
Parallel Programming
Models and Architectures

lecture 03 (2021-03-22)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Outline

• Performance scalability
– Analytical performance measures
– Amdahl’s law
– Gustafson-Barsis’ law
– Work-span and Brent’s lemma

– Bibliography:
• Chapter 2 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 22, 2021 2Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

What is Performance?

• In computing, performance is defined by 2 factors
– Computational requirements (what needs to be done?) Efficacy
– Computing resources (how much will it cost?) Efficiency

• Computational problems translate to requirements

• Computing resources interplay and tradeoff

Mar 22, 2021 3

Time Energy

… and ultimately

MoneyHardware

Performance ~ 1
Resources for solution

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

What is Parallel Performance?

• We are concerned with performance issues when using a
parallel computing environment

– Performance with respect to parallel computation

• Performance is the raison d’être for parallelism
– Parallel performance versus sequential performance
– If the “performance” is not better, parallelism is not necessary

• Parallel processing includes techniques and technologies
necessary to compute in parallel

– Hardware, networks, operating systems, parallel libraries, languages,
compilers, algorithms, tools, …

• Parallelism must deliver performance
– How? How well?

Mar 22, 2021 4Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Performance Expectation (Loss)

• If each processor is rated at “𝑓” MFLOPS and there are
“p” processors, should we see “𝑓 × 𝑝” MFLOPS
performance?
– If it takes 100 seconds on 1 processor, shouldn't it take 10 seconds on

10 processors?

• Several causes affect performance
– Each must be understood separately
– But they interact with each other in complex ways

• Solution to one problem may create another
• One problem may mask another

• Scaling (system, problem size) can change conditions

• Need to understand performance space

Mar 22, 2021 5Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Embarrassingly Parallel
Computations
• An embarrassingly parallel computation is one that

can be obviously divided into completely
independent parts that can be executed
simultaneously
– In an embarrassingly parallel computation there is no interaction

between separate processes, except for the (initial) work
distribution and (final) results collection and combination

• Embarrassingly parallel computations have potential
to achieve maximal speedup on parallel platforms
– If it takes 𝑇 time sequentially, there is the potential to achieve
𝑇/𝑃 time running in parallel with 𝑃 processors

– Why is this not the (usual) case?

Mar 22, 2021 6Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Scalability

• Can the program scale up to use many
processors?
– What does that mean?

• How do we measure scalability?
– How do we evaluate scalability goodness?

• Comparative evaluation
– If double the number of processors, what to expect?
– Is scalability linear?
– Is efficiency retained as problem size increases?

– Apply performance metrics

Mar 22, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 7

Performance and Scalability

• Performance evaluation
– Sequential runtime (Tseq or T1) is a function of

• problem size and architecture
– Parallel runtime (Tpar) is a function of

• problem size and parallel architecture
• # processors used in the execution

– Performance is affected by
• algorithm + architecture

• Scalability
– Ability of parallel algorithm to achieve performance gains

proportional to the number of processors and the size of the
problem

Mar 22, 2021 8Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Performance Metrics and
Formulas
• T1 is the execution time on a single processor
• Tp is the execution time on a “p” processor system

• Sp is the speedup

• Ep is the efficiency

• Cp is the cost

• A parallel algorithm is cost-optimal if
– ∑ Parallel time = sequential time (Ep = 100%, Cp = T1)

Mar 22, 2021 9

S(p) = T1
Tp

E(p) = Sp
p

Cost(p) = p ´ Tp

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Mar 22, 2021 10

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP 1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work (𝑓) is ≈16%
of execution time

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Mar 22, 2021 11

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP 1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work (𝑓) is ≈25%
of execution time

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Mar 22, 2021 12

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP 1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work (f) is ≈40%
of execution time

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Mar 22, 2021 13

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP 1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work (𝑓) is ≈60%
of execution time

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Mar 22, 2021 14

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP 1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

T1

Tp
Tp

Amdahl’s Law
(Fixed Size Speedup)
• Let 𝑓 be the fraction of a program that is sequential

