
Luís Caires 1

Interpretação e Compilação de
Linguagens (de Programação)

21/22
Luís Caires (http://ctp.di.fct.unl.pt/~lcaires/)

Luís Caires

Programming Languages (PL)

• The purpose of a PL is to allow computational processes to be described
specified by linguistic means.

• In early times, programs were mostly written in (physical) machine code.

• The definition of a PL involves to aspects, that must be characterised by a
precise, non-ambiguous way:
– Syntax

– Semantics

2

syntax |ˈsinˌtaks|
the arrangement of words and phrases to create well-formed sentences in a
language : the syntax of English.
• a set of rules for or an analysis of this : generative syntax.
• the branch of linguistics that deals with this.

semantics |səˈmantiks|
the branch of linguistics and logic concerned with meaning. There are a
number of branches and subbranches of semantics, including formal
semantics, which studies the logical aspects of meaning, such as sense,
reference, implication, and logical form, lexical semantics, which studies
word meanings and word relations, and conceptual semantics, which studies
the cognitive structure of meaning.

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Luís Caires

Programming Languages

Example of syntactic ambiguity:

What is the value of f(10) ?

3

 int f(int x) {
 if (x > 0)
 if (x < 10) return x;
 else return 10;
 return 0;
 }

 f(10) = ??

Tiago

Tiago

Luís Caires

Programming Languages

Example of semantic ambiguity:
What is the value of f(2)+g(3) ?

4

public class A {
 static int a = 0;

 static int f(int x) {
 a = a + 1;
 return x;
 }
 static int g(int y) { return y + a; }

 static int sum(int x, int y) { return x + y; }

 public static void main(String[] args) {
 System.out.println(sum(f(2), g(3)));

 }
}

 f(2) + g(3) = ??

Luís Caires

Syntax specifies the form of programs in the language, how they should be
written, without attending to their meaning. Syntax is just about the
structure of program phrases.

A PL syntax is conveniently defined by a lexicon (set of words or tokens)
and a grammar (set of formation rules).

5

integer literal: (“0” | [“1”-”9”][“0”-”9”]*)

real literal : ([“0”-”9”]) “.” ([“0”-”9”])* (“E” ...)?

identifier: [a-z,A-Z,_][a-z,A-Z,_,0-9]*

reserved symbol: int, float, void, while, class, ...

Programming Languages (Syntax)

Tiago
Realce

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Luís Caires

The concrete syntax of a PL may be formally specified using regular languages
for tokens and context free grammars for program phrases (see course
“Theory of Computation”).

Given a description of tokens (eg. using regular expressions) and given a
description of a grammar (eg., using grammar rules) one may construct lexical
analysers and parsers, which are programs that check the syntax programs for
syntactical correctness and construct abstract syntax trees (AST).
ASTs are data structures that represent syntactically correct programs in a
structured form (not just as text - sequence of characters, in the source files).

Good news: there are tools that will do that for you automatically.

You will still need to know how to specify regular languages and (non-
ambiguous) context free grammars.

6

Programming Languages (Syntax)

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Luís Caires

Grammar for arithmetic expressions (yacc)

7

%token NAME
%token NUMBER
%token EQ
%token PLUS MINUS TIMES DIV
%left MINUS PLUS
%left TIMES DIV
%nonassoc UMINUS

%%

statement_list
 : statement
 | statement statement_list

statement
 : NAME EQ expression ';' {vbltable[$1] = $3; }

expression
 : expression PLUS expression {$$ = $1 + $3;}
 | expression MINUS expression {$$ = $1 - $3;}
 | expression TIMES expression {$$ = $1 * $3;}
 | expression DIV expression {$$ = $1 / $3;}
 | MINUS expression %prec UMINUS {$$ = - $2;}
 | '(' expression ')' { $$ = $2; }
 | NUMBER
 | NAME { $$ = vbltable[$1]; }

Tiago

Luís Caires

Grammar for arithmetic expressions (javacc)

8

void Start() :
{ }
{
 exp() <EOL>
}

void exp() :
{ }
{
 term() [<PLUS> exp()]
}

void term() :
{ }
{
 factor() [<MULTIPLY> term()]
}

void factor() :
{ }
{
 <CONSTANT>
| <LPAR> exp() <RPAR>
}

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Luís Caires

Grammar for arithmetic expressions (javacc)

9

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Luís Caires

Programming Languages (Semantics)

A PL semantics describes in a precise way the meaning of program
elements and phrases. Typically you find verbose descriptions in reference
manuals. There is no place for ambiguity or arbitrariness in meaning!

10

10.4 Array Access

A component of an array is accessed by an array access expression (§15.13)
that consists of an expression whose value is an array reference followed by an
indexing expression enclosed by [and], as in A[i]. All arrays are 0-origin. An
array with length n can be indexed by the integers 0 to n-1.

