
Parallel Programming Patterns
Overview

Concurrency and Parallelism — 2019-20

Master in Computer Science
(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>
Source: Parallel Computing, CIS 410/510, Department of Computer and Information Science

Outline

• Structured programming patterns overview
– Concept of programming patterns
– Serial and parallel control flow patterns
– Serial and parallel data management patterns

– Bibliography:
• Chapter 3 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 17, 2020 2Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Parallel Patterns

• Parallel Patterns: A recurring combination of task
distribution and data access that solves a
specific problem in parallel algorithm design.

• Patterns provide us with a “vocabulary” for
algorithm design

• It can be useful to compare parallel patterns
with serial patterns

• Patterns are universal – they can be used in any
parallel programming system

3Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Parallel Patterns

• Nesting Pattern

• Serial / Parallel Control Patterns

• Serial / Parallel Data Management Patterns

• Other Patterns

• Programming Model Support for Patterns

4Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Nesting Pattern

• Nesting is the ability to hierarchically compose
patterns

• This pattern appears in both serial and parallel
algorithms

• “Pattern diagrams” are used to visually show the
pattern idea where each “task block” is a
location of general code in an algorithm

• Each “task block” can in turn be another pattern
in the nesting pattern

5Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Nesting Pattern

6

Nesting Pattern: A compositional pattern. Nesting allows
other patterns to be composed in a hierarchy so that any
task block in the above diagram can be replaced with a
pattern with the same input/output and dependencies.

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Control Patterns

• Structured serial programming is based on these
patterns: sequence, selection, iteration, and
recursion
• The nesting pattern can also be used to

hierarchically compose these four patterns

• Though you should be familiar with these, it’s
extra important to understand these patterns
when parallelizing serial algorithms based on
these patterns

7Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Control Patterns:
Sequence
• Sequence: Ordered list of tasks that are

executed in a specific order

• Assumption – program text ordering will be
followed (seems obvious… but this will be
important when parallelized)

8Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Control Patterns: Selection

• Selection: condition c is first evaluated. Either
task a or b is executed depending on the true or
false result of c.

• Assumptions – a and b are never executed
before c, and either a or b is executed — never
both

9Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Serial Control Patterns: Iteration

• Iteration: condition c is evaluated. If it is true, a is
evaluated, and then c is evaluated again. This
repeats until c is false.

• Complication when parallelizing: potential for
dependencies to exist between previous
iterations

10Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

for (i = 0; i < n; i++) {
f();

}

while (c) {
f();

}

Serial Control Patterns:
Recursion
• Recursion: dynamic form of nesting allowing

functions to call themselves

• Tail recursion is a special recursion that can be
converted into iteration – important for
functional languages

11Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

A

f

B

int fact (int n) {
if (n == 0)
return 1

else
return n*fact (n-1);

}

We are using
nesting here!

Parallel Control Patterns

• Parallel control patterns extend serial control
patterns

• Each parallel control pattern is related to at least
one serial control pattern, but relaxes
assumptions of serial control patterns

• Parallel control patterns: fork-join, map, stencil,
reduction, scan, recurrence

12Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 21 — #21

1.5 Parallel Programming Models 21

B C F G H

A

1 1 10 0 0 0 0

B C D E F G H

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

0
0A

A

B

B

C

C C E

D E F

A

A

B

B

C

C

D E F

F

F

G H
1

1
2

2 2
3 4

4
5

5

01 2 2 45

6 7

0 1 2 3 4 5 6 7

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H
A D E

×××

Pack Split

Expand

Scan

Reduction

RecurrenceCategory reduction

Scatter

GatherGeometric decompositionMap

Stencil

Superscalar sequence

Speculative selection

Fork–join Pipeline

Partition

FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

Parallel Control Patterns:
Fork-Join
• Fork-join: allows control flow to fork into multiple

parallel flows, then rejoin later

• Cilk Plus implements this with spawn and sync
– The call tree is a parallel call tree