– (1 − 𝑓) is the fraction that can be parallelized

• Let 𝑇1 be the execution time on 1 processor
• Let 𝑇𝑝 be the execution time on p processors

Mar 22, 2021 15Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP 1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

𝑓 = 0.16

(1 − 𝑓) = 0.84

𝑓 · 𝑇1

(1 − 𝑓) · 𝑇1

𝑓 · 𝑇1

(1 − 𝑓) · 𝑇1
2

(1 − 𝑓) · 𝑇1
𝑝

𝑓 · 𝑇1𝑓 · 𝑇1

(1 − 𝑓) · 𝑇1
4

𝑇𝑝 = 𝑓 · 𝑇1+
(1 − 𝑓) · 𝑇1

𝑝

Amdahl’s Law
(Fixed Size Speedup)
• Let 𝑓 be the fraction of a program that is sequential

– 1 − 𝑓 is the fraction that can be parallelized

• Let 𝑇1 be the execution time on 1 processor
• Let 𝑇𝑝 be the execution time on p processors
• 𝑆𝑝 is the speedup

Mar 22, 2021 16Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

0.50
0.25

0.10

0.05

Amdahl’s Law
(Fixed Size Speedup)
• Amdahl’s Law:

Maximal Speedup

Mar 22, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

• Amdahl’s Law:
Efficiency

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 60 — #60

60 CHAPTER 2 Background

Now consider what happens when P tends to infinity:

S1 1
f

. (2.5)

Speedup is limited by the fraction of the work that is not parallelizable, even using an infinite number
of processors. If 10% of the application cannot be parallelized, then the maximum speedup is 10⇥.
If 1% of the application cannot be parallelized, then the maximum speedup is 100⇥. In practice, an
infinite number of processors is not available. With fewer processors, the speedup may be reduced,
which gives an upper bound on the speedup. Amdahl’s Law is graphed in Figure 2.5, which shows the
bound for various values of f and P. For example, observe that even with f = 0.001 (that is, only 0.1%
of the application is serial) and P = 2048, a program’s speedup is limited to 672⇥. This limitation on
speedup can also be viewed as inefficient use of parallel hardware resources for large serial fractions,
as shown in Figure 2.6.

2.5.5 Gustafson-Barsis’ Law
. . . speedup should be measured by scaling the problem to the number of processors, not by fixing the
problem size.

(John Gustafson [Gus88])

Amdahl’s Law views programs as fixed and the computer as changeable, but experience indicates
that as computers get new capabilities, applications change to exploit these features. Most of today’s

672Serial
fraction

3

2

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Speedup

0.1%

1%

10%

30%

50%

FIGURE 2.5

Amdahl’s Law: speedup. The scalability of parallelization is limited by the non-parallelizable (serial) portion of
the workload. The serial fraction is the percentage of code that is not parallelized.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 61 — #61

2.5 Performance Theory 61

100%

80%

60%

40%

20%

0%
1 2 4 8 16 32 64

Number of workers

Serial
fraction

0.1%

1%

10%

30%

50%

128 256 512 1024 2048

Efficiency

FIGURE 2.6

Amdahl’s Law: efficiency. Even when speedups are possible, the efficiency can easily become poor. The serial
fraction is the percentage of code that is not parallelized.

applications would not run on computers from 10 years ago, and many would run poorly on machines
that are just 5 years old. This observation is not limited to obvious applications such as games; it
applies also to office applications, web browsers, photography software, DVD production and editing
software, and Google Earth.

More than two decades after the appearance of Amdahl’s Law, John Gustafson2 noted that several
programs at Sandia National Labs were speeding up by over 1000⇥. Clearly, Amdahl’s Law could be
evaded.

Gustafson noted that problem sizes grow as computers become more powerful. As the problem
size grows, the work required for the parallel part of the problem frequently grows much faster than
the serial part. If this is true for a given application, then as the problem size grows the serial fraction
decreases and speedup improves.

