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Past lectures

Today

• Contents:
– Liveness: Types of Progress
– Coarse-Grained Synchronization
– Fine-Grained Synchronization
– Optimistic Synchronization
– Lazy Synchronization
– Lock-Free Synchronization

• Reading list:
– chapter 5 of the Textbook
– Chapter 9 of “The Art of Multiprocessor Programming” by 

Maurice Herlihy & Nir Shavit (available at clip)



Lazy Synchronization
• Procrastinate! Procrastinate! Procrastinate! J
• Make common operations fast
• Postpone hard work

– E.g., removing components is tricky… use two phases:
• Logical removal

– Mark component to be deleted
• Physical removal

– Do what needs to be done to remove the component

• Evaluation
Recheck after locking is simpler (just that nodes are unmarked)
Also, usually cheaper than hand-over-hand locking

✘Mistakes are expensive (safety easily compromised)
✘ Is not starvation free on add and remove (liveness compromised)

Is starvation free on contains
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Linked List

• Illustrate these patterns …

• Using a list-based Set
– Common application
– Building block for other apps
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Set Interface

• Unordered collection of items

• No duplicates

• Methods
– add(x) put x in set true if x was not in the set
– remove(x) take x out of set true if x was in the set
– contains(x) tests if x in set true if x is in the set

May 17, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 5



List-Based Sets
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public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}



List-Based Sets
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public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Add item to set



List-Based Sets
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public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(Tt x);

}

Remove item from set



List-Based Sets
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public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Is item in set?



List Node
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public class Node {
public T item;
public int key;
public Node next;

}



List Node
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public class Node {
public T item;
public int key;
public Node next;

}

item of interest



List Node
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public class Node {
public T item;
public int key;
public Node next;

}

Usually hash code



List Node
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public class Node {
public T item;
public int key;
public Node next;

}

Reference to next node



Optimistic Concurrency List

• Works best if the cost of traversing the list twice 
without locking is significantly less than the cost 
of traversing the list once with locking.

• One drawback of this Optimistic Concurrency 
List algorithm is that contains() needs to acquire 
locks, which is unattractive since contains()
calls are likely to be much more common than 
calls to other methods.
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Lazy Concurrency List

• Refine the Optimistic Concurrency List algorithm 
so that…

• Calls to contains() are wait-free

• The add() and remove() methods, while still 
blocking, traverse the list only once (in the 
absence of contention)
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Lazy Concurrency List HOWTO
• We add to each node a Boolean marked field indicating whether 

that (physical) node is (logically) in the set

• Traversals do not need to lock the target node, and there is no need 
to validate that the node is reachable by re-traversing the whole list

• Instead, the algorithm maintains the invariant that every unmarked 
node is reachable

• If a traversing thread does not find a node, or finds it marked, then 
that item is not in the set

• As a result, contains() needs only one wait-free traversal

• To add an element to the list, add() traverses the list, locks the 
target’s predecessor and successor, and inserts the node

• The remove() method is lazy, taking two steps: first, mark the target 
node, logically removing it, and second, redirect its predecessor’s 
next field, physically removing it
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Lazy Concurrency List HOWTO
• All methods traverse the list (possibly traversing logically and 

physically removed nodes) ignoring the locks
• The add() and remove() methods lock the predA and currA

nodes as before, but validation does not retraverse the entire 
list to determine whether a node is in the set.

• Instead, because a node must be marked before being 
physically removed, validation need only check that currA has 
not been marked

• However, for insertion and deletion, since predA is the one 
being modified, one must also check that predA itself is not 
marked, and that it points to currA

• Logical removals require a small change to the abstraction 
map: an item is in the set, if and only if it is referred to by an 
unmarked reachable node
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Lazy Validate

private boolean validate(Node pred, Node curr) {
return !pred.marked && !curr.marked

&& pred.next == curr;
}
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Validate do not traverse the list anymore.
Just check if nodes are nor marked as deleted 
and that ‘pred.next’ still points to ‘curr’



