
Alternative Synchronization
Strategies
lecture 17 (2020-04-29)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2019-20 —

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

João Lourenço <joao.lourenco@fct.unl.pt>

Alternative Synchronization
Strategies

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 2

Last lecture

Today

• Contents:
– Liveness: Types of Progress
– Coarse-Grained Synchronization
– Fine-Grained Synchronization
– Optimistic Synchronization
– Lazy Synchronization
– Lock-Free Synchronization

• Reading list:
– chapter 5 of the Textbook
– Chapter 9 of “The Art of Multiprocessor Programming”

by Maurice Herlihy & Nir Shavit (available at clip)

Concurrent Data Structures

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 3

data structure

Using locks

P1 P2 P3

Concurrent Data Structures

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 4

data structure

Using locks

P1 P2 P3

• Simple programming model
• False conflicts
• Fault-free solutions only
• Sequential bottleneck

Concurrent Data Structures

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 5

P1 P2 P3

data structure

Without locks

data structuredata structure

Using locks

P1 P2 P3

• Simple programming model
• False conflicts
• Fault-free solutions only
• Sequential bottleneck

Concurrent Data Structures

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6

P1 P2 P3

data structure

Without locks

data structuredata structure

Using locks

P1 P2 P3

• Simple programming model
• False conflicts
• Fault-free solutions only
• Sequential bottleneck

• Resilient to failures, etc.
• Often (really very) complex
• Memory consuming
• Sometimes — weak progress cond.

Progress in Concurrent Data
Structures

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 7

P1 P2 P3

data structure

Without locks

data structuredata structure

Using locks

P1 P2 P3

Starvation
freedom

Deadlock
freedom

Fairness

no fai
lure

s

Wait
freedom

Obstruction
freedom

Lock freedom
(non-blocking)

Progress Conditions

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 8

P1 P2 P3

data structure

Without locks

data structuredata structure

Using locks

P1 P2 P3

Obstruction-freedom

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 9

P1 P4P3

Done

P2

At any point, a single thread executed in
isolation (i.e., with all obstructing threads
suspended) will complete its operation
in a bounded number of steps.
All lock-free algorithms are obstruction-free.

Lock-freedom

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 10

P1 P4P2

Done

P3

When the program threads are run sufficiently
long, at least one of the threads makes progress
(for some sensible definition of progress)

Wait-freedom

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 11

P1 P4P2 P3

Every operation has a bound on the number of
steps the algorithm will take before the
operation completes: starvation-freedom for all
processes in the system.

Wait-freedom

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 12

P1 P4P2 P3

Done Done Done Done

every operation has a bound on the number of
steps the algorithm will take before the
operation completes: starvation-freedom for all
processes in the system.

Lock-free Data Structures

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 13

Lock-freedom

• strong enough
• not so complex
• in limited contention

behaves as wait-free

Wait-freedom

• strong/desirable
• complex/less efficient

Obstruction-freedom

• too weak progress condition
• not complex

Synchronization strategies

• Coarse-Grained Synchronization

• Fine-Grained Synchronization

• Optimistic Synchronization

• Lazy Synchronization

• Lock-Free Synchronization

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 14

Coarse-Grained
Synchronization
• Use a single lock…

Methods are always executed in mutual
exclusion

Methods never conflict

✘Eliminates all the concurrency within the object

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20Apr 29, 2020 15

Fine-Grained Synchronization

• Instead of using a single lock…

• Split object into multiple
independently-synchronized components

üMethods only conflict when they access
– The same component…
– (And) at the same time!

✘Lots and lots of lock acquire/release

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20Apr 29, 2020 16

Alternative
Synchronization
Strategies

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

Optimistic Synchronization
• Check if the operation can be done

– E.g., to remove a value from the set, search if present without
locking…

• If the op can be done, lock and check again…
– E.g., if element was found, lock predecessor and current nodes and

check again

• Act upon status (of last check)
– Failure: start over again (optionally with another locking strategy)
– Success: execute the operation (locks were already acquired)

• Evaluation/considerations on this strategy
üHas to recheck (e.g., repeat the search) after locking
üUsually cheaper than hand-over-hand locking
✘Mistakes are expensive (safety easily compromised)
✘ Is not starvation free (liveness compromised)

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20Apr 29, 2020 18

Lazy Synchronization
• Procrastinate! Procrastinate! Procrastinate! J
• Make common operations fast
• Postpone hard work

