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Abstract
MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.
Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.
Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds ofMapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.
As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.
The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.
Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis
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Google’s MapReduce: summary

• a programming model and an associated 
implementation for processing large datasets
• runs on a large cluster of commodity machines

…  a typical … computation processes many 
terabytes of data on thousands of machines
• a new abstraction that allows us to expresses 

simple computations we were trying to perform 
but hides the messy details of parallelization, 
fault-tolerance, data-distribution and load-
balancing in a library
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Programming model: batch 
processing
• Map-reduced is designed for batch processing

• Batch processing:
– All input is known when the computation starts

– The complete computation is executed

– No interactions with the user
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Programming model

• Sequence of map and reduce stages

• Map: processes input (files); emit tuples

• Reduce: process tuples grouped by key; Emit 
tuples
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Programming model

• Sequence of map and reduce stages

• Map: processes input (files); emit tuples
– emit (k1, v1)
– emit (k2, v2)
– emit (k1, v3)

• Reduce: process tuples grouped by key; Emit tuples
– input (k1, {v1, v3}) – emit (ka, va)
– Input (k2, {v2}) – emit (Kb, vb)

– emit (kc, vc)
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Map-reduce steps

• Input is typically (key, value) pairs
– Partitioned for multiple mappers

• Map and Reduce are performed by a number of processer

In
pu

t –
pa

rit
io

ne
d

fo
r 

m
ap

pe
rs

Map ReduceShuffle
sort by key

same key
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Map function

• Each map task processes a chunk of the input

• Input: non-structured data, (input-key, value)

• Output: (intermediate-key, value)

non-structured data
(input-key1, value1) map1

(intermediate-key1, value1)
…

(intermediate-keyu, valueu)

non-structured data
(input-keyn, valuen) mapn

(intermediate-key1, value1)
…

(intermediate-keyv, valuev)

…
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Shuffle and Sort:
between map and reduce
• The output of the map is stored on local disk

• The infrastructure
– sorts all the data by key
– sometimes aggregates all the key/value pairs with the 

same key into a single pair key/list-of-values
– sends (distribute/shuffle) the data among the nodes 

running reducers

• The sorted data is the input of the reduce tasks
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Reduce function

• Each reduce task processes a chunk of the 
sorted data
– All data with the same key is processed by the same 

reduce task

• Input: (intermediate-key, value)

• Output: (output-key, value), or non-structured 
output
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Programming model... working

• Count the number of times each word appears 
in a document
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map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1")

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0
for each v in values:
result += ParseInt(v)

Emit(key, AsString(result))



Programming model… working
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map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1")

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0
for each v in values:
result += ParseInt(v)

Emit(key, AsString(result))
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map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1")

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0
for each v in values:
result += ParseInt(v)

Emit(key, AsString(result))
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map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1")

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0
for each v in values:
result += ParseInt(v)

Emit(key, AsString(result))
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map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1")

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0
for each v in values:
result += ParseInt(v)

Emit(key, AsString(result))
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Extended programming model

• In the word count example, what is the problem 
of emitting a tuple for each word?

• How could it be solved?

• Combiner phase 
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Extended programming model

• Combiner runs in each mapper

• Same interface as the reduce
– (key, value) pairs generated by a mapper are sorted and fed to the combiner
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Combiner example
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(A, B)
(A, C)
(A, D)
(B, E)
(B, D)
(C, B)

(C, D)
(C, A)
(D, A)
(E, C)
(E, B)
(E, D)

Bl
oc

k 
1

Bl
oc

k 
2

Mappper

Mappper

Combiner

Combiner

Shuffle Reducer

(k1, v1)
(B, 1)
(C, 1)
(D, 1)
(E, 1)
(D, 1)
(B, 1)

(D, 1)
(A, 1)
(A, 1)
(C, 1)
(B, 1)
(D, 1)

(k2, v2)

(B, 2)
(C, 1)
(D, 2)
(E, 1)

(D, 2)
(A, 2)
(C, 1)
(B, 1)

(k2, [v2])

(A, [2])
(B, [2,1])
(C, [1,1])
(D, [2,2])
(E, [1])

(k2, [v2])
(A, 2)
(B, 3)
(C, 2)
(D, 4)
(E, 1)

(k3, v3)



Map-reduce phases

• MapReduce is broken down into several steps:
1. Record Reader
2. Map
3. Combiner (Optional)
4. Partitioner
5. Shuffle and Sort
6. Aggregator
7. Reduce
8. Output Format
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MR phases:
Record Reader (1)
• Record Reader splits input into

fixed-size pieces for each mapper

• The key is positional information (the number of 
bytes from start of file) and the value is the chunk of 
data composing a single record

• In hadoop, each map task’s is an input split which is 
usually simply a HDFS block

• Hadoop tries scheduling map tasks on nodes where 
that block is stored (data locality)
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Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort

Aggregator

Output Format



MR phases:
Record Reader (1)

Apr 19, 2021 Sistemas de Prcessamento de Big Data — N. Preguiça & J. Lourenço © FCT-UNL 2019 21

Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort

Aggregator

Output Format



MR phases: Map (2)

• Map User defined function outputting 
intermediate key-value pairs

• key (k2): Later, the infrastructure will group and 
possibly aggregate data according to these 
keys. Choosing the right keys is here is important 
for a good MapReduce job

• value (v2): The data to be grouped according to 
its key
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Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort

Aggregator

Output Format



MR phases: Map (2)
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Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort
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Output Format



MR phases: Combiner (3)

• Combiner (optional) UDF aggregating data 
according to intermediate keys on a mapper node

• This can usually reduce the amount of data to be 
sent over the network increasing efficiency

• Combiner should be written with the idea that it is 
executed over most but not all map tasks 
i.e., (k2,v2)↦(k2,v2)

• Usually very similar or the same code as the reduce 
method
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MR phases: Combiner (3)
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Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort

Aggregator

Output Format



MR phases: Partitioner (4)

• Partitioner Where to send the key-value pairs
(k2,v2) produced in the map phase?