Arrays must be indexed by int values; short, byte, or char values may also
be used as index values because they are subjected to unary numeric promotion
(§) and become int values. An attempt to access an array component with a
long index value results in a compile-time error.

All array accesses are checked at run time; an attempt to use an index that is
less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to be thrown.

in The Java Language Specification

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Luís Caires

Programming Languages (Semantics)
The semantics of a PL may be defined by giving a computable function I which
assigns a definite meaning to each program (fragment)

 I : PROG → DENOT

PROG = set of all programs (as syntactical structures)
DENOT = set of all meanings (denotations)

The semantic mapping I may be mathematically defined, typically using set
theoretic constructions.

This is referred to as an denotational semantics.

More pragmatically the semantic mapping may also be given by an interpreter
algorithm.

Such interpreter algorithm takes as input any program (as a syntactical
data structure / AST) and yields its value and/or effect.

This is referred to as an operational semantics (approach in this course).

11

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Luís Caires

Code as Data
An interpreter for a language L is a program I that accepts as input the
representation of a program in the source language (as an data structure) and
realizes its execution according to the semantics of L.

The interpreter may be written in some language X, in general the language
that is accepts is a different one. Eg., we may write a Python interpreter in C.

This process is called “bootstrapping” and is used in general to define
interpreters for arbitrary languages. Languages that allows one to write
interpreter for any language are called Turing complete, and this is the main
content of the so-called Turing universality.

An expressive programming language should allow one to write an
interpreter / compiler for itself (f”ull bootstrapping”).

12

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Tiago

Luís Caires

Code as Data
A compiler for a language L is a program I that accepts as input the
representation of a program in the source language (as an data structure) and
outputs an equivalent program (with the same meaning) in another language.

A compiler is a translator, unlike an interpreter it does not execute the
source program but translates the source program in a program in a simpler
language, or in a language for which an interpreter or compiler already exists,
or even a physical (an hardware processor) or an abstract machine (e.g., JVM)
able to execute the target code directly.

The translation process must preserve the meaning of programs, that is, the
code generated by the compiler (target code) must have the same meaning
as the source code.

13

Tiago

Tiago

Tiago

Tiago

Tiago

ICLP 2009-2010Luís Caires 14

Goals of the Course: Knowledge

• What techniques are used in the design and implementation of
programming languages ?

• What are the building blocks of a programming language ?

• How to describe, analize and justify the features and characteristics of a
programming language using the concepts studied?

• How to design interpreters and compilers ?

• How can we define and predict the effect of programming constructs
in a precise manner ?

• How can we express and ensure properties of programming languages
such as error absence and type safety ?

• How can we define and express validation algorithms for programming
languages, that will work for any program written on it ?

• How do modern runtime support environments for programming
languages (JVM, .NET, LLVM) work ?

ICLP 2009-2010Luís Caires 15

Goals of the Course: Hands-on

• How do we construct a syntactic analyser (parser) ?

• What tools are there to assist on that ?

• How do we represent programs as data ?

• How do we specify the semantics of a programming language ?

• How to do it for abstract high level concepts such as higher
order functions, objects, classes, etc ?

• How do we use it to implement an interpreter or compiler ?

• How does a compiler generate code for a real or abstract
machine?

• How do we define and implement basic static analysis
algorithms (e.g., type-checking) ?

ICLP 2009-2010Luís Caires 16

“Road Map”
We will progress in a “onion” layer incremental way, covering key construct
present in all programming languages.

The course tightly couples principles design and implementation, in the
hands-on part you will develop an interpreter and compiler for a realistic
programming language.

This is an “integrative” course, you combine lots of stuff: AED, TC, AC, SE,
… etc….• Values, Basic Operations and Expressions

• Naming and Binding

• State (mutable memory)

• Functional abstraction

• Types and Type Systems

• Data Abstraction

• Objects, Classes and Modules

• We will see how the various primitives may be interpreted and
compiled to a target machine (JVM / LLVM)

Luís Caires 17

“If you don’t understand interpreters, you can still write
programs; you can even be a competent programmer. But
you can’t be a master.”

 (Hal Abelson, Essentials of Programming Languages de Friedman et al.)

Luís Caires

Bibliography

“Concepts in Programming Languages”,
John C. Mitchell,
Cambridge University Press.
ISBN 0 521 78098 5

“Essentials of Programming Languages”,
Daniel Friedman, Mitchell Wand, Christopher Haynes,
MIT Press.

“The Study of Programming Languages”,
Ryan Stansifer,
Prentice Hall International Edition.

“Modern Compiler Implementation in Java”
Andrew W. Appel
Cambridge University Press

Luís Caires 19

Course Grading

Continuous Evaluation:

Midterm test (8)

Final test (8)

Handout (2 phases) 4

Must be realised in groups of 2

Exam (for those failing in the CE)

Admittance to exam requires submission of the handout

