
Chapter 17

Introduction to Clustering

Introduction to clustering. K-means and k-medoids. Expectation-maximization.

17.1 Clustering
The goal of clustering is to group similar examples and separate different examples in different clusters.
In other words, to create groups (clusters) of examples in a way that maximizes some measure of
similarity between examples within the same cluster and minimizes the similarity between examples in
different clusters. The term clustering can refer both to the process of computing the clusters and to the
resulting set of clusters.

Clustering can help us understand the structure of the data and the relations between different
examples and features. For one thing, grouping similar things together in categories that are distinct
from other groups is an important part of how we understand the world around us. That is why
we have words like “chair”, “stool” or “sofa”, that refer to clusters of objects. This is especially
important when we have large datasets, as happens in fields like biology, astronomy or climatology, or
when studying social networks online or credit card transactions. Clustering may also show us some
important properties of the data. For example, clustering living organisms gives us an insight into their
evolutionary relations. Figure 17.1 shows two examples of clustering used to understand the data. On
the left panel, Darwin’s “tree of life”, an example of hierarchical clustering that gave an important
insight into the mechanisms through which species originate. The right panel is an image from a study
using a large set of positional data from Baidu, the most used search engine in China, to characterize
empty neighbourhoods in chinese cities [6]. The authors used DBSCAN [10], a density-based clustering
algorithm, to group the locations of Baidu users and estimate the home location of each user based on
the density clusters of positional information. From this data, the authors then estimated the occupancy
of residential neighbourhoods in chinese cities.

Clustering can also be used to summarise the data, replacing a large data set with a smaller number
of data points that still retain the same overall structure. Figure 17.2 shows the result of using the
k-means algorithm [16] to compute a simplified dataset, with a smaller number of points, but with the
same “shape” as the original set.

There are several choices to make when deciding how to cluster some data. One problem is defining
the number of clusters. Figure 17.3 illustrates this, showing the same set of points clustered into two,
three or five clusters. Some clustering algorithms determine the number of clusters while others require
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Figure 17.1: The left panel shows Darwin’s depiction of the evolutionary relations between different
organisms, an example of hierarchical clustering. The right panel is an image from [6], a characterization
of “ghost cities” in China by density clustering.

Figure 17.2: Summarizing the larger original dataset (blue points) into 100 or 30 points (red crosses),
while still retaining the overall structure of the data.

that the number of clusters be specified in advance. We also need to decide if we want a partitional
clustering, where the data set is divided into clusters at the same level, or a hierarchical clustering,
where clusters are also clustered in higher-level clusters. Figure 17.4 shows the difference between
partitional and hierarchical clustering.

Figure 17.3: Choosing the number of clusters: two, three or five.

Regarding the membership of each example, the clustering can be exclusive, if each example belongs
only to one cluster; overlapping if an example can belong to two or more clusters; fuzzy clustering
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Figure 17.4: The left panel shows an example of partitional clustering. The right panel shows the same
data set clustered hierarchically, with the colour representing the top-level clustering and the shapes the
bottom level clustering. The lower level clusters are part of the higher level clusters.

if all examples belong to all clusters with some continuous membership value between 0 and 1; or
probabilistic clustering if the membership value of each example to each cluster represents a probability.
The clustering itself can be partial if not all examples belong to clusters or complete if all examples
are assigned to clusters. Depending on the structure of the data and the clustering, the clusters can be
well-separated if no example is more similar to any example outside its cluster than to any example
within its cluster.

Clustering criteria can be based on different aspects of the structure of the data. Figure 17.5 shows
some examples. Clustering based on prototypes assigns each example to the cluster represented by the
closest prototype. With an euclidean distance measure, this results in a Voronoy partition of the feature
space. Contiguity-based clustering creates clusters according to networks of contiguous examples, and
density-based clustering assigns examples to clusters defined by high-density regions, allowing for
some examples to be left unassigned and discarded as noise. Clustering can also be hierarchical, with
groups clustered in larger groups, or defined by probability distributions, such as Gaussian Mixture
Models, which we will cover later on.

Figure 17.5: Examples of prototype-based clustering, contiguity-based clustering and density-based
clustering.

17.2 K-means clustering
Lloyd’s algorithm for k-means clustering algorithm[15] is conceptually very simple. It consists in
dividing the data set into k clusters, each defined by the mean vector of the members of the cluster,



150 CHAPTER 17. INTRODUCTION TO CLUSTERING

which is the prototype of that cluster. Each example belongs to the cluster represented by the closest
prototype. Thus, k-means is an exclusive, partitional and prototype-based clustering method. The
algorithm for computing the k-means clustering is:

1. Start with a random set of k prototypes.

2. Assign each example to the closest prototype.

3. Recompute each prototype as the mean point of all the examples assigned to that cluster.

4. Repeat steps 2 and 3 until convergence or some stopping criterion.

There are several possible initialization methods for k-means. For example, the Forgy method
consists of assigning to each of the k prototypes the feature vector of a randomly selected examples as
the starting point for the algorithm. The Random Partition method starts by randomly assigning each
example to one of k clusters, and then computing the starting point of the prototypes as the mean point
of each cluster. Figure 17.6 illustrates these two initialization methods, showing also how the Random
Partition method tends to group the initial positions of the prototypes in the centre of the data space.