Lazy Add
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = head.next;
while (curr.key < key) {

pred = curr; 
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

} finally {
curr.unlock();
pred.unlock();

}
}

}
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Calculate hash

Try until
success or failure



Lazy Add
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = head.next;
while (curr.key < key) {

pred = curr; 
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

} finally {
curr.unlock();
pred.unlock();

}
}

}
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Initialize pointers
to traverse the list

Traverse the list
looking for ‘item’

Lock the nodes

Always unlock
(with both success and failure)

Try the operation
and either succeed
or fail



Lazy Add
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = head.next;
while (curr.key < key) {

pred = curr; 
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

} finally {
curr.unlock();
pred.unlock();

}
}

}
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If any of the nodes is marked as deleted
then restart the operation

If item already in list, fail

If item not present, create new node
insert into the list, and succeed



Lazy Remove
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = head.next;
while (curr.key < key) {

pred = curr; 
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key != key) {

return false;
} else {

curr.marked = true;
pred.next = curr.next;
return true;

}
}

} finally {
curr.unlock();
pred.unlock();

}
}

}
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Calculate hash

Try until
success or failure



Lazy Remove
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = head.next;
while (curr.key < key) {

pred = curr; 
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key != key) {

return false;
} else {

curr.marked = true;
pred.next = curr.next;
return true;

}
}

} finally {
curr.unlock();
pred.unlock();

}
}

}
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Initialize pointers
to traverse the list

Traverse the list
looking for ‘item’

Lock the nodes

Always unlock
(with both success and failure)

Try the operation
and either succeed
or fail



Lazy Remove
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = head.next;
while (curr.key < key) {

pred = curr; 
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key != key) {

return false;
} else {

curr.marked = true;
pred.next = curr.next;
return true;

}
}

} finally {
curr.unlock();
pred.unlock();

}
}

}
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If any of the nodes is marked as deleted
then restart the operation

If item not in list, fail

If item is present,
first mark it as deleted (logical delete)
and then remove it (physical dele)



Lazy Contains

public boolean contains(T item) {
int key = item.hashCode();
Node curr = head;
while (curr.key < key) {

curr = curr.next;
}
return (curr.key == key)

&& !curr.marked;
}
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No  while (ture) loop
anymore!
Contains always returns.



Lazy Contains

public boolean contains(T item) {
int key = item.hashCode();
Node curr = head;
while (curr.key < key) {

curr = curr.next;
}
return (curr.key == key)

&& !curr.marked;
}
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Calculate hash

Start traversing the list
from the beinning

Return true is item was
found and is nor
marked as deleted

Traverse the list
looking for ‘item’



Why validation is still necessary?

• Thread A is attempting to remove node a. After it reaches 
the point where predA refers to currA, and before it 
acquires locks on these nodes, the node predA is logically 
and physically removed. After A acquires the locks, 
validation will detect the problem and A’s call to 
remove() will be restarted.
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Figure 9.20 The LazyList class: why validation is needed. In Part (a) of the figure, thread A
is attempting to remove node a. After it reaches the point where predA refers to currA , and
before it acquires locks on these nodes, the node predA is logically and physically removed.
After A acquires the locks, validation will detect the problem. In Part (b) of the figure, A
is attempting to remove node a. After it reaches the point where predA equals currA , and
before it acquires locks on these nodes, a new node is added between predA and currA . After
A acquires the locks, even though neither predA or currA are marked, validation detects that
predA is not the same as currA , and A’s call to remove() will be restarted.

otherwise. It is thus wait-free.4 A marked node’s value is ignored. Each time the
traversal moves to a new node, the new node has a larger key than the previous
one, even if the node is logically deleted.

Logical removal requires a small change to the abstraction map: an item is in
the set if, and only if it is referred to by an unmarked reachable node. Notice that
the path along which the node is reachable may contain marked nodes. Physical
list modifications and traversals occur exactly as in the OptimisticList class,
and the reader should check that any unmarked reachable node remains reachable
even if its predecessor is logically or physically deleted.

