
Lectures Notes on
Searching and Sorting

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

29 March, 2022

1 Introduction

In these notes, we analyze a series of examples and present a strategy for specifying and ver-
ifying iterative algorithms, and in particular, we will address some sorting algorithms using
Dafny.

2 Loop invariants using arrays

Let us start with an example of a simple algorithm to determine the maximum value stored in
an array. Consider the following listing defining a function, which specifies that a given value
is greater than all the values in a given array, up to a given position.

predicate maxArray(a: array<int>, n: int, m: int)
requires 0 < n ≤ a.Length
reads a

{ ∀ k : int • 0 ≤ k < n =⇒ a[k] ≤ m }

method Max(a: array<int>) returns (m: int)
requires 0 < a.Length
ensures maxArray(a,a.Length,m)

{
m := a[0];
var i := 1;
while i < a.Length

decreases a.Length - i
invariant 1 ≤ i ≤ a.Length
invariant maxArray(a,i,m)

{
if m < a[i]
{ m := a[i]; }
i := i + 1;

}
}

1

SEARCHING 2

Exercise: The post-condition above is not the strongest possible. Do you understand that you
can be more specific in the specification of this method?

Observe the expression in predicate maxArray, here stripped of any extra formatting. It
universally quantifies variable k with values of type int.

forall k : int :: 0 <= k < n ==> a[k] <= m

Notice also that there is a clause in the predicate specification, reads a, to indicate to the caller
context that the predicate will depend on the mutable positions of the array. Which means that
all its post-conditions will have to be revoked whenever the array changes. This is used in a
derived rule called, the framing rule,

{A} P {B}
{A ∧ C} P {B ∧ C}

P does not change vars(C)

Notice that this rule is derived in Hoare Logic although not explicitly included. The reads a
clause helps to determine, that maxArray depends on the values of a and cannot be “framed
out”, or considered in formula C above, if P changes the array.

The post-condition of the method is written to capture the full extent of the array (maxArray(a,a.Length,m)),
up to position a.Length-1. On the other hand, the loop invariant used in the method (maxArray(a,i,m))
is a general formulation of the post-condition, which captures that the value of m is greater than
all the values in the array up to position i-1.

Notice that the invariant holds at the start of the loop and should be proven valid in the end.
This implication is visible in the following Hoare triple

{maxArray(a, i,m) ∧ i < a.Length}
if m < a[i] then {m := a[i]} else skip;
i := i+ 1

{maxArray(a, i,m)}

The backward assignment rule produces the weakest pre-condition for i := i + 1, which is
maxArray(a, i + 1,m), and is implied by maxArray(a, i,m) ∧ a[i] ≤ m. Such assertion, when
used as the post-condition of the conditional statement, is supported in both branches by the
pre-condition maxArray(a, i,m). Notice that at the end of the if branch we have that m = a[i].
The else branch is statement skip, and therefore the pre-condition and the negated condition
holds at the end (a[i] ≤ m).

3 Searching

Another example we can explore is a linear search in an array. See the appendix for the concrete
syntax of dafny. The specification of any indexOf method is to return the index of the sought
element or to return -1 if the element does not exist in the array. The precondition serves only
the purpose of restricting the inputs so that the search is maintained within legal bounds. The
complete signature is the following

method indexOf(a: array<int>, n: int, x: int) returns (z: int)
requires 0 ≤ n ≤ a.Length
ensures z = -1 =⇒ ∀ k : int • 0 ≤ k < n =⇒ a[k] 6= x
ensures z 6= -1 =⇒ ∃ k : int • 0 ≤ k < n ∧ a[k] = x

LECTURE NOTES 29 March, 2022

BINARY SEARCH 3

The post-condition is comprised of two complementary cases, both expressed with an implica-
tion, using an universal quantifier to express that all elements are different from the one being
sought, and an existential quantifier to express that one element matched the search criteria.
Remember that first-order logic is undecidable and that the SMT used by the Dafny compiler
(Z3) may fail to find the proof for some correct assertions, especially when using quantifiers.

Examine now the implementation of the method, which is based on the invariant that states
that all elements “to the left” of the cursor are different from parameter x.