Figure 17.6: Initializing the k-means prototypes by the Forgy method (left panel) or the Random
Partition method (right panel). The prototypes are represented with larger symbols and the smaller
symbols represent the data points.

Figure 17.7 shows the first iterations of computing the clusters by the k-means algorithm, starting
with the random (Forgy) assignment of the initial prototype positions and assignment of the data points
to the clusters (left panel), recomputing the position of the cluster prototypes as the mean point of each
cluster (middle panel) and then recomputing the cluster assignment by assigning each example to the
cluster of the closest prototype (right panel).

To illustrate in more detail, we can see how to implement the k-means algorithm in Python. We
start with a function that determines the cluster of each data point in matrix data given a matrix of
centroid coordinates for the positions of the prototypes in centroids:

1 def closest_centroids(data,centroids):

2 ys = np.zeros(data.shape[0])

3 for ix in range(data.shape[0]):

4 dists = np.sum((centroids-data[ix,:])**2,axis=1)

5 ys[ix] = np.argmin(dists)

6 return ys
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Figure 17.7: First iterations of the k-means algorithm. See text for more details.

Next, a function to recompute the centroids based on the assigned clusters. This function iterates
through the lines of the centroids matrix computing, for each line, the means of the data points
assigned to that cluster.

1 def adjust_centroids(data,centroids):

2 ys = closest_centroids(data,centroids)

3 for ix in range(centroids.shape[0]):

4 centroids[ix,:] = np.mean(data[ys==ix,:],axis=0)

Now we need a function for initializing the prototype positions (the centroids of the clusters). Using
the Forgy method, we can do this assigning the coordinates of randomly selected examples. Note that
the matrix returned is a copy of the selected lines of the data matrix, otherwise we could be returning
pointers to the data points and altering the centroids would alter the data.

1 def forgy(data,k):

2 ixs = np.arange(data.shape[0])

3 np.random.shuffle(ixs)

4 return data[:k,:].copy()

Alternatively, we can initialize the centroids using the random partition algorithm.

1 def rand_part(data,k):

2 ys = np.random.randint(0,k,data.shape[0])

3 centroids = np.zeros((k,data.shape[1]))

4 for ix in range(k):

5 centroids[ix,:] = np.mean(data[ys==ix,:],axis=0)

6 return centroids,ys

To find the best prototypes for clusters we need a distance measure. Very often, the measure is the
Euclidean distance. However, we can generalize this, as we saw before, with the Minkowsky distance,
which depends on a parameter p:

Dx,x′ = p

√∑
d

|xd − x′d|p

For p = 2 this is the Euclidean distance, and for p = 1 the Manhattan distance.

17.3 K-medoids
The k-medoids algorithm is a variant of the k-means algorithm with the difference that the prototypes
always coincide with points in the data set. This makes it unnecessary to have a true distance measure,
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since all we need is to measure similarities between points in the data set, and makes the algorithm
more robust to noise and outliers. The k-medoids clustering can be computed using the Partitioning
Around Medoids (PAM) algorithm, as follows:

1. Initialize the k prototypes (e.g. with the Forgy method).

2. Assign the examples to clusters.

3. For each medoid and each data point, test if swapping the medoid for that data point reduces the
sum of pairwise dissimilarities between data points and respective medoids. If so, then update
the medoid and reassign examples to clusters.

4. repeat step 3 until no improvement possible.

17.4 Expectation-Maximization
The Expectation-Maximization (EM) method is an important part of many unsupervised learning
algorithms, and we shall revisit it in more detail in future chapters. But, for now, we can introduce it
in a simplified overview and see how it relates to the k-means algorithm. Let us assume we have a
set X of observed data — for example, the known data points — and a set Z of variables we do not
observe, which are called latent variables. For example, the assignments of each data point to each
cluster, which we initially do not know. We also have a set of parameters θ that we wish to adjust in
order to maximize the likelihood of the parameters, which is the probability of all the data, including
both the known and unknown variables, given the set of parameters θ. For example, the centroids
representing the clusters.

