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Parallel Patterns

• Parallel Patterns: A recurring combination of task 
distribution and data access that solves a 
specific problem in parallel algorithm design.

• Patterns provide us with a “vocabulary” for 
algorithm design

• It can be useful to compare parallel patterns 
with serial patterns

• Patterns are universal – they can be used in any
parallel programming system
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Parallel Patterns

• Nesting Pattern

• Serial / Parallel Control Patterns

• Serial / Parallel Data Management Patterns

• Other Patterns

• Programming Model Support for Patterns
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Nesting Pattern

• Nesting is the ability to hierarchically compose 
patterns

• This pattern appears in both serial and parallel 
algorithms

• “Pattern diagrams” are used to visually show the 
pattern idea where each “task block” is a 
location of general code in an algorithm

• Each “task block” can in turn be another pattern 
in the nesting pattern
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Nesting Pattern

6

Nesting Pattern: A compositional pattern. Nesting allows 
other patterns to be composed in a hierarchy so that any 
task block in the above diagram can be replaced with a 
pattern with the same input/output and dependencies.
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Serial Control Patterns

• Structured serial programming is based on these 
patterns: sequence, selection, iteration, and 
recursion
• The nesting pattern can also be used to 

hierarchically compose these four patterns

• Though you should be familiar with these, it’s 
extra important to understand these patterns 
when parallelizing serial algorithms based on 
these patterns
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Serial Control Patterns: 
Sequence
• Sequence: Ordered list of tasks that are 

executed in a specific order

• Assumption – program text ordering will be 
followed (seems obvious… but this will be 
important when parallelized)
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Serial Control Patterns: Selection

• Selection: condition c is first evaluated. Either 
task a or b is executed depending on the true or 
false result of c.

• Assumptions – a and b are never executed 
before c, and either a or b is executed — never 
both
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Serial Control Patterns: Iteration

• Iteration: condition c is evaluated. If it is true, a is 
evaluated, and then c is evaluated again. This 
repeats until c is false.

• Complication when parallelizing: potential for 
dependencies to exist between previous 
iterations
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for (i = 0;  i < n;  i++) {
f();

}

while (c) {
f();

}



Serial Control Patterns: 
Recursion
• Recursion: dynamic form of nesting allowing 

functions to call themselves

• Tail recursion is a special recursion that can be 
converted into iteration – important for 
functional languages
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A

f

B

int fact (int n) {
if (n == 0)
return 1

else
return n*fact (n-1);

}

We are using 
nesting here!



Parallel Control Patterns

• Parallel control patterns extend serial control 
patterns

• Each parallel control pattern is related to at least 
one serial control pattern, but relaxes 
assumptions of serial control patterns

• Parallel control patterns: fork-join, map, stencil, 
reduction, scan, recurrence
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1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

Parallel Control Patterns:
Fork-Join
• Fork-join: allows control flow to fork into multiple 

parallel flows, then rejoin later

• Cilk Plus implements this with spawn and sync
– The call tree is a parallel call tree 

and functions are spawned instead 
of called

– Functions that spawn another
function call will continue to
execute

– Caller syncs with the spawned
function to join the two
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1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.



• Fork-join: allows control flow to fork into multiple 
parallel flows, then rejoin later

Sequential
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1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

Parallel Control Patterns:
Fork-Join
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int fib(int n)
{

if (n < 2)
return n;

int x = fib(n-1);
int y = fib(n-2);
return x + y;

}

int fib(int n)
{

if (n < 2)
return n;

int x = cilk_spawn fib(n-1);
int y = fib(n-2);
cilk_sync;
return x + y;

}

Parallel — Cilk+

fib(n-1)

fib(n-2)



Parallel Control Patterns: Map
• Map: performs a function over every element of a collection
• Map replicates a serial iteration pattern where

– each iteration is independent of the others,
– the number of iterations is known in advance, and
– computation only depends on the iteration count and data from the input 

collection

• The replicated function is referred to as an “elemental 
function”
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Input

Elemental Function

Output

Data



Parallel Control Patterns: Map
• Map: performs a function over every element of a collection
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Sequential Cilk+

for (i = 0; i < 10; i++)
A[i] = 5; A[:] = 5;

for (i = 0; i < 10; i++)
A[i] = B[i]; A[:] = B[:];

for (i = 0; i < 10; i++)
A[i] = B[i] + 1; A[:] = B[:] + 1;

for (i = 0; i < 10; i++)
D[i] = A[i] + B[i]; D[:] = A[:] + B[:];

for (j = 0; j < 10; j++) 
C[X][j] = A[j] C[X][:] = A[:];

for (i = 0; i < 10; i++)
func (A[i]); func (A[:]);



Parallel Control Patterns: Map
• Map: performs a function over every element of a collection
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Sequential Cilk+

for (i = 0; i < 10; i++)
A[i] = 5; A[:] = 5;

for (i = 0; i < 10; i++)
A[i] = B[i]; A[:] = B[:];

for (i = 0; i < 10; i++)
A[i] = B[i] + 1; A[:] = B[:] + 1;

for (i = 0; i < 10; i++)
D[i] = A[i] + B[i]; D[:] = A[:] + B[:];

for (j = 0; j < 10; j++) 
C[X][j] = A[j] C[X][:] = A[:];

for (i = 0; i < 10; i++)
func (A[i]); func (A[:]);