and functions are spawned instead
of called

– Functions that spawn another
function call will continue to
execute

– Caller syncs with the spawned
function to join the two

13Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 21 — #21

1.5 Parallel Programming Models 21

B C F G H

A

1 1 10 0 0 0 0

B C D E F G H

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

0
0A

A

B

B

C

C C E

D E F

A

A

B

B

C

C

D E F

F

F

G H
1

1
2

2 2
3 4

4
5

5

01 2 2 45

6 7

0 1 2 3 4 5 6 7

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H
A D E

×××

Pack Split

Expand

Scan

Reduction

RecurrenceCategory reduction

Scatter

GatherGeometric decompositionMap

Stencil

Superscalar sequence

Speculative selection

Fork–join Pipeline

Partition

FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

• Fork-join: allows control flow to fork into multiple
parallel flows, then rejoin later

Sequential

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 21 — #21

1.5 Parallel Programming Models 21

B C F G H

A

1 1 10 0 0 0 0

B C D E F G H

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

0
0A

A

B

B

C

C C E

D E F

A

A

B

B

C

C

D E F

F

F

G H
1

1
2

2 2
3 4

4
5

5

01 2 2 45

6 7

0 1 2 3 4 5 6 7

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H
A D E

×××

Pack Split

Expand

Scan

Reduction

RecurrenceCategory reduction

Scatter

GatherGeometric decompositionMap

Stencil

Superscalar sequence

Speculative selection

Fork–join Pipeline

Partition

FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

Parallel Control Patterns:
Fork-Join

14Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

int fib(int n)
{

if (n < 2)
return n;

int x = fib(n-1);
int y = fib(n-2);
return x + y;

}

int fib(int n)
{

if (n < 2)
return n;

int x = cilk_spawn fib(n-1);
int y = fib(n-2);
cilk_sync;
return x + y;

}

Parallel — Cilk+

fib(n-1)

fib(n-2)

Parallel Control Patterns: Map
• Map: performs a function over every element of a collection
• Map replicates a serial iteration pattern where

– each iteration is independent of the others,
– the number of iterations is known in advance, and
– computation only depends on the iteration count and data from the input

collection

• The replicated function is referred to as an “elemental
function”

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 15

Input

Elemental Function

Output

Data

Parallel Control Patterns: Map
• Map: performs a function over every element of a collection

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 16

Sequential Cilk+

for (i = 0; i < 10; i++)
A[i] = 5; A[:] = 5;

for (i = 0; i < 10; i++)
A[i] = B[i]; A[:] = B[:];

for (i = 0; i < 10; i++)
A[i] = B[i] + 1; A[:] = B[:] + 1;

for (i = 0; i < 10; i++)
D[i] = A[i] + B[i]; D[:] = A[:] + B[:];

for (j = 0; j < 10; j++)
C[X][j] = A[j] C[X][:] = A[:];

for (i = 0; i < 10; i++)
func (A[i]); func (A[:]);

Parallel Control Patterns: Map
• Map: performs a function over every element of a collection

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

Sequential Cilk+

for (i = 0; i < 10; i++)
A[i] = 5; A[:] = 5;

for (i = 0; i < 10; i++)
A[i] = B[i]; A[:] = B[:];

for (i = 0; i < 10; i++)
A[i] = B[i] + 1; A[:] = B[:] + 1;

for (i = 0; i < 10; i++)
D[i] = A[i] + B[i]; D[:] = A[:] + B[:];

for (j = 0; j < 10; j++)
C[X][j] = A[j] C[X][:] = A[:];

for (i = 0; i < 10; i++)
func (A[i]); func (A[:]);

Parallel Control Patterns: Stencil

• Stencil: Elemental function accesses a set of
“neighbors”, stencil is a generalization of map

• Often combined with iteration – used with
iterative solvers or to evolve a system through
time

• Boundary conditions must be
handled carefully in the stencil
pattern

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 18

Conway’s Game of Life

• The Game of Life is a cellular automaton created
by John Conway in 1970

• The evolution of the game is entirely based on
the input state – zero player game

• To play: create initial state, observe how the
system evolves over successive time steps

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 19

2D landscape

Mar 17, 2020

Conway’s Game of Life

• Typical rules for the Game of Life
– Infinite 2D grid of square cells, each cell is either “alive” or

“dead”
– Each cell will interact with all 8 of its neighbors

• Any cell with < 2 live neighbors dies (under-population)
• Any cell with 2 or 3 live neighbors lives to next gen.
• Any cell with > 3 live neighbors dies (overcrowding)
• Any dead cell with 3 live neighbors becomes a live cell

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 20

2D landscape

Mar 17, 2020

Conway’s Game of Life:
Examples

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 21Mar 17, 2020

Conway’s Game of Life

• The Game of Life computation can easily fit into
the stencil pattern!