1 method indexOf(a: array<int>, n: int, x: int) returns (z: int)
2 requires 0 ≤ n ≤ a.Length
3 ensures z = -1 =⇒ ∀ k : int • 0 ≤ k < n =⇒ a[k] 6= x
4 ensures z 6= -1 =⇒ ∃ k : int • 0 ≤ k < n ∧ a[k] = x
5 {
6 var i := 0;
7 assert ∀ k : int • 0 ≤ k < i =⇒ a[k] 6= x;
8 while i < n
9 decreases n - i

10 invariant 0 ≤ i ≤ n
11 invariant ∀ k : int • 0 ≤ k < i =⇒ a[k] 6= x
12 {
13 if a[i] = x {
14 return i;
15 }
16 i := i + 1;
17 }
18 return -1;
19 }

This method follows the common programming pattern of exiting the loop and the method
when encountering the first occurence of an element in an array. Notice the loop invariant in
line 11, which is a general form of the post-condition on line 3, assuming that the element was
not yet found. It is not obtained by a direct replacing of the limit variable by the cursor, but it
is still a sub-formula and more general formulation. Notice also that it is valid at the beginning
of the loop (the assert on line 7). Such invariant will be valid at the end of the loop, and when
combined with the invariant in line 10, and the negated condition (i ≥n), supports the post-
condition linked to the result (-1). The post-condition in line 4 is supported by the condition of
the if statement and the loop invariant and loop condition that says that 0 ≤i < n. Thus, the
existential quantifier is satisfied by given a witness to its formula (k = i).

This form of specification is very common, linking a special result value to a given condition.
The need to frame the value of the cursor variables is also common when using integers as
cursors.

Exercise: Note that the specification can be stronger and that the use of an existential quan-
tifier is less informative than an alternative formulation. Can you find the alternative?

4 Binary Search

A more efficient searching algorithm such as a binary search in a sorted array has the following
signature:

1 method BSearch(a: array<char>, n: int, x: char) returns (z: int)

LECTURE NOTES 29 March, 2022

4.1 Boolean results 4

2 requires 0 ≤ n ≤ a.Length
3 requires sorted(a, n)
4 ensures z = -1 =⇒ ∀ i : int • (0 ≤ i < n) =⇒ a[i] 6= x
5 ensures z 6= -1 =⇒ 0 ≤ z < n ∧ a[z] = x

Notice that the application of a binary search algorithm assumes that the array is sorted.
Notice that no runtime errors occur if the array is not sorted. Nevertheless, the post-condition
of finding the element in the array is not at all guaranteed. The assumption of a sorted array is
given by the pre-condition in line 3, using the sorted predicate with the following definition

predicate sorted(a: array<char>, n: int)
requires 0 ≤ n ≤ a.Length
reads a
{ ∀ i, j • (0 ≤ i < j < n) =⇒ a[i] ≤ a[j] }

The pre-condition in line 3 above will support the invariant of a loop in a binary search using
two cursors, that the element being sought is always between the low cursor and the high cursor.

Observe the implementation below, that starts with two limits and uses a middle value to
obtain the next low or high cursor.

1 method BSearch(a: array<char>, n: int, x: char) returns (z: int)
2 requires 0 ≤ n ≤ a.Length ∧ sorted(a, n)
3 ensures z = -1 =⇒ ∀ i • (0 ≤ i < n) =⇒ a[i] 6= x
4 ensures z 6= -1 =⇒ 0 ≤ z < n ∧ a[z] = x
5 {
6 var low, high := 0, n;
7 while low < high
8 decreases high - low
9 invariant 0 ≤ low ≤ high ≤ n

10 invariant ∀ i • 0 ≤ i < n ∧ i < low =⇒ a[i] 6= x
11 invariant ∀ i • 0 ≤ i < n ∧ high ≤ i =⇒ a[i] 6= x
12 {
13 var mid := low + (high-low)/2;
14 if a[mid] < x { low := mid + 1; }
15 else if x < a[mid] { high := mid; }
16 else { return mid; }
17 }
18 return -1;
19 }

Notice the invariant, stating that all the values below the low limit and higher than the high limit
are all different from the element we are looking for. Notice also that the invariant 0 ≤low ≤high ≤n
is kept by the computation of the mid value.

One more detail, note the parallel assignment in line 6, which declares and initializes two
variables in one step.

Notice that the array is not modified inside the loop, and therefore the property sorted(a,n)
is still valid, which is essential to maintain the invariant.