Parallel Control Patterns: Stencil

• Stencil: Elemental function accesses a set of 
“neighbors”, stencil is a generalization of map

• Often combined with iteration – used with 
iterative solvers or to evolve a system through 
time

• Boundary conditions must be
handled carefully in the stencil
pattern
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Conway’s Game of Life

• The Game of Life is a cellular automaton created 
by John Conway in 1970

• The evolution of the game is entirely based on 
the input state – zero player game

• To play: create initial state, observe how the 
system evolves over successive time steps
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2D landscape

Mar 17, 2020



Conway’s Game of Life

• Typical rules for the Game of Life
– Infinite 2D grid of square cells, each cell is either “alive” or 

“dead”
– Each cell will interact with all 8 of its neighbors

• Any cell with < 2 live neighbors dies (under-population)
• Any cell with 2 or 3 live neighbors lives to next gen.
• Any cell with > 3 live neighbors dies (overcrowding)
• Any dead cell with 3 live neighbors becomes a live cell
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Conway’s Game of Life: 
Examples
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Conway’s Game of Life

• The Game of Life computation can easily fit into 
the stencil pattern!

• Each larger, black 

box is owned by a 

thread

• What will happen at

the boundaries?
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Conway’s Game of Life

• We need some way to preserve information from 
the previous iteration without overwriting it

• Ghost Cells are one solution to the boundary 
and update issues of a stencil computation

• Each thread keeps a copy of neighbors’ data to 
use in its local computations

• These ghost cells must be updated after each 
iteration of the stencil 
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Conway’s Game of Life

• Working with ghost cells
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Conway’s Game of Life

• Working with ghost cells
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Conway’s Game of Life

• Working with ghost cells
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Compute the new 
value for this cell
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Conway’s Game of Life

• Working with ghost cells
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Five of its eight 
neighbors already 
belong to this thread

But three of its 
neighbors belong to 
a different thread
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Conway’s Game of Life

• Working with ghost cells
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Before any updates 
are done in a new 
iteration, all threads 
must update their 
ghost cells
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Conway’s Game of Life

• Working with ghost cells
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Data this thread can 
use (including ghost 
cells from neighbors)
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Conway’s Game of Life

• Working with ghost cells
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Conway’s Game of Life

• Things to consider…

– What might happen to our ghost cells as we increase the 
number of threads?
• the ghost cells to total cells ratio will rapidly increase causing

– a greater demand on memory
– larger overhead (ratio management/computation)

– What would be the benefits of using a larger number of 
ghost cells per thread? Negatives?
• in the Game of Life example, we could double or triple our 

ghost cell boundary, allowing us to perform several iterations 
without stopping for a ghost cell update
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Parallel Control Patterns: 
Reduction
• Reduction: Combines every element in a 

collection using an associative “combiner 
function”

• Because of the associativity of the combiner 
function, different orderings of the reduction are 
possible

• Examples of combiner functions: addition, 
multiplication, maximum, minimum, and Boolean 
AND, OR, and XOR
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Parallel Control Patterns: 
Reduction

33

Serial Reduction Parallel Reduction
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Parallel Control Patterns: Scan

• Scan: computes all partial reductions of a collection

• For every output in a collection, a reduction of the 
input up to that point is computed

• If the function being used is associative, the scan 
can be parallelized

• Parallelizing a scan is not obvious at first, because of 
dependencies to previous iterations in the serial loop

• A parallel scan will require more operations than a 
serial version
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Parallel Control Patterns: Scan
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Parallel Control Patterns: 
Recurrence
• Recurrence: More complex version of map, 

where the loop iterations can depend on one 
another
• Similar to map, but elements can use outputs of 

adjacent elements as inputs
• For a recurrence to be

computable, there must be a
serial ordering of the recurrence
elements so that elements 
can be computed using 
previously computed outputs
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1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.



Serial Data Management 
Patterns
• Serial programs can manage data in many ways

• Data management deals with how data is 
allocated, shared, read, written, and copied

• Serial Data Management Patterns: random read 
and write, stack allocation, heap allocation, 
objects
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Serial Data Management Patterns: 
random read and write
• Memory locations indexed with addresses

• Pointers are typically used to refer to memory 
addresses

• Aliasing (uncertainty of two pointers referring to 
the same object) can cause problems when 
serial code is parallelized
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Serial Data Management 
Patterns: Stack Allocation
• Stack allocation is useful for dynamically 

allocating data in LIFO manner

• Efficient – arbitrary amount of data can be 
allocated in constant time

• Stack allocation also preserves locality

• When parallelized, typically each thread will get 
its own stack, so thread locality is preserved
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Serial Data Management 
Patterns: Heap Allocation
• Heap allocation is useful when data cannot be 

allocated in a LIFO fashion

• But heap allocation is slower and more complex 
than stack allocation

• A parallelized heap allocator should be used 
when dynamically allocating memory in parallel
– This type of allocator will keep separate pools for each 

parallel worker
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Serial Data Management 
Patterns: Objects
• Objects are language constructs to associate 

data with code to manipulate and manage that 
data

• Objects can have member functions, and they 
also are considered members of a class of 
objects

