


Chapter 20

Fuzzy clustering and manifold learning

Fuzzy sets and clustering. Fuzzy c-means. Manifold learning. Cluster validation: internal
and external indeces.

20.1 Fuzzy Clustering
In conventional set theory, elements either belong or do not belong to a set. In such case, we are dealing
with crisp sets. In fuzzy set theory, each element x has a membership value uS(x) ∈ [0, 1] specifying
by how much x belongs to set S. Thus, a fuzzy set S is a set of ordered pairs of elements and their
respective membership function values:

S = {(x, uS(x))|x ∈ X}

This makes it possible to model different types of uncertainty, such as linguistic or categorical uncer-
tainty, when we are unable to define exactly what we mean by some term or category. For example, the
temperature at which something stops being cold and becomes warm or hot is not a precise (crisp) value.
One way to account for this is to allow the membership of each temperature value to each category
cold, warm or hot to vary continuously, as Figure 20.1 illustrates.
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Figure 20.1: Fuzzy sets for cold, warm and hot temperatures, and respective membership values.
Wikimedia, CC BY-SA 3.0 fullofstars

Fuzzy sets can also model uncertainty about information or predictions, but fuzzy membership is
different from probability estimates. Conceptually, fuzzy membership is a measure of similarity to
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some imprecise properties that characterize the set the element may belong to with a smaller or larger
membership value, while probability is a measure either of a frequency of random events in the limit
of infinite trials (frequentist interpretation) or of uncertainty but under precise definitions of concepts
(Bayesian interpretation).

Fuzzy clustering rests on the notion of a fuzzy c-partittion. U(X) is a fuzzy c-partition of X if
these three conditions hold. First, the membership values of all elements are between 0 and 1:

0 ≤ uk(xn) ≤ 1 ∀k, n

Second, the total membership of each element to all c partitions is equal to 1:
c∑

k=1

uk(xn) = 1 ∀n

Finally, the total membership in each of the c partitions is between 0 and the total number of elements:

0 ≤
N∑

n=1

uk(xn) ≤ N ∀k

The fuzzy c-means algorithm is a clustering algorithm that finds a fuzzy c-partittion for the elements
to cluster, with each partition being a cluster. From a set X of N data points, the algorithm returns the
c×N membership matrix uk(xn), defining a fuzzy c-partition of X and determining the membership
value of each element xn, n ∈ {1, ..., N} to each cluster k ∈ {1, ..., c}. The fuzzy c-means algorithm
also returns the set {C1, ..., Cc} of centroids of the partitions (clusters). These are found by minimizing
the following squared error loss function:

Jm(X,C) =
c∑

k=1

N∑
n=1

uk(xn)
m‖xn − ck‖2 m ≥ 1

and subject to the constraint
c∑

k=1

uk(xn) = 1 ∀n

</p> The parameter m, typically m = 2, is the degree of fuzzification. The derivative of the loss
function with respect to the membership values is zero at the points:

uk(xn) =

(
1

‖xn−ck‖2

) 2
m−1

c∑
j=1

(
1

‖xn−cj‖2

) 2
m−1

and with respect to the centroids Ck:

Ck =

N∑
n=1

uk(xn)
mxn

N∑
n=1

uk(xn)m

That is, each centroid Ck is the weighted mean of the example vectors using the membership values.
This algorithm is similar to the k-means algorithm, but using a continuous membership function instead
of the 0, 1 membership of crisp sets.
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Like k-means, the fuzzy c-means algorithm also uses an approach that is similar to Expectation-
Maximization (EM), even though, formally, it is not quite EM. First, the membership values are
computed from a random initial set of centroids {C1, ..., Cc}:

uk(xn) =

(
1

‖xn−ck‖2

) 2
m−1

c∑
j=1

(
1

‖xn−cj‖2

) 2
m−1

This, in turn, allows the update of the centroid coordinates by maximizing the adequacy of the centroid
to the cluster assuming the computed membership values:

Ck =

N∑
n=1

uk(xn)
mxn

N∑
n=1

uk(xn)m

These steps are then repeated until convergence, as usual in algorithms based on the EM method. The
stopping criteria for the fuzzy c-means algorithm are generally either reaching a predetermined number
of iterations or the change in the centroid positions falling below some initially specified value.

The result is similar to a k-means clustering, but with continuous membership values. Figure 20.2
illustrates the clustering along with the plot of the membership function for each cluster.

Figure 20.2: Fuzzy c-means example, from “Simulated Annealing - Advances, Applications and
Hybridizations”, Ed. Marcos de Sales Guerra Tsuzuki, CC BY 3.0

To convert a fuzzy clustering into a crisp clustering — defuzzification — it is simply necessary to
convert the continuous membership function into {0, 1} crisp membership values. This can be done by,
for each data point, setting to 1 the largest membership value, and to 0 the remainder, thus assigning
the data point to the cluster to which it has the largest membership, or assigning the data point to the
cluster with the nearest centroid, as in the k-means algorithm.
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20.2 Manifold Learning
Mathematically, an n-dimensional manifold, or n-manifold, is a set of points such that each point and
its neighbours form an approximately Euclidean space. For example, seismic events at the surface of
the Earth form a two-dimensional surface in three-dimensional space. Figure 20.3 shows two examples
of manifolds.

Figure 20.3: Examples of two manifolds in three-dimensional space: the 2-dimensional manifold of
seismic events on the surface of the Earth and a 1-dimensional manifold of hypothetical data that
follows a line in 3D.

In machine learning, this is a useful concept because it is often the case that data do not span
all possible combinations of feature values. Thus, data sets are usually sets of points that can be
approximated by manifolds fewer dimensions than the number of attributes. Finding these manifolds is
a useful way of reducing the dimensionality of our data.

