
Concurrency and Parallelism 2019-20 Example Questions (Ver. X) — 2020-06-21 (Duration:)

Please read these instructions carefully!
• Answer the test questions in the separate answer sheet.
• You may use the back of all the paper sheets as drafting area (rascunho).
• To replace an answer, draw a (well visible) cross over the canceled choice e and fill the circle of the new

choice (×# # #).
• To reactivate a canceled choice, draw a (well visible) cross over the new answer to be canceled and draw

a (well visible) circle around the (preciously canceled) choice you want to reactivate. (# ×# # ×#).
• This test has ?? QUESTIONS, each question valued as 20/?? points.
• POINTS LOST for each wrong answer (in percentage of the question value): 1st = 0%, 2nd = 11, 11%,

3rd = 22, 22%, 4th+ = 33, 33%.

Name: Number:

1. Why do one uses parallel computing?
A. To splitvery large data sets into smaller pieces to be processed independently.
B. To minimize the latency on accessing data by creating and managing multiple replicas of the data.
C. Solving larger problems in the same time.
D. Merging different unrelated tasks into a single computation.

2. In the context of parallel computing, in which process the original program is decomposed into basic sub-program units
or tasks?

A. Cooperation. B. Scheduling. C. Partitioning. D. Synchronization.

3. Serialization is…
A. The act of processing a large dataset as a sequential stream.
B. The act of putting some set of operations into a specific concurrent order.
C. The act sorting some set of operations into non-overlapping execution times.
D. The act enforcing some set of operations to waiting for some other operations to conclude.

4. Point out the FALSE statement.
A. The MapReduce framework is appropriate for processing large streams of data.
B. A MapReduce job usually splits the input data-set into independent chunks which are processed by the map

tasks in a completely parallel manner.
C. The MapReduce framework operates exclusively on pairs key/value.
D. The local storage area in Mappers expire (becomes invalid) after each job is concluded.

5. Which of the following patterns is similar to map but directed to data streams?
A. Stencil B. Split C. Scatter D. Farm

6. Which of the following statements better express the behaviour of the MAP parallel pattern?
A. REPEAT w=generate_data(); UNTIL w=false
B. WHILE w=getWork() DO process(w); DONE
C. FOREACH w IN foo DO process(w); DONE
D. LOOP w=getWork(); process(w); FOREVER.

7. Which parallel pattern IS IMPLEMENTED
by the the OpenMP code block on the right?

void pattern(int n, double a[], double b[], double c[]) {
#pragma parallel for
for (i = 0; i < n; i++)

a[i] = f(b[i], c[i]);
}

A. Stencil. B. Reduce. C. Pack. D. Map.

8. Which of the following phrases about OpenMP is TRUE? The statement following a #pragma omp single used inside
a #pragma omp parallel will be executed by…

A. … one and only one thread.
B. … at most one thread.
C. … as many thread as there are in the parallel block.
D. … at least one thread.

9. When a pthread starts by executing a function F , what happens to the stack frame (and to the local variables in that
function) when the thread dies?

A. The stack frame of F remains and is valid until the corresponding pthread_join(), when it is finally pop’ed.
B. The stack frame of F is pop’ed and the variables cease to exist (are no longer valid).
C. The stack frame of F is pop’ed but the variables remain valid until the corresponding pthread_join().
D. The values of the variables are kept until F is started again by another invocation of pthread_create().

10. The first Lab assignment was to implement a parallel algorithm to approximate the value of π by using the Monte Carlo
computation. Select the statement that broadly defines a Monte Carlo computation.

A. A computation that rely on repeated random sampling to obtain numerical results.
B. A computation that obtains numerical results by systematic approximating the target value by reaching a

local maximum, and than introduce some noise to escape that local maximum, and keep on approximating the
target value.

C. A computation that approximates a value by using genetic algorithms.
D. A computation involving the use of random numbers and floats/doubles.

11. Which types of data dependences DO NOT affect the correctness of the program?
A. All except Read-after-Write and Write-after-Read.
B. All except Read-after-Write, Write-after-Read and Write-after-Write.
C. All except Read-after-Read and Write-after-Write.
D. All do.

