

Parallel Programming Models and Architectures

lecture 03 (2021-03-22)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

Outline

- Performance scalability
 - Analytical performance measures
 - Amdahl' s law
 - Gustafson-Barsis' law
 - Work-span and Brent's lemma
 - Bibliography:
 - Chapter 2 of book McCool M., Arch M., Reinders J.; Structured Parallel Programming: Patterns for Efficient Computation; Morgan Kaufmann (2012); ISBN: 978-0-12-415993-8

What is Performance?

- In computing, performance is defined by 2 factors
 - Computational requirements (what needs to be done?) Efficacy
 - Computing resources (how much will it cost?) Efficiency
- Computational problems translate to requirements
- Computing resources interplay and tradeoff

What is Parallel Performance?

- We are concerned with performance issues when using a parallel computing environment
 - Performance with respect to parallel computation
- Performance is the raison d'être for parallelism
 - Parallel performance versus sequential performance
 - If the "performance" is not better, parallelism is not necessary
- Parallel processing includes techniques and technologies necessary to compute in parallel
 - Hardware, networks, operating systems, parallel libraries, languages, compilers, algorithms, tools, ...
- Parallelism must deliver performance
 - How? How well?

Performance Expectation (Loss)

- If each processor is rated at "f" MFLOPS and there are "p" processors, should we see " $f \times p$ " MFLOPS performance?
 - If it takes 100 seconds on 1 processor, shouldn't it take 10 seconds on 10 processors?
- Several causes affect performance
 - Each must be understood separately
 - But they interact with each other in complex ways
 - Solution to one problem may create another
 - One problem may mask another
- Scaling (system, problem size) can change conditions
- Need to understand performance space

Embarrassingly Parallel Computations

- An embarrassingly parallel computation is one that can be obviously divided into completely independent parts that can be executed simultaneously
 - In an embarrassingly parallel computation there is no interaction between separate processes, except for the (initial) work distribution and (final) results collection and combination
- Embarrassingly parallel computations have potential to achieve maximal speedup on parallel platforms
 - If it takes T time sequentially, there is the potential to achieve T/P time running in parallel with P processors
 - Why is this not the (usual) case?

Scalability

- Can the program scale up to use many processors?
 - What does that mean?
- How do we measure scalability?
 - How do we evaluate scalability goodness?
 - Comparative evaluation
 - If double the number of processors, what to expect?
 - Is scalability linear?
 - Is efficiency retained as problem size increases?
 - Apply performance metrics

Performance and Scalability

- Performance evaluation
 - Sequential runtime $(T_{seq} \text{ or } T_1)$ is a function of
 - problem size and architecture
 - Parallel runtime (T_{par}) is a function of
 - problem size and parallel architecture
 - # processors used in the execution
 - Performance is affected by
 - algorithm + architecture
- Scalability
 - Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem

Performance Metrics and Formulas

- T_1 is the execution time on a single processor
- T_p is the execution time on a "p" processor system
- S_p is the speedup $S(p) = \frac{T_1}{T_p}$
- E_p is the efficiency $E(p) = \frac{S_p}{p}$
- C_p is the cost $Cost(p) = p \times T_p$
- A parallel algorithm is cost-optimal if
 Σ Parallel time = sequential time (E_p = 100%, C_p = T₁)

- Interested in solving the problem faster
- Reduce execution time

P = 1

- Interested in solving the problem faster
- Reduce execution time

P = 1

Serial work
Parallelizable work

P=2

Serial Work (f) is $\approx 25\%$ of execution time

- Interested in solving the problem faster
- Reduce execution time

- Interested in solving the problem faster
- Reduce execution time

- Interested in solving the problem faster
- Reduce execution time

- Let f be the fraction of a program that is sequential -(1-f) is the fraction that can be parallelized
- Let T_1 be the execution time on 1 processor
- Let T_p be the execution time on p processors *P*=1 *P*=2 P=4P = 8 $f \cdot T_1$ $f \cdot T_1$ $f \cdot T_1$ Serial work f = 0.16Parallelizable work $\cdot T_1$ (1-f) = 0.84 $(1-f) \cdot T_1$ lime $T_p = f \cdot T_1 + \frac{(1-f) \cdot T_1}{r}$ $(1-f) \cdot T_{1}$

