
Concurrency	and	Parallelism	—	2nd	Test	—	2015-12-15					(Duration:	1h30m)	

Number:		______________		Name:		___		
	
Question	 1	 	2	a)		 2	b)	 	2	c)		 3	 		4			 		5			 		6			 7	a)	 7	b	i)	 7	b	ii)	 7	b	iii)	 7	b	iv)	 7	b	v)	 		8			 		9			

Points	 	0.5			 0.5		 1	 1	 		1.5		 2	 	2	 	0.5		 2		 1		 1		 1		 1		 1	 2	 2	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

This test is written in English, but you should answer in Portuguese if possible, and in English otherwise.

1) Two or more concurrent processes may need to synchronize between themselves because they interact by
competing or collaborating. Illustrate a basic mechanism for each of these interaction schemes and for each
interaction scheme describe a situation where the mechanism is useful.

 Competition: ________________ Situation:___

Collaboration: ________________ Situation:___

2) Assume that the initial value for 'x=0' and that methods M1 and M2 below execute in parallel.
 M1: for (i=0; i<3; i++) { x=x+1; } M2: for (i=0; i<4; i++) { x=x+2; }
a) List the smallest and the largest possible values for ‘x’, knowing that the methods M1 and M2 are

executed atomically.
Smallest: _________ Largest: _________

b) List the three smallest and three largest possible values for ‘x’, knowing that the instructions ‘x=x+N’ is
atomic.

Smallest: _________ _________ _________ Largest: _________ _________ _________

c) List the three smallest and three largest possible values for ‘x’, knowing that the instructions ‘x=x+N’ is
not atomic.

Smallest: _________ _________ _________ Largest: _________ _________ _________

3) Assume that the variables ‘x’ and ‘y’ have both the initial value ‘0’, and that the methods M1, M2, and M3, are
executed in parallel.
 M1: x=x+1; M2: y=y+1; M3: y=3; x=y+1
Knowing that the execution keeps the relative order of the instructions (i.e. in M3, ‘y=3’ is always executed
before ‘x=y+1’) and that the assignment is executed atomically, list all the final possible values for the
variables 'x', ‘y’, and for the pairs ‘(x,y)’ at the end of the execution of M1, M2 and M3.
 Note 1: If the number of slots in larger than necessary, just leave the remaining slots blank. If the number
of slots in smaller than necessary, just fill it up to the available of available slots.
 Note 2: Showing wrong values for X, Y, or pair (X,Y) will reduce your grade in this question.

X: _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Y: _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

(X,Y): (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __)

 (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __)

 (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __) (__, __)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

4) The pseudo-code (incomplete) presented below implements a producer-consumer pattern by using a shared
array BUF of size N. Knowing that synchronization is based in semaphores (S1 and S2), complete the missing
parts in the pseudo-code.	

5) Mark each of the following statements as true (T or V) or false (F). (Note: wrongly marking a statement will
reduce your grade in this question).
 [] Obstruction free programs always exhibit progress of the program as a whole.
 [] Lock-free programs may suffer from starvation.
 [] Obstruction freedom provides more guaranties than lock freedom.
 [] Lock freedom provides more guaranties than wait freedom.
 [] Obstruction-free programs may deadlock.
 [] Wait-free programs may deadlock.
 [] Under low contention, lock-free programs behave as wait-free programs.
 [] Wait-free programs may suffer from starvation.
 [] Lock-free programs may deadlock.
 [] Obstruction-free programs may suffer from starvation.
 [] Under high contention, lock-free programs behave as obstruction-free programs.
 [] All waif-free programs are also lock-free programs.
 [] Obstruction-free programs always generate linearizable executions.
 [] Wait-free programs always exhibit progress of the program as a whole.
 [] All linearizable programs are sequential consistent.
 [] Linearizability is a local property.
 [] Sequential consistency is a global property.
 [] The composition of linearized executions is linearizable.
 [] The composition of linearized executions is linearizable.
 [] All sequential consistent executions are also linearizable.

