

Parallel Programming Models and Architectures

lecture 03 (2021-03-22)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

Outline

- Performance scalability
 - Work-span model
 - Brent's lemma

- Bibliography:
 - Chapter 2 of book McCool M., Arch M., Reinders J.; Structured Parallel Programming: Patterns for Efficient Computation; Morgan Kaufmann (2012); ISBN: 978-0-12-415993-8

Amdhal's Law

If 50% of your application is parallel and 50% is serial, you can't get more than a factor of 2 speedup, no matter how many processors it runs on!

But...

 Can all the applications be decomposed into just a serial part and a parallel part? For my particular application, what speedup should I expect?

 Most applications are not embarrassing parallel, because they have a dependencies between code blocks and have a complex organization

Cilk+ fib() implementation

Execution model

Computation DAG

- A parallel instruction stream is a dag G = (V, E).
- Each vertex $v \in V$ is a strand: a sequence of instructions not containing a call, spawn, sync, or return (or thrown exception).
- An edge $e \in E$ is a spawn, call, return, or continue edge.
- Loop parallelism (cilk_for) is converted to spawns and syncs using recursive divide-and-conquer.

Serial Composition

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$ Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$

Parallel Composition

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$ Span: $T_{\infty}(A \cup B) = \max\{T_{\infty}(A), T_{\infty}(B)\}$

Def. $T_1/T_P = speedup$ on P processors.

If $T_1/T_P = P$, we have *(perfect) linear speedup*. If $T_1/T_P > P$, we have *superlinear speedup*, which is not possible in this performance model, because of the Work Law $T_P \ge T_1/P$.

Parallelism

- $T_1/T_{\infty} = parallelism$
 - = the average amount of work per step along the span.
 - = 18/9

= 2

Example: fib(4)

Assume for simplicity that each strand in fib(4) takes unit time to execute.

Work:
$$T_1 = 17$$

Span: $T_{\infty} = 8$
Parallelism: $T_1/T_{\infty} = 2.125$

Using many more than 2 processors can yield only marginal performance gains.

Quicksort Analysis

Note: the pointer arithmetic is invalid in this example, but I hope you get the idea!

int p = partition(base, nel, width, compar);

cilk_spawn qsort(&base[0], p, width, compar);

qsort (&base[p+1], nel-(p+1), width, compar);

cilk_sync;

Let's analyze the sorting of 100,000,000 numbers!

{

Quicksort Analysis

Note: the pointer arithmetic is invalid in this example, but I hope you get the idea!

int p = partition(base, nel, width, compar);

cilk_spawn qsort(&base[0], p, width, compar);

qsort (&base[p+1], nel-(p+1), width, compar);

cilk_sync;

Expected Work = O(n lg n) Expected Span = O(n) => Parallelism = O(lg n)

{

}

Interesting Practical Algorithms

Algorithm	Work	Span	Parallelism
Quick sort	Θ(n lg n)	Θ(n)	Θ(lg n)
Merge sort	Θ(n lg n)	Θ(lg³ n)	$\Theta(n/lg^2 n)$
Matrix multiplication	Θ(n ³)	Θ(lg n)	Θ(n ³ /lg n)
Strassen	Θ(n ^{lg7})	Θ(lg² n)	$\Theta(n^{lg7}/lg^2n)$
LU-decomposition	Θ(n ³)	Θ(n lg n)	$\Theta(n^2/\lg n)$
Tableau construction	Θ(n ²)	Θ(n ^{lg3})	$\Theta(n^{2-lg_3})$
FFT	Θ(n lg n)	Θ(lg²n)	Θ(n/lg n)

DAG Model of Computation

- Think of a program as a directed acyclic graph (DAG) of tasks
 - A task can not execute until all the inputs to the tasks are available
 - These come from outputs of earlier executing tasks
 - DAG shows explicitly the task dependencies
- Think of the hardware as consisting of workers (processors)
- Consider a greedy scheduler of the DAG tasks to workers
 - No worker is idle while there are tasks still to execute

Work-Span Model

- T_P = time to run with P workers
- $T_1 = work$
 - Time for serial execution
 - execution of all tasks by 1 worker
 - Sum of all work
- $T_{\infty} = span$
 - Time along the critical path
- Critical path
 - Sequence of task execution (path) through DAG that takes the longest time to execute
 - Assumes an infinite # workers available

Work-Span Example

- DAG at the right has 7 tasks
- Let each task take 1 unit of time
- $T_1 = 7$
 - All tasks have to be executed
 - Tasks are executed in a serial order
 - Can them execute in any order?

Work-Span Example

- DAG at the right has 7 tasks
- Let each task take 1 unit of time
- $T_1 = 7$
 - All tasks have to be executed
 - Tasks are executed in a serial order
 - Can them execute in any order?
- $T_{\infty} = 5$
 - Time along the critical path
 - In this case, it is the longest pathlength of any task order that maintains necessary dependencies

Lower/Upper Bound on Greedy Scheduling

- Suppose we only have P workers
- We can write a work-span formula to derive a lower bound on T_P – $Max(T_1 / P, T_\infty) \leq T_P$
- T_{∞} is the best possible execution time
- Brent's Lemma derives an upper bound
 - Capture the additional cost executing the other tasks not on the critical path
 - Assume can do so without overhead
 - $-T_P \leq \left(T_1 T_\infty\right) / P + T_\infty$

Consider Brent's Lemma for 2 Processors

- $T_1 = 7$
- $T_{\infty} = 5$
- $T_2 \leq (T_1 T_\infty) / P + T_\infty$ $\leq (7 - 5) / 2 + 5$ ≤ 6

Consider Brent's Lemma for 2 Processors

- $T_1 = 7$
- $T_{\infty} = 5$
- $T_2 \leq (T_1 T_\infty) / P + T_\infty$ $\leq (7 - 5) / 2 + 5$ ≤ 6

Consider Brent's Lemma for 2 Processors

- $T_1 = 7$
- $T_{\infty} = 5$
- $T_2 \leq (T_1 T_\infty) / P + T_\infty$ $\leq (7 - 5) / 2 + 5$ ≤ 6

Amdahl was an optimist!

Estimating Running Time

• Scalability requires that T_{∞} be dominated by T_1

 $T_P \leq (T_1 - T_\infty) / P + T_\infty$

 $T_P \approx T_1 / P + T_\infty \quad if \quad T_\infty << T_1$

- Increasing work hurts parallel execution proportionately
- The span impacts scalability, even for finite P

Parallel Slack

• Sufficient parallelism implies linear speedup

$$T_P \approx T_1/P \quad if \quad T_1/T_{\infty} >> P$$

$$\Box_P \approx T_1/P \quad if \quad T_1/T_{\infty} >> P$$
Linear speedup Parallel stack

The END

- Sources:
 - Parallel Computing, CIS 410/510, Department of Computer and Information Science
 - https://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-172-performance-engineering-ofsoftware-systems-fall-2010/video-lectures/lecture-13parallelism-and-performance/MIT6_172F10_lec13.pdf