Figure 2.7 visualizes this using the assumption that the serial portion is constant while the parallel
portion grows linearly with the problem size. On the left is the application running with one worker. As
workers are added, the application solves bigger problems in the same time, not the same problem in
less time. The serial portion still takes the same amount of time to perform, but diminishes as a fraction
of the whole. Once the serial portion becomes insignificant, speedup grows practically at the same rate
as the number of processors, thus achieving linear speedup.

2His paper gives credit to E. Barsis, hence we call it Gustafson-Barsis’ Law. It is sometimes called just Gustafson’s Law.

Amdahl’s Law
(Fixed Size Speedup)
• Amdhal’s Law:

Maximal Speedup

Mar 22, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 18

• Amdahl’s Law:
Efficiency à Sp/p

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 60 — #60

60 CHAPTER 2 Background

Now consider what happens when P tends to infinity:

S1 1
f

. (2.5)

Speedup is limited by the fraction of the work that is not parallelizable, even using an infinite number
of processors. If 10% of the application cannot be parallelized, then the maximum speedup is 10⇥.
If 1% of the application cannot be parallelized, then the maximum speedup is 100⇥. In practice, an
infinite number of processors is not available. With fewer processors, the speedup may be reduced,
which gives an upper bound on the speedup. Amdahl’s Law is graphed in Figure 2.5, which shows the
bound for various values of f and P. For example, observe that even with f = 0.001 (that is, only 0.1%
of the application is serial) and P = 2048, a program’s speedup is limited to 672⇥. This limitation on
speedup can also be viewed as inefficient use of parallel hardware resources for large serial fractions,
as shown in Figure 2.6.

2.5.5 Gustafson-Barsis’ Law
. . . speedup should be measured by scaling the problem to the number of processors, not by fixing the
problem size.

(John Gustafson [Gus88])

Amdahl’s Law views programs as fixed and the computer as changeable, but experience indicates
that as computers get new capabilities, applications change to exploit these features. Most of today’s

672Serial
fraction

3

2

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Speedup

0.1%

1%

10%

30%

50%

FIGURE 2.5

Amdahl’s Law: speedup. The scalability of parallelization is limited by the non-parallelizable (serial) portion of
the workload. The serial fraction is the percentage of code that is not parallelized.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 61 — #61

2.5 Performance Theory 61

100%

80%

60%

40%

20%

0%
1 2 4 8 16 32 64

Number of workers

Serial
fraction

0.1%

1%

10%

30%

50%

128 256 512 1024 2048

Efficiency

FIGURE 2.6

Amdahl’s Law: efficiency. Even when speedups are possible, the efficiency can easily become poor. The serial
fraction is the percentage of code that is not parallelized.

applications would not run on computers from 10 years ago, and many would run poorly on machines
that are just 5 years old. This observation is not limited to obvious applications such as games; it
applies also to office applications, web browsers, photography software, DVD production and editing
software, and Google Earth.

More than two decades after the appearance of Amdahl’s Law, John Gustafson2 noted that several
programs at Sandia National Labs were speeding up by over 1000⇥. Clearly, Amdahl’s Law could be
evaded.

Gustafson noted that problem sizes grow as computers become more powerful. As the problem
size grows, the work required for the parallel part of the problem frequently grows much faster than
the serial part. If this is true for a given application, then as the problem size grows the serial fraction
decreases and speedup improves.

Figure 2.7 visualizes this using the assumption that the serial portion is constant while the parallel
portion grows linearly with the problem size. On the left is the application running with one worker. As
workers are added, the application solves bigger problems in the same time, not the same problem in
less time. The serial portion still takes the same amount of time to perform, but diminishes as a fraction
of the whole. Once the serial portion becomes insignificant, speedup grows practically at the same rate
as the number of processors, thus achieving linear speedup.

2His paper gives credit to E. Barsis, hence we call it Gustafson-Barsis’ Law. It is sometimes called just Gustafson’s Law.

Amdahl’s Law (Example)

• If 90% of the computation can be parallelized,
what is the max. speedup achievable using
8 processors?

