
Chapter 15

Introduction to Unsupervised Learning

Introduction to unsupervised learning. Data visualization and feature selection.

15.1 Unsupervised Learning
Unsupervised learning, simply put, is the process of adjusting some model to the structure of the data
without relying on an error measure evaluated with reference to known labels. This does not mean the
data cannot have known labels. It is quite possible, and often useful, to use unsupervised learning with
labelled data. But, unlike supervised learning, the goal of unsupervised learning is simply to describe
aspects of the data — how it is distributed, relations between features and so forth — instead of trying
to predict some value that is known for the training set and which can be used to supervise learning. In
other words, the goal of unsupervised learning is to transform the data into some representation that
makes it easier to understand it or use it for some other purpose, like supervised learning. Figure 15.1
illustrates this process.

Figure 15.1: Diagram representing unsupervised learning.

Although, strictly speaking, data visualization by itself may not include unsupervised learning, as it
may not involve learning at all, it is a good starting point to understand the purpose of unsupervised
learning. So we shall begin with the problem of visualizing data with more than two dimensions.

15.2 Visualizing Data
We shall consider, as an example, the Iris dataset, first introduced by Fisher in 1936 1. Figure 15.2
shows examples of the three classes of flowers. Each flower is described by four features, the length
and width of sepals and petals.

1The dataset can be downloaded from the MIST repository: https://archive.ics.uci.edu/ml/datasets/
Iris

131

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris


132 CHAPTER 15. INTRODUCTION TO UNSUPERVISED LEARNING

Figure 15.2: The Iris data set contains values for sepal and petal lengths and widths for flowers of three
Iris species. Images CC BY-SA. Authors Setosa: Szczecinkowaty; Versicolor: Gordon, Robertson;
Virginica: Mayfield.

The problem is how to visualize this four-dimensional data, since we can only understand three
dimensions and, for practical purposes, two-dimensional representations are preferable. For this
purpose, we will use the Python Data Analysis (Pandas) library, since it includes many convenient
features for image visualization 2.

We begin by reading the .csv data file using the read_csv function from the Pandas library and
then plot the histograms of the features in a single figure. This is the file format:

1 SepalLength,SepalWidth,PetalLength,PetalWidth,Name

2 5.1,3.5,1.4,0.2,Iris-setosa

3 4.9,3.0,1.4,0.2,Iris-setosa

4 ...

5 5.1,2.5,3.0,1.1,Iris-versicolor

6 5.7,2.8,4.1,1.3,Iris-versicolor

7 ...

8 6.2,3.4,5.4,2.3,Iris-virginica

9 5.9,3.0,5.1,1.8,Iris-virginica

This is the code for creating the histogram.

1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3
4 data = read_csv(’iris.data’)

5 data.plot(kind=’hist’, bins=15, alpha=0.5)

6 plt.savefig(’L15-stackedhist.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()

Alternatively, instead of using the plot method of the class returned by the read_csv function to
plot the histogram of all features in the same chart, we can plot the different histograms separately by
using the hist method instead:

5 ...

6 data.hist(color=’k’, alpha=0.5, bins=15)

7 ...

The resulting images can be seen in Figure 15.3
2More information available on http://pandas.pydata.org/pandas-docs/stable/visualization.html

http://pandas.pydata.org/pandas-docs/stable/visualization.html


15.2. VISUALIZING DATA 133

Figure 15.3: Examples of histograms for the Iris dataset. On the left, histograms of the four features in
the same chart. On the right, separated in four charts.

Another way of visualizing the distribution of each feature is using a box plot. In this type of plot,
the box represents the range between the first and third quantiles (25% and 75%), a line represents the
median value and the “whiskers” are placed away from the first and third quantile values at a distance
equal to the difference between these two quantile values multiplied by a constant parameter, often 1.5.
We can do this with the Pandas library by using the kind=’box’ argument on the plot method. The
result is shown in Figure 15.4.

5 ...

6 data.plot(kind=’box’)

7 ...

Figure 15.4: Box plot of the four features for the Iris dataset.

