
Parallel Programming Models
and Architectures

Concurrency and Parallelism — 2019-20

Master in Computer Science
(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>
Some slides and ideas take from:
http://cri.uchicago.edu/wp-content/uploads/2018/09/Intro-to-Parallel-Computing.pdf

Outline

• Parallel Programming Models

• Parallel Architectures

– Bibliography:
• Chapters 1 and 2 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Oct 12, 2018 2Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19

Car crash simulation example

• Simplified model based on a crash simulation for
the Ford Motor Company

• Illustrates various aspects common to many
simulations and applications

• This example was provided by Q. Stout and C. Jablonowski of the University
of Michigan

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 3

Finite Element Representation

• Car is modeled by a triangulated surface (elements)

• The simulation models the movement of the elements,
incorporating the forces on the elements to determine their
new position

• In each time step, the movement of each element depends
on its interaction with the other elements to which it is
physically adjacent

• In a crash, elements may end up touching that were not
touching initially

• The state of an element is its location, velocity, and
information such as whether it is metal that is bending

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 4

(Sequential) Car

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 5

Car

Serial Crash Simulation

for all elements

read (State(element), Properties(element), Neighbor_list(element))

for step=1 to end_of_simulation

for element=1 to num_elements

Compute State(element) for next step,
based on the previous state of the element
and its neighbors and the properties of the element

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 6

Simple Approach to
Paralleization
• Distributed Memory – Parallel system based on

processors linked with a fast network; processors
communicate via messages

• Owner Computes – Distribute elements to
processors; each processor updates its own
elements

• Single Program Multiple Data (SPMD) – All
machines run the same program on
independent data; dominant form of parallel
computing

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 7

Split Car

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 8

For shared memory

Basic Parallel Version

concurrently for all processors P

for all elements assigned to P

read (State(element), ProperCes(element), Neighbor- list(element))

for step=1 to end_of_simulaCon

for element=1 to num_elements_in_P

Compute State (element) for next step, based on previous state
of element and its neighbors, and on properties of the element

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 9

Notes

• Most of the code is the same as, or similar to,
serial code

• High-level structure remains the same: a
sequence of steps

– The sequence is a serial construct, but
– Now the steps are performed in parallel, but
– Calculations for individual elements are serial

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 10

Question: In a distributed memory system, how does
each processor keep track of adjacency info for

neighbors in other processors?

Distributed Car (ghost cells)Distributed Car (w/ ghost cells)

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 11

For distributed system

Parallel Architectures
• Flynn's Taxonomy — basic concepts
• Single Instruction (SI) – System in which all processors

execute the same instruction
• Multiple Instruction (MI) – System in which different

processors may execute different instructions
• Single Data (SD) – System in which all processors operate

on the same data
• Multiple Data (MD) – System in which different processors

may operate on different data

• M. J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, C-21(9):948–960, 1972.

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 12

Flynn's Taxonomy

• SISD – Classic von Neumann architecture; serial
computer
• MIMD – Collections of autonomous processors that

can execute multiple independent programs; each
of which can have its own data stream
• SIMD – Data is divided among the processors and

each data item is subjected to the same sequence
of instructions; GPUs, Advanced Vector Extensions
(AVX)
• MISD – Very rare; systolic arrays; smart phones

carried by Chupacabras🤣

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 13

CRAY-1 Vector Machine (1976)

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 14

CRAY-1 Vector Machine (1976)

03/03/2020, 00'43Cray-1 - Wikipedia

Page 1 of 10https://en.wikipedia.org/wiki/Cray-1

Cray-1

3D rendering of two Cray-1 with a figure as
scale

Design

Manufacturer Cray Research

Designer Seymour Cray

Release date 1975

Units sold Over 80

Price US$7.9 million in 1977
(equivalent to $33.3 million in
2019)

Casing

Dimensions Height: 196 cm (77 in)[1]

Dia. (base): 263 cm (104 in)[1]