The linearization points for LazyList add() and unsuccessful remove() calls
are the same as for the OptimisticList. A successful remove() call is linearized
when the mark is set (Line 17), and a successful contains() call is linearized when
an unmarked matching node is found.

To understand how to linearize an unsuccessful contains(), let us consider
the scenario depicted in Fig. 9.21. In Part (a), node a is marked as removed (its
marked field is set) and thread A is attempting to find the node matching a’s key.

4 Notice that the list ahead of a given traversing thread cannot grow forever due to newly inserted
keys, since the key size is finite.



Why validation is still necessary?

• Thread A is attempting to remove node a. After it reaches 
the point where predA refers to currA, and before it 
acquires locks on these nodes, a new node is added 
between predA and currA. After A acquires the locks, 
even though neither predA or currA are marked, 
validation detects that predA.next is not the same as 
currA, and A’s call to remove() will be restarted.
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9.7 Lazy Synchronization 211
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Figure 9.20 The LazyList class: why validation is needed. In Part (a) of the figure, thread A
is attempting to remove node a. After it reaches the point where predA refers to currA , and
before it acquires locks on these nodes, the node predA is logically and physically removed.
After A acquires the locks, validation will detect the problem. In Part (b) of the figure, A
is attempting to remove node a. After it reaches the point where predA equals currA , and
before it acquires locks on these nodes, a new node is added between predA and currA . After
A acquires the locks, even though neither predA or currA are marked, validation detects that
predA is not the same as currA , and A’s call to remove() will be restarted.

otherwise. It is thus wait-free.4 A marked node’s value is ignored. Each time the
traversal moves to a new node, the new node has a larger key than the previous
one, even if the node is logically deleted.

Logical removal requires a small change to the abstraction map: an item is in
the set if, and only if it is referred to by an unmarked reachable node. Notice that
the path along which the node is reachable may contain marked nodes. Physical
list modifications and traversals occur exactly as in the OptimisticList class,
and the reader should check that any unmarked reachable node remains reachable
even if its predecessor is logically or physically deleted.

The linearization points for LazyList add() and unsuccessful remove() calls
are the same as for the OptimisticList. A successful remove() call is linearized
when the mark is set (Line 17), and a successful contains() call is linearized when
an unmarked matching node is found.

To understand how to linearize an unsuccessful contains(), let us consider
the scenario depicted in Fig. 9.21. In Part (a), node a is marked as removed (its
marked field is set) and thread A is attempting to find the node matching a’s key.

4 Notice that the list ahead of a given traversing thread cannot grow forever due to newly inserted
keys, since the key size is finite.



Lazy List linearization points

• add() — linearized when the first lock is removed 
(before returning)

• Failed remove() — linearized when the first lock is 
removed (before returning)

• Successful remove() — linearized when the mark 
is set

• Successful contains() — linearized when an 
unmarked matching node is found

• Failed contains() — ??
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Lazy List linearization of a
failed contains()

• While thread A is traversing the list, a concurrent remove() call 
disconnects the sublist referred to by curr. Notice that nodes 
with items a and b are still reachable, so whether an item is 
actually in the list depends only on whether it is not marked. 
Thread A’s call is linearized at the point when it sees that node 
a is marked and is no longer in the abstract set.
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212 Chapter 9 Linked Lists: The Role of Locking
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Figure 9.21 The LazyList class: linearizing an unsuccessful contains() call. Dark nodes are
physically in the list and white nodes are physically removed. In Part (a), while thread A is
traversing the list, a concurrent remove() call disconnects the sublist referred to by curr .
Notice that nodes with items a and b are still reachable, so whether an item is actually in the
list depends only on whether it is marked. Thread A’s call is linearized at the point when it
sees that a is marked and is no longer in the abstract set. Alternatively, let us consider the
scenario depicted in Part (b). While thread A is traversing the list leading to marked node
a, another thread adds a new node with key a. It would be wrong to linearize thread A’s
unsuccessful contains() call to when it found the marked node a, since this point occurs
after the insertion of the new node with key a to the list.

