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Locking Strategies

• Contents:
– Coarse-Grained Synchronization
– Fine-Grained Synchronization

• Reading list:
– Chapter 5 of the Textbook
– Chapter 9 (9.1-9.5) of “The Art of 

Multiprocessor Programming” by Maurice 
Herlihy & Nir Shavit (available at clip)
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Coarse-Grained 
Synchronization
• Use a single lock…

• Methods are always executed in mutual 
exclusion
– Methods never conflict

• Eliminates all the concurrency within the object
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Fine-Grained Synchronization

• Instead of using a single lock…

• Split object into multiple
independently-synchronized components

• Methods conflict when they access
– The same component…
– (And) at the same time!
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Linked List

• Illustrate these patterns …

• Using a list-based Set
– Common application
– Building block for other apps
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Set Interface

• Unordered collection of items

• No duplicates

• Methods
– add(x) put x in set true if x was not in the set
– remove(x) take x out of set true if x was in the set
– contains(x) tests if x in set true if x is in the set

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6



List-Based Sets
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public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}



List-Based Sets
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public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Add item to set



List-Based Sets
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public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Remove item from set



List-Based Sets

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 10

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Is item in set?



List Node
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public class Node {
public T item;
public int key;
public Node next;

}



List Node
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public class Node {
public T item;
public int key;
public Node next;

}

item of interest



List Node
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public class Node {
public T item;
public int key;
public Node next;

}

Usually hash code



List Node
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public class Node {
public T item;
public int key;
public Node next;

}

Reference to next node



The List-Based Set
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a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞
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Reasoning about Concurrent 
Objects
• Invariant

– Property that always holds
– Established because

• True when object is created
• Truth preserved by each method

– Each step of each method

• Assertion
– Property valid in a specific location (code line)
– Weaker than invariants, but much easier to define
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Abstract Data Types

• Concrete representation

• S(                                         ) = {a, b}

• Abstract Type
– {a, b}
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a b

a b



Sequential List Based Set 
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a c d
Add()



Sequential List Based Set 
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a c d

b

Add()



Sequential List Based Set 
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a c d

b

a b c

Add()

Remove() 



Sequential List Based Set 
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a c d

b

a b c

Add()

Remove() 



Coarse Grained Locking
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a b d



Coarse Grained Locking
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a b d

c



Coarse Grained Locking
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honk!

a b d

c

Simple but hotspot + bottleneck 

honk!



Coarse Grained Locking

• Easy, same as synchronized methods
– “One lock to rule them all …”

• Simple, clearly correct
– Deserves respect!

• Works poorly with contention
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Fine-grained Locking

• Requires careful thought
– “Do not meddle in the affairs of

wizards, for they are subtle and
quick to anger”

• Split object into pieces
– Each piece has own lock
– Methods that work on disjoint pieces need not exclude 

each other
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Hand-over-Hand locking
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a b c



Hand-over-Hand locking
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a b c



Hand-over-Hand locking
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a b c



Hand-over-Hand locking
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a b c



Hand-over-Hand locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 31

a b c



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)



Removing a Node
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a c d

remove(b)
Why do we need 
to always hold 2 
locks?



Concurrent Removes

• Holding just one lock (to the node to be 
changed)
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a b c d

remove(c)
remove(b)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a c d

remove(b)
remove(c)

b



Uh, Oh
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a c d

Bad news, C not removed

remove(b)
remove(c)



Insight

• If a node is locked
– No one can delete node’s successor

• If a thread locks
– Node to be deleted
– And its predecessor
– Then it works
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Hand-Over-Hand Again
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a b c d

remove(b)



Hand-Over-Hand Again
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a b c d

remove(b)



Hand-Over-Hand Again
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a b c d

remove(b)



Hand-Over-Hand Again
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a b c d

remove(b) Found it!



Hand-Over-Hand Again
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a b c d

remove(b) Found it!



Hand-Over-Hand Again
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a c d

remove(b)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

Must acquire 
lock of b

remove(c)



Removing a Node
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a b c d

Cannot acquire 
lock of b

remove(c)



Removing a Node
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Wait!!!

a b c d

remove(c)



Removing a Node
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Proceed to 
remove(b)

a b d



Removing a Node
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remove(b)

a b d



Removing a Node
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remove(b)

a b d



Removing a Node
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remove(b)

a d



Removing a Node
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a d



Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 69

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}



Remove method
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public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Key used to order node



Remove method
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public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
currNode.unlock();
predNode.unlock();

}}

Predecessor and current nodes



Remove method
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public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Make sure 
locks released



Remove method
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public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Everything else



Remove method
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try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }



Remove method
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try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

lock pred == head



Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 76

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Lock current



Remove method
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try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Traversing list



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Search key range



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Lock invariant: At start of each 
loop: curr and pred locked



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;If item found, remove node



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Unlock predecessor



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Only one node locked!



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

demote current



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();

}
return false;

Find and lock new current



while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();

}
return false;

Remove: searching
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Lock invariant restored



Remove: searching
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Otherwise, not present



The END
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