Dia. (columns): 145 cm (57 in)[1]

Weight 5.5 tons (Cray-1A)

Power 115 kW @ 208 V 400 Hz[1]

System

Front-end Data General Eclipse

Operating
system

COS & UNICOS

CPU 64-bit processor @ 80 MHz[1]

Memory 8.39 Megabytes (up to 1 048
576 words)[1]

Storage 303 Megabytes (DD19 Unit)[1]

FLOPS 160 MFLOPS

Successor Cray X-MP

Cray-1
The Cray-1 was a supercomputer designed,
manufactured and marketed by Cray Research.
Announced in 1975, the first Cray-1 system was
installed at Los Alamos National Laboratory in
1976. Eventually, over 100 Cray-1's were sold,
making it one of the most successful
supercomputers in history. It is perhaps best
known for its unique shape, a relatively small C-
shaped cabinet with a ring of benches around the
outside covering the power supplies.

The Cray-1 was the first supercomputer to
successfully implement the vector processor design.
These systems improve the performance of math
operations by arranging memory and registers to
quickly perform a single operation on a large set of
data. Previous systems like the CDC STAR-100 and
ASC had implemented these concepts but did so in
a way that seriously limited their performance. The
Cray-1 addressed these problems and produced a
machine that ran several times faster than any
similar design.

The Cray-1's architect was Seymour Cray; the chief
engineer was Cray Research co-founder Lester
Davis.[2] They would go on to design several new
machines using the same basic concepts, and
retained the performance crown into the 1990s.

History
Background

Vector machines
Cray's approach

Description
Cray-1S

Cray-1M
Software
Museums
Other images of the Cray-1
In popular culture
References
External links

Contents

Vector Machines Today

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 15

= 49 375 Cray-1s

Software Taxonomies

• Data Parallel (SIMD)
– Parallelism that is a result of identical operations being

applied concurrently on different data items; e.g., many
matrix algorithms

– Difficult to apply to complex problems

• Single Program, Multiple Data (SPMD)
– A single application is run across multiple

processes/threads on a MIMD architecture
– Most processes execute the same code but do not work in

lock-step
– Dominant form of parallel programming

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 16

SISD vs. SIMD

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 17

SISD vs. SIMD

MIMD Architectures
(Shared Memory)

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 18

MIMD Architectures (Shared Memory)

Uniform	Memory	Access	(UMA)	 Non-Uniform	Memory	Access	(NUMA)	

More MIMD Architectures

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 19

More MIMD Architectures

Distributed	Memory	 Hybrid	Memory	

Shared Memory (SM)

• Attributes:
– Global memory space
– Each processor will utilize its own cache for a portion of global

memory; consistency of the cache is maintained by hardware

• Advantages:
– User-friendly programming techniques (OpenMP and OpenACC)
– Low latency for data sharing between tasks

• Disadvantages:
– Global memory space-to-CPU path may be a bottleneck
– Non-Uniform Memory Access
– Programmer responsible for synchronization

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 20

Distributed Memory (DM)

• Attributes:
– Memory is shared amongst processors through message

passing

• Advantages:
– Memory scales based on the number of processors
– Access to a processor's own memory is fast
– Cost effective

• Disadvantages:
– Error prone; programmers are responsible for the details of

the communication
– Complex data structures may be difficult to distribute

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 21

Hardware/Software Models

• Software and hardware models do not need to
match

• DM software on SM hardware:
– Message Passing Interface (MPI) - designed for DM

Hardware but available on SM systems

• SM software on DM hardware
– Remote Memory Access (RMA) included within MPI-3
– Partitioned Global Address Space (PGAS) languages

• Unified Parallel C (extension to ISO C 99)
• Coarray Fortran (Fortran 2008)

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 22

Difficulties

• Serialization causes bottlenecks

• Workload is not distributed

• Debugging is hard

• Serial approach doesn't parallelize

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 23

The END

Oct 12, 2018 24Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19

