about	extending	the	language	with	arrays	of	integer	
mutable	reference	cells.	For	example,	the	program	
	
def	a	=	new[10]				%%	allocate	an	array	with	10	reference	cells	and	bind	it	to	a	
								i	=	new	0	
in	
					while	!i	<	10	do	
									a[!i]	:=	!i	*	!i;			%%	assign	!i	*	!i	to	the	reference	at	a[!i]	
									i:=	!i	+	1	
					end;	
					println	!a[9]						%%	print	the	value	stored	in	the	reference	at	a[9]	
end	
	
will	print	out	81.	
	
The	grammar	must	be	extended	with	two	additional	forms	of	expressions,	each	
one	with	two	component	expressions:	array	allocation	and	array	indexing.	
	
E	:=	…	|			new	[E1]						 	 %	array	allocation	
													|			E1	[E2]		 	 %	array	indexing	
	
Array	allocation	new	[E1]	returns	a	reference	to	a	newly	created	array,	where	E1	
is	an	integer	valued	expression,	giving	the	number	of	array	elements.	Each	array	
element	is	a	mutable	cell	holding	an	integer	value.		The	array	elements	are	
indexed	between	positions	0	and	E1–1,	and	are	initially	set	to	zero.	If	E1	gives	a	
negative	value,	there	must	be	an	error.	
	
Array	indexing	E1	[E2]	returns	a	reference	to	the	cell	at	position	E2	of	the	array	
given	by	reference	E1.	If	E2	is	outside	the	index	range,	there	is	an	error.	
	
ONE	(6	Points).	Parsing	and	abstract	syntax.	
	
1)	Present	the	Java	classes	ASTNewArray	and	ASTIndex	for	representing	the	
abstract	syntax	of	the	array	allocation	and	array	indexing	expressions	(just	
present	the	class	declarations,	their	fields	and	constructors).	

2)	Describe	the	changes	/	additions	you	need	to	do	on	your	javacc	parser	to	deal	
with	array	allocation	and	array	indexing	expressions	and	create	the	appropriate	
AST	nodes.		
	
TWO	(11	Points).		We	now	write	the	basic	interpreter	pieces	for	the	language	
with	arrays.	To	represent	array	values,	you	need	to	define	a	new	kind	of	value	
VArray.		
	

1) Write	the	Java	code	for	the	VArray	class,	implementing	interface	IValue.	
Notice	that	each	element	of	an	array	value	is	an	integer	reference	cell	
value	(you	may	use	the	Java	class	you	used	in	your	project	to	represent	
reference	cell	values).	

	
2) Write	down	the	eval	method	for	classes	ASTNewArray	and	ASTIndex.	

Implement	dynamic	type	checking	in	the	method.	
	
THREE	(3	Points).		You	now	write	the	key	compiler	pieces	for	the	language	with	
arrays.		To	generate	the	code	for	array	allocation	and	array	indexing	you	will	
need	to	use	the	following	JVM	instructions:	
	
anewarray	classname	
anewarray	expects	an	integer	value	N	on	the	top	of	the	stack	.	It	leaves	on	top	of	
stack	a	reference	to	a	JVM	array	for	N	objects	of	class	classname.	
	
aastore		
aastore	expects	on	the	top	of	of	the	stack	an	array	reference	a,	an	index	value	i,	
and	an	element	value	v.	It	stores	v	into	position	i	of	array	a.	
	
aaload	
aaload	expects	on	the	top	of	the	stack	an	array	reference	a	and	an	index	value	i.	
It	leaves	on	top	of	stack	the	reference	at	position	i	of	array	a.	
	
(more	info	at	https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-
6.html#jvms-6.5.anewarray)	
	
For	instance,	the	compilation	scheme	for	array	indexing	E1	[E2]	would	be	
	
[[E1]]	
[[E2]]	
aaload	
	

1) Explain	the	compilation	scheme	for	new	[E1].	
2) Write	the	compile	method	for	classes	ASTNewArray	and	ASTIndex.	

	
NOTE:	In	this	question	don’t	worry	with	typechecking,	assume	that	the	AST	
is	well	typed.	
	