12. Identify the statement that is TRUE concerning the dependences that can be found in the following code block?
for (int i=1; i < n; i++)

for (int j=0; j < m; j++)
a[i][2*j] = a[i-1][2*j+1];

A. The is a loop-carried output dependence on a[i,j].
B. There are a loop-carried anti-dependence on i and a loop-carried flow dependence on j.
C. There are a loop-carried flow dependence on i and a loop-carried anti-dependence on j.
D. There are no dependences (the statement is loop-independent on both i and j).

13. Which of the following strategies enables a larger speedup for a program that was initially sequential?

A. Make 50% of the code 100 times faster?
B. Make 90% of the code 3 times faster?

C. Make 60% of the code 50 times faster?
D. Make 70% of the code 30 times faster?

14. Which of the following expressions defines the cost of a parallel computation?
n = #processors; C(n) = cost; S(n) = speedup; Tn = parallel execution time; Ts = sequential execution time;
f = non-parallelizable fraction of the original program.

A. C(n) = Tn × n B. C(n) = (Tn × f)× n C. C(n) = S(n)/n D. C(n) = (f × n)/Tn

Page 2

15. Given a parallel computation represented as a DAG (Direct Acyclic Graph) G, with work W and span S and P processes,
which of the following frases is FALSE?

A. Each vertex in G is executed exactly once.
B. If a vertex u is ordered before vertex v in G, then v is not executed at a time step before u.
C. Every execution schedule has length at least S

P .
D. We define the Span as the length of the longest path in the dag.

16. In the Work-Span model, a critical path in the DAG (Direct Acyclic Graph) is:
A. A path that leads to a node with no outgoing edge.
B. A path that forms a cycle.
C. A path that includes the node with the higher number of incoming edges.
D. The path that takes longer to execute.

17. Select the situation that always requires synchronization between the processes.
A. Processes A releases a block of memory of size Sa and process B requests a block of memory of size Sb < Sa.
B. Process A releases a lock and process B acquires that lock.
C. Processes A and B read the same memory location.
D. Process B is a replica of process A and they are both executing the same computation.

18. Which of the following invariants do not apply to a initially empty bounded queue?
p = number of data items produced so far n = number of elements currently in the queue
c = number of data items consumed so far k = size of the queue

A. (c ≥ 0) ∧ (p ≥ c) ∧ (p ≤ c+ k) B. n = p− c C. c < n+ k D. (n > 0) ⇒ (p > c)

19. Given an atomic register R and let Tb(op) and Te(op) be respectively the invocation and return of op, identify which of
the following phrases is FALSE.

A. For any two operation invocations op1 and op2, T(op1) ̸= T(op2) ⇒ op1 ̸= op2.
B. An atomic register R can be accessed by two base operations: R.read() and R.write(v).
C. Each invocation op of a read or write operation on an atomic shared register appears as if it was executed at

a single point T(op) of the time line, where Tb(op) ≤ T(op) ≤ Te(op).
D. For any two operation invocations op1 and op2, Te(op1) > Te(op2) ⇒ T(op1) > T(op2).

20. Given the following implementation of a mutex (i is the process acquiring/releasing the mutex, j is the other process),
indicate which of the phrases below is TRUE:

operation mutex_acquire(i) is
do
FLAG[i] = up;
if (FLAG[j] == up) FLAG[i] = down;

until (FLAG[i] == up);
end

operation mutex_release(i) is
FLAG[i] = down;

end

A. The given implementation ensures both mutual exclusion and progress.
B. The given implementation does not ensure mutual exclusion neither progress.
C. The given implementation ensures progress but not mutual exclusion.
D. The given implementation ensures mutual exclusion but not progress.

21. Which of the following defines the lock-freedom progress property?
A. Even in the presence of contention, all threads will complete its operation in a bounded number of steps.
B. In the absence of contention, a thread never bars (blocks) the progress of any other thread.
C. In the presence of contention, at least one thread will complete its operation in a bounded number of steps.
D. In the absence of contention, at least one thread will complete its operation in a bounded number of steps.