While A is traversing the list, currA and all nodes between currA and a including
a are removed, both logically and physically. Thread A would still proceed to the
point where currA points to a, and would detect that a is marked and no longer
in the abstract set. The call could be linearized at this point.

Now let us consider the scenario depicted in Part (b). While A is traversing
the removed section of the list leading to a, and before it reaches the removed
node a, another thread adds a new node with a key a to the reachable part of
the list. Linearizing thread A’s unsuccessful contains() method at the point
it finds the marked node a would be wrong, since this point occurs after the
insertion of the new node with key a to the list. We therefore linearize an unsuc-
cessful contains() method call within its execution interval at the earlier of the



Lazy List linearization of a
failed contains()

• While thread A is traversing the list leading to marked node a, 
another thread adds a new node with key a. It would be 
wrong to linearize thread A’s unsuccessful contains() call to 
when it found the marked node a, since this point occurs after 
the insertion of the new node with key a to the list.
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Figure 9.21 The LazyList class: linearizing an unsuccessful contains() call. Dark nodes are
physically in the list and white nodes are physically removed. In Part (a), while thread A is
traversing the list, a concurrent remove() call disconnects the sublist referred to by curr .
Notice that nodes with items a and b are still reachable, so whether an item is actually in the
list depends only on whether it is marked. Thread A’s call is linearized at the point when it
sees that a is marked and is no longer in the abstract set. Alternatively, let us consider the
scenario depicted in Part (b). While thread A is traversing the list leading to marked node
a, another thread adds a new node with key a. It would be wrong to linearize thread A’s
unsuccessful contains() call to when it found the marked node a, since this point occurs
after the insertion of the new node with key a to the list.

While A is traversing the list, currA and all nodes between currA and a including
a are removed, both logically and physically. Thread A would still proceed to the
point where currA points to a, and would detect that a is marked and no longer
in the abstract set. The call could be linearized at this point.

Now let us consider the scenario depicted in Part (b). While A is traversing
the removed section of the list leading to a, and before it reaches the removed
node a, another thread adds a new node with a key a to the reachable part of
the list. Linearizing thread A’s unsuccessful contains() method at the point
it finds the marked node a would be wrong, since this point occurs after the
insertion of the new node with key a to the list. We therefore linearize an unsuc-
cessful contains() method call within its execution interval at the earlier of the



Lazy List linearization of a
failed contains()

• An unsuccessful contains() method call is linearized within its 
execution interval at the earlier of the following points:
– (1) the point where a removed matching node, or a node with a 

key greater than the one being searched for is found, and 
– (2) the point immediately before a new matching node is added 

to the list
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Figure 9.21 The LazyList class: linearizing an unsuccessful contains() call. Dark nodes are
physically in the list and white nodes are physically removed. In Part (a), while thread A is
traversing the list, a concurrent remove() call disconnects the sublist referred to by curr .
Notice that nodes with items a and b are still reachable, so whether an item is actually in the
list depends only on whether it is marked. Thread A’s call is linearized at the point when it
sees that a is marked and is no longer in the abstract set. Alternatively, let us consider the
scenario depicted in Part (b). While thread A is traversing the list leading to marked node
a, another thread adds a new node with key a. It would be wrong to linearize thread A’s
unsuccessful contains() call to when it found the marked node a, since this point occurs
after the insertion of the new node with key a to the list.

While A is traversing the list, currA and all nodes between currA and a including
a are removed, both logically and physically. Thread A would still proceed to the
point where currA points to a, and would detect that a is marked and no longer
in the abstract set. The call could be linearized at this point.

Now let us consider the scenario depicted in Part (b). While A is traversing
the removed section of the list leading to a, and before it reaches the removed
node a, another thread adds a new node with a key a to the reachable part of
the list. Linearizing thread A’s unsuccessful contains() method at the point
it finds the marked node a would be wrong, since this point occurs after the
insertion of the new node with key a to the list. We therefore linearize an unsuc-
cessful contains() method call within its execution interval at the earlier of the



The END
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