• Each larger, black

box is owned by a

thread

• What will happen at

the boundaries?

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 22

MY
DATA

Mar 17, 2020

Conway’s Game of Life

• We need some way to preserve information from
the previous iteration without overwriting it

• Ghost Cells are one solution to the boundary
and update issues of a stencil computation

• Each thread keeps a copy of neighbors’ data to
use in its local computations

• These ghost cells must be updated after each
iteration of the stencil

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 23Mar 17, 2020

Conway’s Game of Life

• Working with ghost cells

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24

MY
DATA

Mar 17, 2020

Conway’s Game of Life

• Working with ghost cells

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 25Mar 17, 2020

Conway’s Game of Life

• Working with ghost cells

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 26

Compute the new
value for this cell

Mar 17, 2020

Conway’s Game of Life

• Working with ghost cells

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 27

Five of its eight
neighbors already
belong to this thread

But three of its
neighbors belong to
a different thread

Mar 17, 2020

Conway’s Game of Life

• Working with ghost cells

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 28

Before any updates
are done in a new
iteration, all threads
must update their
ghost cells

Mar 17, 2020

Conway’s Game of Life

• Working with ghost cells

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 29

Data this thread can
use (including ghost
cells from neighbors)

Mar 17, 2020

Conway’s Game of Life

• Working with ghost cells

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 30

Updated cells

Mar 17, 2020

Conway’s Game of Life

• Things to consider…

– What might happen to our ghost cells as we increase the
number of threads?
• the ghost cells to total cells ratio will rapidly increase causing

– a greater demand on memory
– larger overhead (ratio management/computation)

– What would be the benefits of using a larger number of
ghost cells per thread? Negatives?
• in the Game of Life example, we could double or triple our

ghost cell boundary, allowing us to perform several iterations
without stopping for a ghost cell update

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 31Mar 17, 2020

Parallel Control Patterns:
Reduction
• Reduction: Combines every element in a

collection using an associative “combiner
function”

• Because of the associativity of the combiner
function, different orderings of the reduction are
possible

• Examples of combiner functions: addition,
multiplication, maximum, minimum, and Boolean
AND, OR, and XOR

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 32

Parallel Control Patterns:
Reduction

33

Serial Reduction Parallel Reduction

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

1 2 45 9 7 0 1

3

8

28

28

12

21

29

29

28

1 2 45 9 7 0 1

3 9 16 1

12 17

29

29

Parallel Control Patterns: Scan

• Scan: computes all partial reductions of a collection

• For every output in a collection, a reduction of the
input up to that point is computed

• If the function being used is associative, the scan
can be parallelized

• Parallelizing a scan is not obvious at first, because of
dependencies to previous iterations in the serial loop

• A parallel scan will require more operations than a
serial version

34Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Parallel Control Patterns: Scan

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 35

Serial Scan Parallel Scan
1 2 45 9 7 0 1

3

8

28

12

21

29

28

1 3 8 12 21 28 28 29

1 2 45 9 7 0 1

3 9

12

16 1

29

17

1 3 8 12 21 28 28 29

29

28

8 21 28

Parallel Control Patterns:
Recurrence
• Recurrence: More complex version of map,

where the loop iterations can depend on one
another
• Similar to map, but elements can use outputs of

adjacent elements as inputs
• For a recurrence to be

computable, there must be a
serial ordering of the recurrence
elements so that elements
can be computed using
previously computed outputs