While histograms and box plots are useful to represent the distribution of each isolated feature, they
give us no idea about how features correlate. One alternative plot to visualize correlations between
pairs of features is the scatter matrix plot. This is a two-dimensional array of plots representing the
histogram or kernel density estimation plot of each feature in the diagonal and scatter plots of each
feature as a function of another in the remaining plots. Figure 15.5 illustrates these plots for the four



134 CHAPTER 15. INTRODUCTION TO UNSUPERVISED LEARNING

features in the Iris dataset. We can do this easily with the Pandas library sith the scatter_matrix
function:

1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3 from pandas.plotting import scatter_matrix

4 data = read_csv(’iris.data’)

5 scatter_matrix(data.ix[:,[0,1,2,3]], alpha=0.5,figsize=(15,10), diagonal=’kde’)

6 plt.savefig(’L15-scatter.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()

Figure 15.5: Scatter matrix plot examples, with histograms and Kernel Density Estimation in the
diagonals.

Another useful method for visualizing multidimensional data is the parallel coordinates plot, in
which features are represented as a set of parallel axes and each data point is represented as a set of line
segments intersecting the feature axes at the corresponding values for each feature. The code below
shows how we can do this to plot all the Iris data in single category by adding a new column, titled
’All’, in which all points have the value ’Iris’. Then we do the parallel_coordinates plot
using this new column as the category field.

1 from pandas import read_csv

2 from pandas.plotting import parallel_coordinates

3 import matplotlib.pyplot as plt

4 data = read_csv(’iris.data’)

5 all_data=data.ix[:,[0,1,2,3]]

6 all_data[’All’]=’Iris’

7 parallel_coordinates(all_data,’All’,color=’b’)

8 plt.savefig(’L15-parallel-all.png’, dpi=200,bbox_inches=’tight’)

9 plt.close()

Alternatively, we can plot the different categories in different colors by using the ’Name’ column
for the category and giving three color labels in the color argument of the parallel_coordinates
function. The result is shown in Figure 15.6.

1 ...

2 parallel_coordinates(data, ’Name’, color=(’r’,’g’,’b’))

3 ...



15.2. VISUALIZING DATA 135

Figure 15.6: Parallel coordinates plot. Each point is represented as a line crossing the feature axes at
the respective feature values. In the right panel, the lines are coloured by class.

A similar method is to use Andrew’s curves [3]. In this plotting method, each data point is converted
into a line resulting from the sum of trigonometric terms of different frequencies. Given a data point
~x = {x1, x2, x3, ...}, the resulting line is:

f~x(t) =
x1√
2
+ x2 sin(t) + x3 cos(t) + x4 sin(2t) + x5 cos(2t) + x6 sin(3t) + x7 cos(3t)...

The result is that different features contribute to different frequencies on the curve, and points with
similar features result in similar curves. With the Pandas library, these curves can be plotted using the
andrews_curves function:

1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3 from pandas.plotting import andrews_curves

4 data = read_csv(’iris.data’)

5 andrews_curves(data, ’Name’, color=(’r’,’g’,’b’))

6 plt.savefig(’L15-andrews.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()

The Radial Visualization (RADVIZ) method [13] represents each multidimensional data point as
a point in two dimensions, but places the points by spreading the feature axes radially and using the
value of each feature to “pull” the point in the corresponding direction. The position of the point
results from the outcome of all these “forces” pulling it in different directions. This way, points that
have a balanced distribution of values across the features tend to be in the middle of the plot, whereas
points that favour some feature over the others are pulled by that feature’s axis. This can be done with
the radviz function of the Pandas library. The Andrew’s curves and RADVIZ plots are shown in
Figure 15.7.

1 from pandas import read_csv

2 import matplotlib.pyplot as plt

3 from pandas.plotting import radviz

4 data = read_csv(’iris.data’)

5 radviz(data, ’Name’, color=(’r’,’g’,’b’))

6 plt.savefig(’L15-radviz.png’, dpi=200,bbox_inches=’tight’)

7 plt.close()



136 CHAPTER 15. INTRODUCTION TO UNSUPERVISED LEARNING

Figure 15.7: Andrews curves and RADVIZ plot. Data coloured by class.

15.3 Feature Selection
In general, not all features are equally useful for learning and it may be beneficial to reduce the
dimensionality of the training set, both for supervised and unsupervised learning. There may be several
reasons for this. There may be too many features for the available data, leading to overfitting; some
features may be too noisy or uninformative; some features may be costly to measure and so forth. One
way of reducing the number of features is to discard all but the best. This is feature selection and
can be done by examining and discarding features before the learning process, or according to the
performance of the hypotheses learned or even as an integral part of the learning process. Discarding
features before beginning to train the learner is called filtering, an can be either univariate filtering if
the features are discarded by examining each feature individually or multivariate filtering if features
are examined jointly with other features.