- Let f be the fraction of a program that is sequential -1-f is the fraction that can be parallelized
- Let T_1 be the execution time on 1 processor
- Let T_p be the execution time on p processors
- S_p is the speedup

 Amdahl's Law: Maximal Speedup

 Amdhal's Law: Maximal Speedup

• Amdahl's Law: Efficiency $\rightarrow S_p/p$

Amdahl's Law (Example)

- If 90% of the computation can be parallelized, what is the max. speedup achievable using 8 processors?
- Solution:

$$f = 10\% = 0.1$$
$$S(8) \le \frac{1}{0.1 + \frac{1 - 0.1}{8}} \approx 4.7$$

Amdahl's Law and Scalability

- Scalability
 - Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem
- When does Amdahl's Law apply?
 - When the problem size is fixed
 - Strong scaling ($p \rightarrow \infty$, $S_p = S_{\infty} \rightarrow 1 / f$)
 - Speedup bound is determined by the degree of sequential execution time in the computation, not # processors!!!
 - Uhh, this is not good ... Why?
 - Perfect efficiency is hard to achieve
- See original paper by Amdahl at
 - http://inst.eecs.berkeley.edu/~n252/sp07/Papers/Amdahl.pdf

...speedup should be measured by scaling the problem to the number of processors, not by fixing the problem size.

— John Gustafson

- Often interested in larger problems when scaling
 - How big of a problem can be run (HPC Linpack)
 - Constrain problem size by parallel time

- Often interested in larger problems when scaling
 - How big of a problem can be run (HPC Linpack)
 - Constrain problem size by parallel time

- Often interested in larger problems when scaling
 - How big of a problem can be run (HPC Linpack)
 - Constrain problem size by parallel time

- Often interested in larger problems when scaling
 - How big of a problem can be run (HPC Linpack)
 - Constrain problem size by parallel time

- Often interested in larger problems when scaling
 - How big of a problem can be run (HPC Linpack)
 - Constrain problem size by parallel time

- Execution time of a parallel program: $T_1 = a + b$
 - $-a \Rightarrow$ part not parallelizable
 - $-b \Rightarrow$ part parallelizable
- Because we are scaling the problem (data being processed), with "P" processors we have: $T_P = a + P \cdot b$
- The wall clock execution time is always the same, so scaled speedup is calculated on the volume of data processed (which is proportional to the total/accumulated execution time): $S_p \leq T_p / T_1 = (a + P \cdot b) / (a + b)$

- Scaled speedup $S_p \leq T_p / T_1 = (a + P \cdot b) / (a + b)$
- Let $\alpha = a / (a + b)$ be the sequential fraction of the parallel execution time
- Then the scaled speedup is

$$S_p \leq \alpha + P \cdot (1 - \alpha) = P - \alpha \cdot (P - 1)$$

• If $\alpha \rightarrow 0$ then $S_p \rightarrow P$

Gustafson-Barsis' Law (Example)

- An application executing on 64 processors spends 5% of the total time on non-parallelizable computations. What is the scaled speedup?
- Solution:

$$S(64) \le P - \alpha \cdot (P - 1)$$

 $\le 64 - 0.05 (64 - 1)$
 ≤ 60.85

Gustafson-Barsis' Law

Gustafson's Law: S(P) = P-a*(P-1)

Gustafson-Barsis' Law and Scalability

- Scalability
 - Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem
- When does Gustafson's Law apply?
 - When the problem size can increase when the number of processors increases
 - Speedup function includes the number of processors!!!
 - Can maintain or increase parallel efficiency as the problem scales

Amdahl versus Gustafson-Baris

- Time: wall clock time
- Sequential part tends to dominate computation
- Upper-bound on scalability

- Time: CPU time
- Sequential part tends to become irrelevant
- No upper-bound on scalability

The END