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 36

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 21 — #21

1.5 Parallel Programming Models 21

B C F G H

A

1 1 10 0 0 0 0

B C D E F G H

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

0
0A

A

B

B

C

C C E

D E F

A

A

B

B

C

C

D E F

F

F

G H
1

1
2

2 2
3 4

4
5

5

01 2 2 45

6 7

0 1 2 3 4 5 6 7

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H
A D E

×××

Pack Split

Expand

Scan

Reduction

RecurrenceCategory reduction

Scatter

GatherGeometric decompositionMap

Stencil

Superscalar sequence

Speculative selection

Fork–join Pipeline

Partition

FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

Serial Data Management
Patterns
• Serial programs can manage data in many ways

• Data management deals with how data is
allocated, shared, read, written, and copied

• Serial Data Management Patterns: random read
and write, stack allocation, heap allocation,
objects

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 37

Serial Data Management Patterns:
random read and write
• Memory locations indexed with addresses

• Pointers are typically used to refer to memory
addresses

• Aliasing (uncertainty of two pointers referring to
the same object) can cause problems when
serial code is parallelized

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 38

Serial Data Management
Patterns: Stack Allocation
• Stack allocation is useful for dynamically

allocating data in LIFO manner

• Efficient – arbitrary amount of data can be
allocated in constant time

• Stack allocation also preserves locality

• When parallelized, typically each thread will get
its own stack, so thread locality is preserved

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 39

Serial Data Management
Patterns: Heap Allocation
• Heap allocation is useful when data cannot be

allocated in a LIFO fashion

• But heap allocation is slower and more complex
than stack allocation

• A parallelized heap allocator should be used
when dynamically allocating memory in parallel
– This type of allocator will keep separate pools for each

parallel worker

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 40

Serial Data Management
Patterns: Objects
• Objects are language constructs to associate

data with code to manipulate and manage that
data

• Objects can have member functions, and they
also are considered members of a class of
objects

• Parallel programming models will generalize
objects in various ways

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 41

Parallel Data Management
Patterns
• To avoid things like race conditions, it is critically

important to know when data is, and isn’t,
potentially shared by multiple parallel workers

• Some parallel data management patterns help
us with data locality

• Parallel data management patterns: pack,
pipeline, geometric decomposition, gather, and
scatter

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 42

Parallel Data Management
Patterns: Pack
• Pack is used to eliminate unused space in a

collection (like a filter)
• Elements marked false are discarded, the remaining

elements are placed in a contiguous sequence in
the same order
• Useful when used with

map
• Unpack is the inverse

and is used to place
elements back in their
original locations

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 43

Parallel Data Management
Patterns: Pipeline
• Pipeline connects tasks in a producer-

consumer manner

• A linear pipeline is the basic pattern
idea, but a pipeline in a DAG is also
possible

• Pipelines are most useful when used
with other patterns as they can
multiply available parallelism

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 44

Parallel Data Management Patterns:
Geometric Decomposition

• Geometric Decomposition – arranges data into
subcollections

• Overlapping and non-overlapping
decompositions are possible

• This pattern doesn’t necessarily move data, it just
gives us another view of it

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 45

Parallel Data Management Patterns:
Gather

• Gather reads a collection of data given a
collection of indices

• Think of a combination of map and random
serial reads

• The output collection shares the same type as
the input collection, but it share the same shape
as the indices collection

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 46

Parallel Data Management
Patterns: Scatter
• Scatter is the inverse of gather

• A set of input and indices is required, but each
element of the input is written to the output at
the given index instead of read from the input at
the given index

• Race conditions can occur when we have two
writes to the same location!

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 47

Other Parallel Patterns
• Superscalar Sequences: write a

sequence of tasks, ordered only by
dependencies
• Futures: similar to fork-join, but

tasks do not need to be nested
hierarchically
• Speculative Selection: general

version of serial selection where
the condition and both outcomes
can all run in parallel
• Workpile: general map pattern where each instance of

elemental function can generate more instances,
adding to the “pile” of work

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 48

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 103 — #103

3.6 Other Parallel Patterns 103

1 D = f(A);
2 E = g(D);
3 F = h(B,E);
4 G = r(E);
5 P = p(D);
6 Q = q(D);
7 H = s(F,G);
8 C = t(H,P,Q);

LISTING 3.11

Superscalar sequence in pseudocode.