4.1 Boolean results

A similar pattern can be found in boolean methods whose result is the truth value for a given
assertion. In that case, an equivalence can be established. In the following definition, we use

LECTURE NOTES 29 March, 2022

SORTING 5

method BSearch, defined above, to implement the method Contains below

method Contains(a: array<char>, n: int, x: char) returns (b: bool)
requires 0 ≤ n ≤ a.Length ∧ sorted(a, n)
ensures b ⇐⇒ ∃ k • (0 ≤ k < n) ∧ a[k] = x

{
var i := BSearch(a,n,x);
return i 6= -1;

}

Notice the use of logical equivalence in the post-condition and that some information was lost
between the results of BSearch and Contains. The actual position of the element is not passed
to the results of this method. This is captured anyway by the existential quantifier in the post-
condition.

5 Sorting

Let’s now take a look at a sorting algorithm. The signature of such a method can be expressed
using the sorted predicate defined earlier. In this case, the sorted predicate is used in a
post-condition.

method sort(a: array<char>)
ensures sorted(a,a.Length)
modifies a

A simple algorithm to decompose and analyse is a quadratic selection sort algorithm, that
starts in the beginning of an array, and iteratively selecting the smallest element of the remain-
ing array. The sub-problem of selection sort is represented by an auxiliary method selectSmaller,
with the following signature,

method selectSmaller(a: array<int>,i: int)
requires 0 ≤ i < a.Length
requires sorted(a,i)
requires partitioned(a,i,a.Length)
modifies a
ensures sorted(a,i+1)
ensures partitioned(a,i+1,a.Length)

Notice that the method assumes that the array is sorted, up to a given point (cursor i), and
that all the values left of i are smaller than all the elements to the right of the cursor, given by
predicate partitioned, defined below.

predicate partitioned(a: array<char>,i: int,n: int)
requires 0 ≤ n ≤ a.Length
reads a;

{ ∀ k, l • 0 ≤ k < i ≤ l < n =⇒ (a[k] ≤ a[l]) }

Notice that selectSmaller performs one single step in the sorting of the whole array. The
implementation of this method that completes the selection for all positions of the array, is the
following

method selectSmaller(a: array<int>,i: int)
requires 0 ≤ i < a.Length

LECTURE NOTES 29 March, 2022

SORTING 6

requires sorted(a,i)
requires partitioned(a,i,a.Length)
modifies a
ensures sorted(a,i+1)
ensures partitioned(a,i+1,a.Length)

{
var jMin := i;
var j := i+1;
while (j < a.Length)

invariant i+1 ≤ j ≤ a.Length
invariant i ≤ jMin < j
invariant ∀ k • i ≤ k < j =⇒ a[jMin] ≤ a[k]
invariant sorted(a, i)
invariant partitioned(a, i, a.Length)

{
if (a[j] < a[jMin]) {

jMin := j;
}
j := j+1;

}
if (jMin 6= i) {

a[i] , a[jMin] := a[jMin] , a[i];
}

}

The method calculates the index jMin of the least element of the array, starting from i, and
then swaps the element at jMin with that of position i. This means that all the elements up to
position i are now sorted, since the element at position i is now provably greater or equal to
all others in greater indices. Also, that all the remaining elements, in higher positions, are larger
than all the elements on lower positions.

method selectionSort(a: array<char>)
requires 0 ≤ n ≤ a.Length
ensures sorted(a,a.Length)
modifies a

{
var i := 0;
while i < a.Length

invariant 0 ≤ i ≤ a.Length
invariant sorted(a,i)
invariant partitioned(a,i,a.Length)

{
selectSmaller(a,i);
i := i+1;

}
}

This final step provides the result (sorted(a,a.Length)) for the whole array.

The key in verifying these algorithms is to explore the different (intuitive) invariants that
must be kept in all iterations.

LECTURE NOTES 29 March, 2022

INSERTING INTO A SORTED ARRAY 7

6 Inserting into a sorted array

Verifying the sorted insertion of an element in a sorted array is also an interesting challenge.
The minimal specification of such a method is given by the following signature

method insert(a: array<int>, n: int, e: int)
requires 0 ≤ n < a.Length
requires sorted(a, n)
ensures sorted(a, n+1)

However, this is not the strongest post-condition possible. Why not?
Note that any method that maintains the order of the elements and adds an extra one satisfies
the specification given.

method wrongInsert(a: array<int>, n: int, e: int)
requires 0 ≤ n < a.Length
requires sorted(a, n)
ensures sorted(a, n+1)
modifies a

{
if(n > 0)
{ a[n] := a[n-1]; }

}

If one wants to specify that the all the elements in the array were maintained, then a more
specific post-condition is necessary. The following specification and implementation provide
more detail on how the elements are arranged in the final state of the array. Notice that there is
the need to also return the position into which the element was inserted in order to be able to
talk about it in the post-condition.