Page 3

22. Consider the implementation of the operation remove in a lazy-list as
presented on the right. Which code is missing in line 6?

A. while (current.key < key)

B. if (current.key < key)

C. if (current.key <= key)

D. while (current.key <= key)

23. Consider the implementation of the operation remove in a lazy-list as
presented on the right. Which code is missing in line 13?

A. if (validate(pred.key, curr.key))

B. if (validate(pred, curr))

C. if (validate(pred.next, curr))

D. if (validate(pred.next, curr.prev))

24. Consider the implementation of the operation contains in a lazy-list as
presented on the right. Which code is missing in line 72?

A. cuur.key == key && !curr.marked

B. cuur.key != key && !curr.marked

C. cuur.key != key || !curr.marked

D. cuur.key == key || !curr.marked

210 Chapter 9 Linked Lists: The Role of Locking

1 public boolean remove(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();
10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key != key) {
15 return false;
16 } else {
17 curr.marked = true;
18 pred.next = curr.next;
19 return true;
20 }
21 }
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }
29 }

Figure 9.18 The LazyList class: the remove() method removes nodes in two steps, logical
and physical.

1 public boolean contains(T item) {
2 int key = item.hashCode();
3 Node curr = head;
4 while (curr.key < key)
5 curr = curr.next;
6 return curr.key == key && !curr.marked;
7 }

Figure 9.19 The LazyList class: the contains() method.

which the node is reachable may contain marked nodes. The reader should check
that any unmarked reachable node remains reachable, even if its predecessor is
logically or physically deleted. As in the OptimisticList algorithm, add() and
remove() are not starvation-free, because list traversals may be arbitrarily delayed
by ongoing modifications.

The contains() method (Fig. 9.20) traverses the list once ignoring locks and
returns true if the node it was searching for is present and unmarked, and false

210 Chapter 9 Linked Lists: The Role of Locking

1 public boolean remove(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();
10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key != key) {
15 return false;
16 } else {
17 curr.marked = true;
18 pred.next = curr.next;
19 return true;
20 }
21 }
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }
29 }

Figure 9.18 The LazyList class: the remove() method removes nodes in two steps, logical
and physical.

1 public boolean contains(T item) {
2 int key = item.hashCode();
3 Node curr = head;
4 while (curr.key < key)
5 curr = curr.next;
6 return curr.key == key && !curr.marked;
7 }

Figure 9.19 The LazyList class: the contains() method.

which the node is reachable may contain marked nodes. The reader should check
that any unmarked reachable node remains reachable, even if its predecessor is
logically or physically deleted. As in the OptimisticList algorithm, add() and
remove() are not starvation-free, because list traversals may be arbitrarily delayed
by ongoing modifications.

The contains() method (Fig. 9.20) traverses the list once ignoring locks and
returns true if the node it was searching for is present and unmarked, and false

9.6 Optimistic Synchronization 207

49 public boolean contains(T item) {
50 int key = item.hashCode();
51 while (true) {
52 Entry pred = this.head; // sentinel node;
53 Entry curr = pred.next;
54 while (curr.key < key) {
55 pred = curr; curr = curr.next;
56 }
57 try {
58 pred.lock(); curr.lock();
59 if (validate(pred, curr)) {
60 return (curr.key == key);
61 }
62 } finally { // always unlock
63 pred.unlock(); curr.unlock();
64 }
65 }
66 }

Figure 9.13 The OptimisticList class: the contains() method searches, ignoring locks,
then it acquires locks, and validates to determine if the node is in the list.

67 private boolean validate(Node pred, Node curr) {
68 Node node = head;
69 while (node.key <= pred.key) {
70 if (node == pred)
71 return pred.next == curr;
72 node = node.next;
73 }
74 return false;
75 }

Figure 9.14 The OptimisticList: validation checks that predA points to currA and is
reachable from head.