C

C

t

t

s

s

q

q

p

p

r

rh h

B B

f

g g

f

A A

FIGURE 3.17

Superscalar sequence pattern. A superscalar sequence orders operations by their data dependencies only. On
the left we see the timing given by a serial implementation of the code in Listing 3.11 using the sequence
pattern. However, if we interpret this graph as a superscalar sequence, we can potentially execute some of the
tasks simultaneously, as in the diagram on the right. Tasks in a superscalar sequence must not have any
hidden data dependencies or side-effects not known to the scheduler.

important operation that can be done on a future is to wait for it to complete. Futures can implement
the same hierarchical patterns as in fork–join but can also be used to implement more general, and
potentially confusing, task graphs. Conceptually, fork–join is like stack-based allocation of tasks, while
futures are like heap allocation of tasks.

Task cancellation can also be implemented on futures. Cancellation can be used to implement other
patterns, such as the non-deterministic branch-and-bound pattern or speculative selection.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 103 — #103

3.6 Other Parallel Patterns 103

1 D = f(A);
2 E = g(D);
3 F = h(B,E);
4 G = r(E);
5 P = p(D);
6 Q = q(D);
7 H = s(F,G);
8 C = t(H,P,Q);

LISTING 3.11

Superscalar sequence in pseudocode.

C

C

t

t

s

s

q

q

p

p

r

rh h

B B

f

g g

f

A A

FIGURE 3.17

Superscalar sequence pattern. A superscalar sequence orders operations by their data dependencies only. On
the left we see the timing given by a serial implementation of the code in Listing 3.11 using the sequence
pattern. However, if we interpret this graph as a superscalar sequence, we can potentially execute some of the
tasks simultaneously, as in the diagram on the right. Tasks in a superscalar sequence must not have any
hidden data dependencies or side-effects not known to the scheduler.

important operation that can be done on a future is to wait for it to complete. Futures can implement
the same hierarchical patterns as in fork–join but can also be used to implement more general, and
potentially confusing, task graphs. Conceptually, fork–join is like stack-based allocation of tasks, while
futures are like heap allocation of tasks.

Task cancellation can also be implemented on futures. Cancellation can be used to implement other
patterns, such as the non-deterministic branch-and-bound pattern or speculative selection.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 21 — #21

1.5 Parallel Programming Models 21

B C F G H

A

1 1 10 0 0 0 0

B C D E F G H

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

0
0A

A

B

B

C

C C E

D E F

A

A

B

B

C

C

D E F

F

F

G H
1

1
2

2 2
3 4

4
5

5

01 2 2 45

6 7

0 1 2 3 4 5 6 7

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H
A D E

×××

Pack Split

Expand

Scan

Reduction

RecurrenceCategory reduction

Scatter

GatherGeometric decompositionMap

Stencil

Superscalar sequence

Speculative selection

Fork–join Pipeline

Partition

FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

Other Parallel Patterns

• Search: finds some data in a collection that
meets some criteria

• Segmentation: operations on subdivided, non-
overlapping, non-uniformly sized partitions of 1D
collections

• Expand: a combination of pack and map

• Category Reduction: Given a collection of
elements each with a label, find all elements
with same label and reduce them

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 49

Overview of Parallel Patterns

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 21 — #21

1.5 Parallel Programming Models 21

B C F G H

A

1 1 10 0 0 0 0

B C D E F G H

1 2 3 4

1

1

1

1

1

1 1

1

1 1 11 1

1

1

1

2 2

22

2

2

2

3 3

3 3 3 4

444

0
0A

A

B

B

C

C C E

D E F

A

A

B

B

C

C

D E F

F

F

G H
1

1
2

2 2
3 4

4
5

5

01 2 2 45

6 7

0 1 2 3 4 5 6 7

A

0 0 01 1 1 1 1

B

B

C

C

D E F

F

G

G

H

H
A D E

×××

Pack Split

Expand

Scan

Reduction

RecurrenceCategory reduction

Scatter

GatherGeometric decompositionMap

Stencil

Superscalar sequence

Speculative selection

Fork–join Pipeline

Partition

FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 50

The END

Mar 17, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 51