There are many different algorithms for finding manifolds, using different approaches and criteria 1.
Here we will see two as examples: Isomap and t-distributed stochastic neighbor embedding (t-SNE).

t-SNE
The t-distributed stochastic neighbor embedding algorithm [16] (t-SNE) projects the data into lower
dimensions – typically two dimensions, for visualization – while trying to keep the distribution of
distances between points approximately analogous. First, it considers the probability of point xi
choosing point xj as a neighbour to be a Gaussian distribution dependent on the distance between the
points, ||xi − xj||. This can be imagined as the conditional probability of point xj being picked as a
neighbour given that xi is the centre of the neighbourhood:

1See, for example, Scikit-Learn documentation on Manifold Learning at https://scikit-learn.org/stable/
modules/manifold.html

https://scikit-learn.org/stable/modules/manifold.html
https://scikit-learn.org/stable/modules/manifold.html
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pj|i =
exp(−||xi − xj||2/2σ2

i )∑
i 6=j

exp(−||xi − xj||2/2σ2
i )

(pi|i = 0)

To avoid the problem of computing the joint probability of finding xi and xj in the same neighbour-
hood from the conditional probabilities, and also to make the distribution vanish less quickly for longer
distances, in t-SNE the joint probability is taken as the average of the conditional probabilities:

pj,i = (pj|i + pi|j)/2

Note that pj|i and pi|j may be different because each Gaussian centred on each point has its own σ
value. In addition, though these steps are computationally convenient, this means that the probabilistic
framework of t-SNE is not formally correct but rather a practical approximation.

On the side of the embedded manifold, in lower dimensions, we can consider a similar distribution
or probabilities for points being neighbours, also dependent on their distance. For this, t-SNE uses
Student’s t-distribution. Thus, with yi and yj being the images of xi and xj in the lower dimensional
space, the probability of yj being in the neighbourhood of yj is:

qj|i =
(1 + ||yi − yj||)−1∑

i 6=j

(1 + ||yi − yj||)−1
(qi|i = 0)

Since Student’s t-distribution has no parameters, qj|i = qi|j and we can just take this as if it was
the joint distribution. Another reason for choosing Student’s t-distribution is that it makes it easier to
adjust the y values in order to bring this distribution close to the Gaussian distributions for the original
points. This is done by minimizing the Kullback–Leibler divergence of qij with respect to pij:

KL(P ||Q) =
∑
i 6=j

pij log
pij
qij

which measures how the distributions differ. By minimizing this measure the distribution of the
embedded points will be locally similar to what it is in the original space. Figure 20.4 illustrates the
result of applying t-SNE to a three-dimensional data set that is distributed along a one-dimensional
line.

Figure 20.4: Original data set (left panel), t-SNE projection to two dimensions (center) and to one
dimension (right panel, bottom line).
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Isomap
The Isomap algorithm [21] tries to create a low-dimensional manifold from high-dimensional data
while preserving as much as possible the distances between the nearest neighbours. The outline of the
algorithm is as follows:

1. Create a k-nearest neighbours graph connecting each point to its k-nearest neighbours.

2. Compute pairwise distances for all pairs of points by adding the distances of all steps in the
shortest path between two points on the k-nearest neighbours graph. This is an estimate of the
distance between points in the manifold.

3. Compute the distribution of the points in the lower-dimensional manifold with multidimensional
scaling, which finds an embedding that preserves as much as possible the distances between pairs
of points.

Figure 20.5 illustrates the result of applying Isomap to the data set shown previously. We can reduce
from three to two dimensions, or even one dimension, and still preserve most of the local structure in
the data because this embedding in lower dimensions approximates the distances measured along the
k-neighbours graph.

Figure 20.5: Original data set (left panel), Isomap projection to two dimensions (center) and to one
dimension (right panel, bottom line).

20.3 The Rand index
Previously, we saw the silhouette score as an internal index to evaluate clusterings, and we also talked
about the possibility of using external indexes. The Rand index is an example of an external index we
can use when we want to compare a clustering with some other partition of our data, such as another
clustering, classification labels or any other way of organizing our data into different groups.

Let us suppose ourN examples are grouped into some partitionX composed of groups {X1, X2, X3, ...}
and we have a clustering Y with clusters {Y1, Y2, Y3, ...}. Note that this is not a supervised learning
problem, so we are not trying to predict the exact groups each example will fall into. However, we
would like our clustering to place in the same cluster of Y examples that belong in the same group of
X and in different clusters points that belong to different groups.
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To measure this, we can consider allN × (N − 1)/2 pairs of examples and label any pair “positive”
if the two examples belong in the same group of X and “negative” if they belong to different groups.
This way, we can make an analogy to the true and false positives, and true and false negatives, of
supervised learning:

• True Positive: a pair of examples from the same group placed in the same cluster

• True Negative: a pair of examples from different groups placed in different clusters

• False Positive: a pair of examples from different groups placed in the same cluster

• False Negative: a pair of examples from the same group placed in different clusters

This makes it easy to understand the Rand index as analogous to the accuracy of a classifier:

Rand =
TP + TN

TP + TN + FP + FN
=

TP + TN

N(N − 1)/2

One shortcoming of the Rand index is that it does not account for the possibility of the clustering
of pairs of examples matching the groups with which we compare them. The Adjusted Rand Index
solves this problem by subtracting the expected index values if the clustering was uncorrelated to the
groups it is being compared to. The Adjusted Rand Index varies from -1 to 1, with 0 indicating no
correlation, and can be computed in Scikit Learn using the adjusted_rand_score function from
the sklearn.metrics module.

Following this analogy with classification, we can also compute scores analogous to precision,
recall and the F1 measure:

Precision =
TP

FP + TP
Recall =

TP

FN + TP
F1 = 2

Precision×Recall
Precision+Recall
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