
Interpretation	and	Compilation		/	MIEI	/	FCT	UNL		
Final	Test	11	Dec	2018	(Duration:	90m)	

	
STUDENT	NUMBER	[_______]	NAME	[__]	
	
ONE.		
Explain	the	difference	between	dynamic	typechecking	and	static	typechecking.	
	
TWO.		
Consider	adding	the	following	expressions	to	the	language	of	the	course	
	
E	:=						…	 	 	 	 %	other	expressions	
|	 E::E	 	 	 	 %	list	cons	
|	 nil	 	 	 	 %	empty	list	
|	 empty	E	 	 	 %	empty	list	test	
|	 head	E	 	 	 %	head	of	list	
|	 tail	E	 	 	 	 %	tail	of	list	
	
These	expressions	allows	the	language	to	manipulate	homogeneous	lists	of	
values.	An	homogeneous	list	is	a	list	of	values	all	of	the	same	type.	For	example,	
the	result	of	evaluating	the	expression	let	x	=	5+2	in	(2+3)::x::nil	end	returns	
the	list	5::7::nil.	In	this	list,	5	is	the	head	element	and	7::nil	is	the	list	in	the	tail,	
e.g.,	the	list	of	all	elements	in	the	list	except	the	head.	The	operations	head	E	and	
tail	E	evaluate	to	the	head	element	of	the	list	denoted	by	E	and	tail	E	returns	the	
tail	of	the	list	denoted	by	E.	Conventionally,	we	let	tail	nil	evaluate	to	nil.	
	
let	l1	=	1::2::3::4::nil	in	head	l1	end		 	 evaluates	to	1	
	
let	l1	=	1::2::3::4::nil	in	tail	l1	end			 	 evaluates	to	2::3::4::nil	
	
let	l1	=	1::nil	in	tail	tail	l1	end		 	 	 evaluates	to	nil	
	
The	operation	empty	E	returns	true	if	E	evaluates	to	the	empty	list,	and	false	
otherwise.		
	
As	our	language	is	typed,	we	introduce	a	new	type	List	T,	where	T	is	any	type.	
For	example	List	int	is	the	type	of	lists	of	whose	elements	are	integers,	List	List	
int	is	the	type	of	lists	whose	elements	are	lists	of	integers,	and	List	bool	is	the	
type	of	lists	of	whose	elements	are	booleans.	The	type	List	admits	the	following	
typing	rules	for	the	several	list	related	expressions	
	

Delta	|-	E1:T							Delta	|-	E2	:	List	T			 Delta	|-	E	:	List	T	
											 	 Delta	|-	E1	::	E2	:	List	T	 	 Delta	|-	head	E	:	T	
	
					Delta	|-	E	:	List	T	 Delta	|-	E	:	List	T	
Delta	|-	tail	E	:	List	T		 Delta	|-	nil	:	List	T	 	 Delta	|-	empty	E	:	bool		
	
1.	Explain,	justifying,	why	these	typing	rules	ensure	that,	at	runtime,	all	values	in	
a	list	are	of	the	same	type.	

2.	Explain	if	each	of	the	following	programs	is	well	typed	or	not,	justifying.	If	the	
program	is	well	typed,	indicate	the	type	of	the	value	returned	by	the	program.	
		
let x = 2+3 in let y=2 in x::y::nil end end
	
let x = 0 in let y=2 in x::y::x end end

let x = 0 in (x<0)::(x>0)::nil end
	
THREE.			
Now,	suppose	you	need	to	implement	a	typechecker	for	this	language	with	lists.	
	
1.	Define	a	Java	class	ListType	to	represent	the	list	type	for	typechecking	
purposes	(e.g.,	similar	to	the	class	representing	the	ref	T	type	in	our	language).	
This	class	implements	the	interface	IType	(or	similar).	
	
2.	Define,	as	Java	classes,	the	abstract	syntax	for	the	expressions	E1::E2,	head	E,	
tail	E	and	empty	E.	All	sucb	classes	should	implement	the	interface	ASTNode,	
and	support	a	typechecking	method	with	the	following	signature.	
	
IType typeckeck(Env<IType>) throw TypeCheckError;
		
Implement	the	typecheck	method	for	the	indicated	4	kinds	of	expressions.		
		
FOUR.			
Consider	again	the	programming	language	studied	in	the	course	till	now,	and	the	
compilation	schemes	for	the	JVM	studied.			
	

a) List	the	JVM	instructions	that	your	compiler	should	generate	for	
expression	2	+	(3+2)	*	5	

	
Consider	the	expression	let	x	=	1	in	x	+	x	end.	

	
b)	Describe	and	explain,	the	best	as	you	can,	the	code	generated	by	your	
compiler	for	this	expression.	

	
	

	

	

	

	

	

	

