
Locking Strategies
lecture 16 (2020-04-22)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2019-20 —

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

João Lourenço <joao.lourenco@fct.unl.pt>

Locking Strategies

• Contents:
– Coarse-Grained Synchronization
– Fine-Grained Synchronization

• Reading list:
– Chapter 5 of the Textbook
– Chapter 9 (9.1-9.5) of “The Art of

Multiprocessor Programming” by Maurice
Herlihy & Nir Shavit (available at clip)

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 2

Coarse-Grained
Synchronization
• Use a single lock…

• Methods are always executed in mutual
exclusion
– Methods never conflict

• Eliminates all the concurrency within the object

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20Apr 22, 2020 3

Fine-Grained Synchronization

• Instead of using a single lock…

• Split object into multiple
independently-synchronized components

• Methods conflict when they access
– The same component…
– (And) at the same time!

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20Apr 22, 2020 4

Linked List

• Illustrate these patterns …

• Using a list-based Set
– Common application
– Building block for other apps

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 5

Set Interface

• Unordered collection of items

• No duplicates

• Methods
– add(x) put x in set true if x was not in the set
– remove(x) take x out of set true if x was in the set
– contains(x) tests if x in set true if x is in the set

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6

List-Based Sets

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 7

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

List-Based Sets

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 8

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Add item to set

List-Based Sets

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 9

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Remove item from set

List-Based Sets

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 10

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Is item in set?

List Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 11

public class Node {
public T item;
public int key;
public Node next;

}

List Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 12

public class Node {
public T item;
public int key;
public Node next;

}

item of interest

List Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 13

public class Node {
public T item;
public int key;
public Node next;

}

Usually hash code

List Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 14

public class Node {
public T item;
public int key;
public Node next;

}

Reference to next node

The List-Based Set

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 15

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Reasoning about Concurrent
Objects
• Invariant

– Property that always holds
– Established because

• True when object is created
• Truth preserved by each method

– Each step of each method

• Assertion
– Property valid in a specific location (code line)
– Weaker than invariants, but much easier to define

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 16

Abstract Data Types

• Concrete representation

• S() = {a, b}

• Abstract Type
– {a, b}

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

a b

a b

Sequential List Based Set

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 18

a c d
Add()

Sequential List Based Set

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 19

a c d

b

Add()

Sequential List Based Set

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 20

a c d

b

a b c

Add()

Remove()

Sequential List Based Set

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 21

a c d

b

a b c

Add()

Remove()

Coarse Grained Locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 22

a b d

Coarse Grained Locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 23

a b d

c

Coarse Grained Locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24

honk!

a b d

c

Simple but hotspot + bottleneck

honk!

Coarse Grained Locking

• Easy, same as synchronized methods
– “One lock to rule them all …”

• Simple, clearly correct
– Deserves respect!

• Works poorly with contention

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 25

Fine-grained Locking

• Requires careful thought
– “Do not meddle in the affairs of

wizards, for they are subtle and
quick to anger”

• Split object into pieces
– Each piece has own lock
– Methods that work on disjoint pieces need not exclude

each other

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 26

Hand-over-Hand locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 27

a b c

Hand-over-Hand locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 28

a b c

Hand-over-Hand locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 29

a b c

Hand-over-Hand locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 30

a b c

Hand-over-Hand locking

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 31

a b c

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 32

a b c d

remove(b)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 33

a b c d

remove(b)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 34

a b c d

remove(b)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 35

a b c d

remove(b)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 36

a b c d

remove(b)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 37

a c d

remove(b)
Why do we need
to always hold 2
locks?

Concurrent Removes

• Holding just one lock (to the node to be
changed)

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 38

a b c d

remove(c)
remove(b)

Concurrent Removes

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 39

a b c d

remove(b)
remove(c)

Concurrent Removes

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 40

a b c d

remove(b)
remove(c)

Concurrent Removes

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 41

a b c d

remove(b)
remove(c)

Concurrent Removes

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 42

a b c d

remove(b)
remove(c)

Concurrent Removes

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 43

a b c d

remove(b)
remove(c)

Concurrent Removes

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 44

a c d

remove(b)
remove(c)

b

Uh, Oh

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 45

a c d

Bad news, C not removed

remove(b)
remove(c)

Insight

• If a node is locked
– No one can delete node’s successor

• If a thread locks
– Node to be deleted
– And its predecessor
– Then it works

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 46

Hand-Over-Hand Again

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 47

a b c d

remove(b)

Hand-Over-Hand Again

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 48

a b c d

remove(b)

Hand-Over-Hand Again

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 49

a b c d

remove(b)

Hand-Over-Hand Again

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 50

a b c d

remove(b) Found it!

Hand-Over-Hand Again

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 51

a b c d

remove(b) Found it!

Hand-Over-Hand Again

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 52

a c d

remove(b)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 53

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 54

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 55

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 56

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 57

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 58

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 59

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 60

a b c d

remove(b)
remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 61

a b c d

Must acquire
lock of b

remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 62

a b c d

Cannot acquire
lock of b

remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 63

Wait!!!

a b c d

remove(c)

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 64

Proceed to
remove(b)

a b d

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 65

remove(b)

a b d

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 66

remove(b)

a b d

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 67

remove(b)

a d

Removing a Node

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 68

a d

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 69

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 70

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Key used to order node

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 71

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
currNode.unlock();
predNode.unlock();

}}

Predecessor and current nodes

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 72

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Make sure
locks released

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 73

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Everything else

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 74

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 75

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

lock pred == head

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 76

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Lock current

Remove method

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 77

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Traversing list

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 78

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 79

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Search key range

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 80

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Lock invariant: At start of each
loop: curr and pred locked

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 81

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;If item found, remove node

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 82

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Unlock predecessor

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 83

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Only one node locked!

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 84

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

demote current

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 85

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();

}
return false;

Find and lock new current

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();

}
return false;

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 86

Lock invariant restored

Remove: searching

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 87

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Otherwise, not present

The END

Apr 22, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 88