– E.g., removing components is tricky… use two phases:
• Logical removal

– Mark component to be deleted
• Physical removal

– Do what needs to be done to remove the component

• Evaluation
üRecheck after locking is simpler (just check nodes are unmarked)
üAlso usually cheaper than hand-over-hand locking
✘Mistakes are expensive (safety easily compromised)
✘ Is not starvation free on add and remove (liveness compromised)
ü (List is starvation free on contains)

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20Apr 29, 2020 19

Lock-Free Synchronization

• Don’t use locks at all… never!
– Use compareAndSet() & relatives …

• Advantages
üNo scheduler assumptions/support

• Disadvantages
✘Very complex
✘Sometimes high overhead
✘Mistakes are very expensive (safety and liveness)

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20Apr 29, 2020 20

Linked List

• Illustrate these patterns …

• Using a list-based Set
– Common application
– Building block for other apps

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 21

a b c

Sorted with Sentinel nodes (min & max possible keys)

-∞

+∞

Set Interface

• Unordered collection of items

• No duplicates

• Methods
– add(x) put x in set true if x was not in the set
– remove(x) take x out of set true if x was in the set
– contains(x) tests if x in set true if x is in the set

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 22

List-Based Sets

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 23

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

List-Based Sets

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Add item to set

List-Based Sets

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 25

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(Tt x);

}

Remove item from set

List-Based Sets

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 26

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Is item in set?

List Node

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 27

public class Node {
public T item;
public int key;
public Node next;

}

List Node

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 28

public class Node {
public T item;
public int key;
public Node next;

}

item of interest

List Node

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 29

public class Node {
public T item;
public int key;
public Node next;

}

Usually hash code

List Node

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 30

public class Node {
public T item;
public int key;
public Node next;

}

Reference to next node

Optimistic Concurrency List

• Traverse the list without locking until location is
found

• Lock node(s)

• Validate
– Traverse again to confirm that the locked nodes are still in

the list

• Do the operation

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 31

Optimistic Add
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key <= key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 32

Calculate hash
Try until
success or failure

Optimistic Add
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 33

Initialize pointers
to traverse the list

Traverse the list
looking for ‘item’

Lock the nodes

Always unlock
(with both success and failure)

Try the operation
and either succeed
or fail

Optimistic Add
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 34

If the locked nodes are still accessible,
that means they are still in the list

If item already in list, fail

If item not present, create new node
insert into the list, and succeed

Remember: always unlocking
(with both success and failure)

Optimistic Validate
public boolean add(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 35

private boolean validate (Node pred,
Node curr) {

Node node = head;
while (node.key <= pred.key) {

if (node == pred) {
return pred.next == curr;

}
node = node.next;

}
return false;

}

Traverse the list
looking for both

‘pred’ and ‘curr’

Fail if ‘pred’
is not found

Apr 29, 2020

Optimistic Remove
public boolean remove(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 36

Calculate hash
Try until
success or failure

Optimistic Remove
public boolean remove(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 37

Initialize pointers
to traverse the list

Traverse the list
looking for ‘item’

Lock the nodes

Always unlock
(with both success and failure)

Try the operation
and either succeed
or fail

Optimistic Remove
public boolean remove(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
if (curr.key == key) {

pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 38

If the locked nodes are still accessible,
that means they are still in the list

If item already in list,
remove node and succeed

If item not present, fail

Remember: always unlocking
(with both success and failure)

Optimistic Contains
public boolean contains(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
return (curr.key == key);

}
} finally {

pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 39

Calculate hash
Try until
success or failure

Optimistic Contains
public boolean contains(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
return (curr.key == key);

}
} finally {

pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 40

Initialize pointers
to traverse the list

Traverse the list
looking for ‘item’

Always unlock
(with both success and failure)

Try the operation
and either succeed
or fail

Optimistic Contains
public boolean contains(T item) {

int key = item.hashCode();
while (true) {

Node pred = head;
Node curr = pred.next;
while (curr.key < key) {

pred = curr;
curr = curr.next;

}
pred.lock();
curr.lock();
try {

if (validate(pred, curr)) {
return (curr.key == key);

}
} finally {

pred.unlock();
curr.unlock();

}
}

}

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 41

If the locked nodes
are still accessible,
that means they
are still in the list

Return success if
item found,
and failure otherwise

Remember: always unlocking
(with both success and failure)

Lock the nodes

The END

Apr 29, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 42