• Parallel programming models will generalize 
objects in various ways
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Parallel Data Management 
Patterns
• To avoid things like race conditions, it is critically 

important to know when data is, and isn’t, 
potentially shared by multiple parallel workers

• Some parallel data management patterns help 
us with data locality

• Parallel data management patterns: pack, 
pipeline, geometric decomposition, gather, and 
scatter
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Parallel Data Management 
Patterns: Pack
• Pack is used to eliminate unused space in a 

collection (like a filter)
• Elements marked false are discarded, the remaining 

elements are placed in a contiguous sequence in 
the same order
• Useful when used with

map
• Unpack is the inverse

and is used to place
elements back in their
original locations
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Parallel Data Management 
Patterns: Pipeline
• Pipeline connects tasks in a producer-

consumer manner

• A linear pipeline is the basic pattern 
idea, but a pipeline in a DAG is also 
possible

• Pipelines are most useful when used 
with other patterns as they can 
multiply available parallelism
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Parallel Data Management Patterns: 
Geometric Decomposition

• Geometric Decomposition – arranges data into 
subcollections

• Overlapping and non-overlapping 
decompositions are possible

• This pattern doesn’t necessarily move data, it just 
gives us another view of it
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Parallel Data Management Patterns: 
Gather

• Gather reads a collection of data given a 
collection of indices

• Think of a combination of map and random 
serial reads

• The output collection shares the same type as 
the input collection, but it share the same shape 
as the indices collection
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Parallel Data Management 
Patterns: Scatter
• Scatter is the inverse of gather

• A set of input and indices is required, but each 
element of the input is written to the output at 
the given index instead of read from the input at 
the given index

• Race conditions can occur when we have two 
writes to the same location! 
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Other Parallel Patterns
• Superscalar Sequences: write a

sequence of tasks, ordered only by
dependencies
• Futures: similar to fork-join, but

tasks do not need to be nested
hierarchically
• Speculative Selection: general

version of serial selection where
the condition and both outcomes
can all run in parallel
• Workpile: general map pattern where each instance of 

elemental function can generate more instances, 
adding to the “pile” of work
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1 D = f(A);
2 E = g(D);
3 F = h(B,E);
4 G = r(E);
5 P = p(D);
6 Q = q(D);
7 H = s(F,G);
8 C = t(H,P,Q);

LISTING 3.11

Superscalar sequence in pseudocode.
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FIGURE 3.17

Superscalar sequence pattern. A superscalar sequence orders operations by their data dependencies only. On
the left we see the timing given by a serial implementation of the code in Listing 3.11 using the sequence
pattern. However, if we interpret this graph as a superscalar sequence, we can potentially execute some of the
tasks simultaneously, as in the diagram on the right. Tasks in a superscalar sequence must not have any
hidden data dependencies or side-effects not known to the scheduler.

important operation that can be done on a future is to wait for it to complete. Futures can implement
the same hierarchical patterns as in fork–join but can also be used to implement more general, and
potentially confusing, task graphs. Conceptually, fork–join is like stack-based allocation of tasks, while
futures are like heap allocation of tasks.

Task cancellation can also be implemented on futures. Cancellation can be used to implement other
patterns, such as the non-deterministic branch-and-bound pattern or speculative selection.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 103 — #103

3.6 Other Parallel Patterns 103

1 D = f(A);
2 E = g(D);
3 F = h(B,E);
4 G = r(E);
5 P = p(D);
6 Q = q(D);
7 H = s(F,G);
8 C = t(H,P,Q);

LISTING 3.11

Superscalar sequence in pseudocode.

C

C

t

t

s

s

q

q

p

p

r

rh h

B B

f

g g

f

A A

FIGURE 3.17

Superscalar sequence pattern. A superscalar sequence orders operations by their data dependencies only. On
the left we see the timing given by a serial implementation of the code in Listing 3.11 using the sequence
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tasks simultaneously, as in the diagram on the right. Tasks in a superscalar sequence must not have any
hidden data dependencies or side-effects not known to the scheduler.

important operation that can be done on a future is to wait for it to complete. Futures can implement
the same hierarchical patterns as in fork–join but can also be used to implement more general, and
potentially confusing, task graphs. Conceptually, fork–join is like stack-based allocation of tasks, while
futures are like heap allocation of tasks.

Task cancellation can also be implemented on futures. Cancellation can be used to implement other
patterns, such as the non-deterministic branch-and-bound pattern or speculative selection.
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Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.



Other Parallel Patterns

• Search: finds some data in a collection that 
meets some criteria

• Segmentation: operations on subdivided, non-
overlapping, non-uniformly sized partitions of 1D 
collections 

• Expand: a combination of pack and map

• Category Reduction: Given a collection of 
elements each with a label, find all elements 
with same label and reduce them
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1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.
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