As Fig. 9.15 shows, validation is necessary because the trail of references lead-
ing to predA or the reference from predA to currA could have changed between
when they were last read by A and when A acquired the locks. In particular, a
thread could be traversing parts of the list that have already been removed. For
example, the node currA and all nodes between currA and a (including a) may
be removed while A is still traversing currA. Thread A discovers that currA
points to a, and, without validation, “successfully” removes a, even though a is
no longer in the list. A validate() call detects that a is no longer in the list,
and the caller restarts the method.

Because we are ignoring the locks that protect concurrent modifications, each
of the method calls may traverse nodes that have been removed from the list.
Nevertheless, absence of interference implies that once a node has been unlinked
from the list, the value of its next field does not change, so following a sequence of
such links eventually leads back to the list. Absence of interference, in turn, relies
on garbage collection to ensure that no node is recycled while it is being traversed.

25. Which of the following statements is FALSE. In the definition of the lockset algorithm…
A. When a thread t accesses location x, the lockset algorithm does LockSet(x) = LockSet(x) ∩ LocksHeld(t).
B. When initializing, the lockset algorithm does LockSet(x) = ∅.
C. When initializing, the lockset algorithm does LocksHeld(t) = ∅.
D. When a thread t releases a lock l, the lockset algorithm does LocksHeld(t) = LocksHeld(t)∖ l.

26. Given the views V1, · · · , V4 on the right, and the threads T1, T2, T3, where Ti//Tj means that
thread Ti executes concurrently with thread Tj , and Ti ⇐< Vi,…, Vk > means thread Ti

executed the views < Vi,…, Vk > in that order, which of the following executions generate a
high-level data race?

A. T1 ⇐< V1, V4 > // T2 ⇐< V2, V3 >.

B. T1 ⇐< V1 > // T2 ⇐< V2 > // T3 ⇐< V2, V3 >.

C. T1 ⇐< V1, V3 > // T2 ⇐< V2, V4 >.

D. T1 ⇐< V1 > // T2 ⇐< V2 > // T3 ⇐< V4 >.

V1 = {A,B,C,D}
V2 = {A,B}
V3 = {A,B,D}
V4 = {B,D}

27. Concerning the Banker’s algorithm, we say a system is in a safe state if…
A. There exist a sequence < P1, P2, ..., Pn > of ALL the processes in the system such that the resources that

Pi may still request can be satisfied by the currently the available resources + the resources held by all the
Pj : j ̸= i.

B. There exist a sequence < P1, P2, ..., Pn > of ALL the processes in the system such that the resources that Pi

may still request can be satisfied by currently available resources + the resources held by all the Pj : j ≤ i.
C. There exist a sequence < P1, P2, ..., Pn > of ALL the processes in the system such that the resources that

Pi may still request can be satisfied by the currently the available resources + the resources held by all the
Pj : j < i.

D. There exist a sequence < P1, P2, ..., Pj > of SOME of the processes in the system such that the resources that
Pi may still request can be satisfied by currently available resources + the resources held by all the Pj , with
j ≤ i.

Page 4

Total

A B C D

3 17 16 12

Maximum

A B C D

P1 0 2 1 0
P2 1 6 5 2
P3 2 3 6 6
P4 0 6 5 2
P5 0 6 5 6

Allocated

A B C D

P1 0 1 1 0
P2 1 2 3 1
P3 1 3 6 5
P4 0 6 3 2
P5 0 0 1 4

Available

A B C D

1 5 2 0

Figure 1: Banker’s Algorithm data

28. In one of the lab classes you were given a working program written in Java that used a single hash-map. Select the
statement that is TRUE with respect to that lab assignment.

A. The (original) code given was operational for multithreaded execution because the hash-map was implemented
using non-blocking (lock-free) techniques.

B. The (original) code given was operational for multithreaded execution because all the public methods of the
hash-map object had the synchronized attribute.

C. The code had already some routines to verify the consistency of the data during/after the execution of the
program.

D. You were asked to use lock objects to introduce hand-over-hand synchronization at the level of the collision
lists of the hash-map.

Page 5