1 method insert(a: array<int>, n: int, e: int) returns (pos: int)
2 requires 0 ≤ n < a.Length
3 requires sorted(a, n)
4 ensures sorted(a, n+1)
5 ensures 0 ≤ pos ≤ n ∧ a[pos] = e
6 ensures ∀ k • 0 ≤ k < pos =⇒ a[k] = old(a[k])
7 ensures ∀ k • pos < k ≤ n =⇒ a[k] = old(a[k-1])
8 modifies a
9 {

10 var i := n;
11 if(n > 0)
12 { a[n] := a[n-1]; }
13 while 0 < i ∧ e < a[i-1]
14 invariant 0 ≤ i ≤ n
15 invariant sorted(a, n+1)
16 invariant ∀ k • i < k < n+1 =⇒ e ≤ a[k]
17 invariant ∀ k • 0 ≤ k < i =⇒ a[k] = old(a[k])
18 invariant ∀ k • i < k ≤ n =⇒ a[k] = old(a[k-1])
19 {
20 a[i] := a[i-1];
21 i := i - 1;
22 }

LECTURE NOTES 29 March, 2022

EXERCISES 8

23 a[i] := e;
24 return i;
25 }

The post-condition in line 5 specifies that the element was inserted in position pos, and that
post-conditions in lines 6 and 7 specify that the elements to the “left” of the element are the same
as before and those to the “right” of the new element are shifted in one position, respectively.

This implementation covers for the case where the array had no elements, and initialize a
new position of the array with a copy of the value in the last position.

This initialization is admitely only necessary for verification purposes. This assignment is
repeated by the first iteration of the loop. Thus, the invariant of the loop is established before
the loop starts. The technique applied here is similar to all previous examples, taking the post-
conditions as the starting to design the loop invariant. The extra condition to support the fact
that the assignment in line 24 maintains the order in the array is the loop invariant in line 17,
that lets the prover know that all elements to the “right” are greater or equal to the new element.

7 Exercises

1. Specify and implement method fillK(a,n,k,c). This method returns true if and only
if the first c elements, up to n, of array a are equal to k.

Define the weakest pre-condition and the strongest post-condition possible. Implement
the method so that it verifies.

method fillK(a: array<int>, n: int, k: int, c: int)
returns (b: bool)

2. Specify and implement the method containsSubString. This method tests whether or
not the array of characters a contains the elements of array b. If a contains b, then the
method returns the offset of b in a. If a does not contain b then the method returns an
illegal index (e.g. -1).

Define the weakest pre-condition and the strongest post-condition possible. Implement
the method so that it verifies.

Hint: you may want to define auxiliary functions and methods. */

method containsSubString(a: array<char>, b: array<char>)
returns (pos: int)

3. Specify and implement the method resize. This method returns a new array whose
length is double of the length of the array given as argument (a). If the length of the array
supplied as an argument is zero, then set the length of the resulting array (b) to a constant
of your choice.

All the elements of array a should be inserted, in the same order, in array b.

Define the weakest pre-condition and the strongest post-condition possible. Implement
the method so that it verifies.

method resize(a: array<int>) returns (z: array<int>)

LECTURE NOTES 29 March, 2022

EXERCISES 9

4. Specify and implement method reverse. This method receives an array a and returns a
new array (b) in which the elements of a appear in the inverse order.

For instance, the inverse of array a =[0, 1, 5, *, *], where ’*’ denotes an unini-
tialized array position, results in b =[5, 1, 0, *, *].

Define the weakest pre-condition and the strongest post-condition possible. Implement
the method so that it verifies.

method reverse(a: array<int>, n: int) returns (z: array<int>)

LECTURE NOTES 29 March, 2022

	Introduction
	Loop invariants using arrays
	Searching
	Binary Search
	Boolean results

	Sorting
	Inserting into a sorted array
	Exercises