L(θ;X,Z) = p(X,Z|θ)

We cannot compute this likelihood directly because we do not know the values Z. But we can estimate
the posterior, or conditional, distribution of Z given the knownX and some previous assumption about
θ:

p(Z|X, θold)

This allows us to compute an expected value for Z and thus estimate the necessary parameters for the
likelihood functionQ(θ, θold) for θ given some previous estimated θold. From the expected values of Z
given X and θold and the likelihood of θ for the known X and the expected Z, we can write:

Q(θ, θold) = EZ|X,θold ln p(X,Z|θ)

We can now find the new values of theta that maximize the likelihood function:

θnew = arg max
θ

EZ|X,θold ln p(X,Z|θ)

Broadly speaking, this is what the k-means algorithm does1. The latent variables Z correspond
to the assignment of examples to clusters and the known variables X correspond to the coordinates
(features) of the examples in the data set. Given a set of prototype centroids, the θold, we can estimate
the best values for Z by assigning each data point to the closest centroid. With this, we can obtain a

1K-means is not exactly Expectation-Maximization because k-means assigns each point to each cluster instead of
estimating a probability of the point belonging to the cluster. However, we can see k-means as a limit case of EM.
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maximum likelihood estimate of the centroid positions, the θnew, by computing the mean point of each
cluster.

Another way of understanding the EM algorithm is as an alternating sequence of optimizations
with respect to different variables. This can be seen if we define the distortion measure:

J =
N∑
n=1

K∑
k=1

rnk‖xn − µk‖2

to evaluate the clusters, where rnk is 1 if xn belongs to µk, else 0. Thus, the rnk variables are the latent
variables assigning each point n to each cluster k. This distortion measure J , which is the sum of the
squared distances between points and their respective cluster centroids, is what we want to minimize
by optimizing the µk parameters, which are the coordinates of the centroids. However, we cannot do
this without the rnk values. Thus we first estimate the best rnk values by minimizing J with respect to
the rnk, which consists simply of assigning each data point to the closest centroid, which results in the
smallest distance added. Now we optimize the function J with respect to the µk centroids. Since J is a
quadratic function on µk, the minimum can be found where the derivative is zero, which corresponds
to the value of µk that is the mean point of the data points in cluster k.

As a limiting case of the more general Gaussian mixture models we will see in Chapter 20, the
complete-data likelihood (including both the observed X and latent Z) for k-means tends towards:

EZ (ln p(X,Z|µµµ))→ −
1

2

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 + C

Thus, in these conditions, EM corresponds to the alternating minimization of J we saw above. However,
we will postpone a more detailed explanation of the EM method to Chapter 20, after looking at the
Gaussian mixture models.

17.5 Application example for k-means
The k-means algorithm is often used for vector quantization, which is a procedure for reducing vectors
in a range of values to a smaller set of representative prototypes. In this example, we’ll use k-means to
quantize the colour space of an image2. Figure 17.8 shows the starting image and the results of colour
quantization with 64 and 8 centroids.

We start by loading the image and converting it into a set of two-dimensional vectors using the red
and green colour components, since this image has no blue components. This is easy to do by using
the imread function from the Scikit-image library:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.cluster import KMeans

4 from skimage.io import imsave,imread

5
6 rosa = imread("Rosa.png")

7 w,h,d = rosa.shape

8 cols = np.reshape(rosa/255.0, (w * h, d))

9 image_array = cols[:,:2]

2This example is based on the Scikit-learn demo on colour quantization, http://scikit-learn.org/stable/
auto_examples/cluster/plot_color_quantization.html, using an example of vector quantization in Wikipedia,
https://en.wikipedia.org/wiki/K-means_clustering

http://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
https://en.wikipedia.org/wiki/K-means_clustering
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Figure 17.8: The original image (left panel) compared with two different colour quantizations, reducing
the colour space to 6 bits (64 colours) and 3 bits (8 colours).

We can now plot all the pixels in the red-green colour space

1 plt.figure(figsize=(12,8))

2 plt.xlabel(’Red’)

3 plt.ylabel(’Green’)

4 plt.scatter(image_array[:, 0], image_array[:, 1], color=cols.tolist(), s=10)

5 plt.axis([0,1,0,1])

6 plt.savefig(’L17-rosa-plot.png’, dpi=200,bbox_inches=’tight’)

and use the k-means algorithm to find the best set of k prototypes to represent the colours. For example,
for 64 colours, we can use the KMeans class from the cluster module of the Scikit-learn library.
Computing the centroids and plotting over the plot of the set of points:

1 n_colors = 64

2 kmeans = KMeans(n_clusters=n_colors).fit(image_array)

3 labels = kmeans.predict(image_array)

4 centroids = kmeans.cluster_centers_

5 plt.scatter(centroids[:, 0], centroids[:, 1], marker=’x’, color=’k’,s=200, linewidths=5)

6 plt.scatter(centroids[:, 0], centroids[:, 1], marker=’x’, color=’w’,s=150, linewidths=2)

7 plt.savefig(’L17-rosa-plot-cs-’+str(n_colors)+’.png’, dpi=200,bbox_inches=’tight’)

The result is shown in Figure 17.9

Figure 17.9: Quantizing the colour-space into 64 or 8 colours.
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17.6 Further Reading

1. Alpaydin [2], Section 7.3

2. Marsland [17], Chapter 9

3. Bishop [4], Section 9.1
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