6) Consider	 a	 program	with	multiple	 threads.	 	 In	which	 of	 the	 following	 situations	 at	 least	 one	 thread	may	 be	
progressing	in	its	intended	computation?		Mark	each	case	with	Progress	(P)	or	No	Progress	(N).	

 [] deadlock	 []	livelock	 [] starvation	 [] busy-waiting	
 [] all	threads	simultaneously	execute	a	lock(X) over the same lock variable X	
 [] all	threads	simultaneously	execute	a	compareAndSwap(X,v) over the same variable X	

1. operation B.produce(v) is
2. S1. _____________________;
3. BUF[in].put(v);
4. ________________________;
5. S2. _____________________;
6. return ();
8. end operation;

1. operation B.consume() is
2. ________________________;
3. r = BUF[out]._____________;
4. ________________________;
5. ________________________;
6. return (r);
8. end operation;
	

∑00#

∑11#

∑22#

∑33#

∑44#

∑55#

∑66#

∑01#

∑12#

∑23#

∑34#

∑45#

∑02#

∑13#

∑24#

∑35#

∑03#

∑14#

∑25#

∑04#

∑15#

∑05#

∑56#

∑46#

∑36#

∑26#

∑16#

∑06#

∑10#

∑21#

∑32#

∑43#

∑54#

∑20#

∑31#

∑42#

∑53#

∑30#

∑41#

∑52#

∑40#

∑51#

∑50#

∑65#

∑64#

∑63#

∑62#

∑61#

∑60#

Evolução de P 1
Evolução de P

2

7) Consider that the processes P1 and P2 belong to the same program. Processes P1 and P2
interact by exchanging messages as shown in the figure at the right side of this question.
The full line arrows denote time and the dashed line arrows denote communication
events.
a) In the lattice at the right, ∑00 represents the

initial state of the program and ∑xy
represents the intermediate and
final states. With a cross (X)
mark in the lattice the
invalid states of
this program.

If you make a
mistake and want
to unmark a marked state,
draw a clearly visible circle
around the state to cancel a cross.

b) Knowing that ‘i(enm)’ and ‘r(enm)’ correspond to the invocation and reply of na event ‘enm’ that occurred
during the execution of the program, show:
i) A sequential history that is complete and consistent. If there is none, write “NONE” or “NÃO HÁ”.

ii) Another sequential history that is complete and consistent and different form i), in which at least
threeevents are in different positions than in i). If there is none, write “NONE” or “NÃO HÁ”.

iii) Explain when two sequential histories are equivalent. If they cannot be equivalent, write “NONE” or
“NÃO HÁ”.

iv) A concurrent history that is equivalent to the history i) above. If there is none, write “NONE” or
“NÃO HÁ”.

v) A concurrent history that is not equivalent to the history i) above. If there is none, write “NONE” or
“NÃO HÁ”.

	

P1# P2#
e11#

e12#

e13#

e14#

e15#

e22#

e21#

e23#
e24#

e25#

e26#

8:

9:

10:

8) Consider the code shown at the right that presents the definition of the class Node and part of the class
LockFreeStack, in particular its private fields
and the code relevant to the implementation
of the method push(). The method
backoff.backoff() does a random pause.

The class AtomicReference has two relevant
methods, namely get() that returns the
reference and compareAndSet(old, new)
with the usual semantics.

Fill the fields below with the code that
should be present in lines 8, 9 and 10.

	

9) Considere um sistema de memória transacional, em que duas transações estão a executar concorrentemente. Considere
ainda as seguintes transações:

 T1: R(50, a); R(100, b); W(120, 8); R(110, c)
 T2: W(50, 3); R(130, d); W(110,8); R(120, e)
 T3: R(50, f); R(100, g); R(120, h)

Knowing that Ti(N) / Tj(M) mean that transactions Ti and Tj execute in parallel starting respectively in time ‘i’ and
‘j’, fill the table below.

Ti // Tj Read Set Ti Read Set Tj Write Set Ti Write Set Tj
Ti commit or
abort? Why?

Tj commit or
abort? Why?

T1(5) // T2(7)

T1(8) // T3(4)

T2(2) // T3(8)

END!!!