• Solution:

f = 10% = 0.1

S(8) ≤

Mar 22, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 19

Example 1

If 90% of the computation can be parallelized,
what is the max. speedup achievable using 8
processors?
Solution:
 𝑓 = 10%,

 Ψ 𝑛, 𝑝 ≤ 1
0.1+1−0.18

≈ 4.7

8

Amdahl’s Law and Scalability

• Scalability
– Ability of parallel algorithm to achieve performance gains proportional to

the number of processors and the size of the problem

• When does Amdahl’s Law apply?
– When the problem size is fixed

– Strong scaling (p®∞, Sp = S∞® 1 / f)
– Speedup bound is determined by the degree of sequential execution time

in the computation, not # processors!!!
– Uhh, this is not good … Why?
– Perfect efficiency is hard to achieve

• See original paper by Amdahl at
– http://inst.eecs.berkeley.edu/~n252/sp07/Papers/Amdahl.pdf

Mar 22, 2021 20Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Gustafson-Barsis’ Law
(Scaled Speedup)
…speedup should be measured by scaling the
problem to the number of processors, not by fixing
the problem size.

— John Gustafson

Mar 22, 2021 21Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Mar 22, 2021 22

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work is ≈ 16% of
total execution time

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Mar 22, 2021 23

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work is ≈ 9% of
total execution time

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Mar 22, 2021 24

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work is ≈ 5% of
total execution time

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Mar 22, 2021 25

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Work is ≈ 3% of
total execution time

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Mar 22, 2021 26

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

T1 Tp Tp

Gustafson-Barsis’ Law
(Scaled Speedup)
• Execution time of a parallel program: 𝑇1 = 𝑎 + 𝑏

– 𝑎 => part not parallelizable
– 𝑏 => part parallelizable

• Because we are scaling the problem (data being
processed), with “𝑃” processors we have:

𝑇𝑃 = 𝑎 + 𝑃 · 𝑏

• The wall clock execution time is always the same, so
scaled speedup is calculated on the volume of data
processed (which is proportional to the
total/accumulated execution time):

𝑆𝑝 ≤ 𝑇𝑝 / 𝑇1 = (𝑎 + 𝑃 · 𝑏) / (𝑎 + 𝑏)

Mar 22, 2021 27Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Gustafson-Barsis’ Law
(Scaled Speedup)
• Scaled speedup 𝑆𝑝 ≤ 𝑇𝑝 / 𝑇1 = (𝑎 + 𝑃 · 𝑏) / (𝑎 + 𝑏)

• Let 𝛼 = 𝑎 / (𝑎 + 𝑏) be the sequential fraction of
the parallel execution time

• Then the scaled speedup is

𝑆𝑝 ≤ 𝛼 + 𝑃 · (1 −𝛼) = 𝑃–𝛼 · (𝑃 − 1)

• If 𝛼à 0 then 𝑆𝑝à 𝑃

Mar 22, 2021 28Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Gustafson-Barsis’ Law (Example)

• An application executing on 64 processors
spends 5% of the total time on non-parallelizable
computations. What is the scaled speedup?

• Solution:

𝑆(64) ≤ 𝑃 –𝛼 · (𝑃 − 1)
≤ 64 – 0.05 64 − 1
≤ 60.85

Mar 22, 2021 29Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Gustafson-Barsis’ Law

Mar 22, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 30

57.7

64

Gustafson-Barsis’ Law and
Scalability
• Scalability

– Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of
the problem

• When does Gustafson’s Law apply?
– When the problem size can increase when the number of

processors increases
– Speedup function includes the number of processors!!!
– Can maintain or increase parallel efficiency as the

problem scales

Mar 22, 2021 31Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Amdahl versus Gustafson-Baris

• Time: wall clock time

• Sequential part tends to
dominate computation

• Upper-bound on
scalability

• Time: CPU time

• Sequential part tends to
become irrelevant

• No upper-bound on
scalability

Mar 22, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 32

Tp
Tp

The END

Mar 22, 2021 33Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