• Reducer# = hash(k) mod R

• Will usually result in a roughly balanced load across the 
reducers

• A balancer system is in place for the cases when the key-
values are too unevenly distributed

• In hadoop, the intermediate pairs (k2,v2) are written to 
the local harddrive and grouped by reducer# and k2
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Reduce
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MR phases: Partitioner (4)
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Reduce

Combiner (Optional)

Map

Record Reader

Partitioner
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Output Format



MR phases: Shuffle (5)

• Shuffle  Effectively sends the intermediate
pairs (k2,v2) to the reducer nodes
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Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort

Aggregator

Output Format



MR phases: Shuffle (5)

Apr 19, 2021 Sistemas de Prcessamento de Big Data — N. Preguiça & J. Lourenço © FCT-UNL 2019 29

Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort

Aggregator

Output Format



MR phases: Sort (5)

• Shuffle  Effectively sends the intermediate pairs
(k2,v2) to the reducer nodes

• Sort On reducer node, sorts by key to help group equivalent 
keys

• Ensures that all key-value pairs are grouped by their key on a 
single reducer

• A balancer system is in place for the cases when the key-
values are too unevenly distributed

• In hadoop, the intermediate keys (k2,v2) are written to the 
local harddrive and grouped by which reduce they will be 
sent to and their key.
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MR phases: Sort (5)
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MR phases: Aggregator (6)

• Aggregator Ensures that all key-value pairs
are grouped by their key on a single reducer

• A balancer system is in place for the cases when 
the key-values are too unevenly distributed

Apr 19, 2021 Sistemas de Prcessamento de Big Data — N. Preguiça & J. Lourenço © FCT-UNL 2019 32

Reduce

Combiner (Optional)

Map

Record Reader

Partitioner

Shuffle and Sort

Aggregator

Output Format



MR phases: Aggregator (6)
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MR phases: Reduce (7)

• Reduce User Defined Function that
aggregates data (v) according to keys (k), 
and emits key-value pairs to output
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MR phases: Reduce (7)
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reducer
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MR phases:
Output Format (8)
• Output Format Translates final key-value

pairs to file format (tab-separated by default)
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MR phases:
Output Format (8)
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• For exercising map-reduce programming, 
consider a set of log files containing information 
for web accesses

date IP_source return_value operation URL time

2016-12-06T08:58:35.318+0000 37.139.9.11 404 GET /codemove/TTCENCUFMH3C 0.026

Programming map-reduce (0)
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date     IP_source return_value operation   URL  time

2016-12-06T08:58:35.318+0000 37.139.9.11 404 GET /codemove/TTCENCUFMH3C 0.026

Programming map-reduce (1.1)

• Returns the list of source IP addresses

• Input: log files, containing information for web 
accesses

• Output: list of IP addresses
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Programming map-reduce (1.2)
map(String key, String value):
// key: log filename
// value: log contents
for each line l in value:

words = line.split()
EmitIntermediate(words[1], [words[1]]);

combiner(String key, Iterator values):
reduce(String key, Iterator values):
// key: IP address
// values: IP address
Emit(key, key)
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date     IP_source return_value operation   URL  time

2016-12-06T08:58:35.318+0000 37.139.9.11 404 GET /codemove/TTCENCUFMH3C 0.026



Programming map-reduce (2.1)

• Find log entries that report accesses to a given 
URL

• Input: log files

• Output: list of log entries (lines)
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date     IP_source return_value operation   URL  time

2016-12-06T08:58:35.318+0000 37.139.9.11 404 GET /codemove/TTCENCUFMH3C 0.026



Programming map-reduce (2.2)
map(String key, String value):
// key: log filename
// value: log contents
for each line l in value:

words = line.split()
if words[ 4] == URL:

EmitIntermediate(words[0], [line]);

combiner(String key, Iterator values):
reduce(String key, Iterator values):
// key: date
// values: log line
for each v in values:

Emit(key, v)
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date     IP_source return_value operation   URL  time

2016-12-06T08:58:35.318+0000 37.139.9.11 404 GET /codemove/TTCENCUFMH3C 0.026



Programming map-reduce (3.1)

• Create an inverted index URL → list of unique 
source IP address

• Input: log files

• Output: list of:  URL, list of unique source IP 
addresses
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date     IP_source return_value operation   URL  time

2016-12-06T08:58:35.318+0000 37.139.9.11 404 GET /codemove/TTCENCUFMH3C 0.026



Programming map-reduce (3.2)
map(String key, String value):
// key: log filename
// value: log contents
for each line l in value:

words = line.split()
EmitIntermediate(words[4], [words[1]]);

combiner(String key, Iterator values):
reduce(String key, Iterator values):
// key: URL
// values: list of IP addresses
L = []
for each v in values:

if v not in L:
L.append(v)

Emit(key, L)
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date     IP_source return_value operation   URL  time

2016-12-06T08:58:35.318+0000 37.139.9.11 404 GET /codemove/TTCENCUFMH3C 0.026



Why is map-reduce popular?

• Distributed computation before MapReduce:
– how to divide the workload among multiple machines?
– how to distribute data and program to other machines?
– how to schedule tasks?
– what happens if a task fails while running?
– … and … and ... 

• Distributed computation after MapReduce
– how to write Map function?
– how to write Reduce function? 

Ack: Slide by Junghoon Kang
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