Univariate filtering is easier to understand when we are dealing with labelled data and want to
prepare the data for supervised learning. In this case, we can select features by comparing each feature
with the data labels. One criterion for selecting features in this case can be the statistical independence
of each feature and the class, since features that are statistically independent from the class are not
useful for predicting the class. Statistical independence can by assessed by the χ2 (chi-squared) test,
a generic test that gives us the probability of obtaining some sample when drawing at random from
some distribution. If On are the observed frequencies and En the expected frequencies, the chi-squared
value is:

χ2 =
N∑
i=1

(Oi − Ei)
2

Ei

If we have a feature with K categorical values and a classification problem with C classes, we can
compute the observed number of cases where the feature has a value k in points with class c, Okc, and
the expected number Ekc assuming the feature and class are independent, which is obtained from the
fraction of value k and class c. In this case, the chi-squared value (for (K − 1)(C − 1) degrees of
freedom) is:

χ2 =
K∑
k=1

C∑
c=1

(Okc − Ekc)
2

Ekc

Using the chi-squared test we can eliminate those features that, having a low χ2 value, are closer to
being statistically independent of the class.



15.3. FEATURE SELECTION 137

Another statistical test for labelled data is the Analysis of Variance (ANOVA) F-test, which compares
the variance between groups with the variance within the groups. Again, this proportion has a known
probability distribution under the assumption that the variables are independent, and thus can be used to
find the likelihood of that assumption. If the F-test value is low, and thus the likelihood of independence
is high, we can reject the feature as uninformative. The code below shows how to use the ANOVA
F-test with Scikit-Learn library, on the Iris dataset:

1 from sklearn.feature_selection import f_classif

2 from sklearn import datasets

3
4 iris = datasets.load_iris()

5 X = iris.data

6 y = iris.target

7 f,prob = f_classif(X,y)

8 print f

9 print prob

The F-test values and respective probabilities indicate which features deviate the most from being
independent of the class (those with the smallest probability values). Figure 15.8 shows the scatter plot
of the two best features from the Iris dataset, according to the F-test, which are the two features with
the lowest F-test probabilities.

Figure 15.8: Scatter plot of the two best features (petal length and petal width) according to the ANOVA
F-Test.

These methods rely on labelled data, and determine the relevance of each feature for predicting
the labels. A feature is relevant if it correlates to the labels, and irrelevant if it is independent of the
labels, in which case we discard it. But we can also filter features according to their correlation to
other features, because a feature is redundant if it correlates to another features. This requires filtering
features by comparing them to each other, which is called multivariate fitering. In this approach, if
several features are strongly correlated one to the others, we can discard all but one of the set, since the



138 CHAPTER 15. INTRODUCTION TO UNSUPERVISED LEARNING

information given by that one is nearly the same as that given by all other correlated features. Since
this can be applied both to labelled and unlabelled data sets, it can be more useful for unsupervised
learning.

Instead of filtering features prior to training, we can also use the performance of the trained
hypotheses to evaluate the adequacy of the set of features used. These are called wrapper methods
for feature selection, and consist of a scoring algorithm, typically the machine learning algorithm we
wish to use, and a search algorithm that runs the learning algorithm on subsets of all features to find
the best subset. For this we can use a deterministic wrapper that iterates through all possible subsets.
With sequential forward selection we start with the empty set and, at each iteration, loop through all
remaining features to find the best one to add to that set, according to the performance of our learning
algorithm. This is repeated until we reach the desired number of features or performance level. With
sequential backward elimination we do the search in the opposite direction, starting with all features
and removing, at each iteration, we eliminate one feature so that the performance of the classifier is
maximized.

Alternatively, we can also use a non-deterministic wrapper that searchs the subsets of features with
non-deterministic algorithms such as genetic algorithms or simulated annealing. The procedure is the
same, trying to maximize the performance with a limited number of features, but without the greedy
search of the deterministic wrapper methods.

Finally, some learning algorithms incorporate feature selection. This is called embedded feature
selection. Decision trees with a limited depth are an example of this kind of algorithm, since the
best features are used earlier in the tree and, by limiting the tree depth, less useful features end up
being ignored. Naïve Bayes with weighted features is another example. For example, features may
be weighted according to how much the conditional distribution of the feature values given a class
differs from the prior probability of the class, which indicates more relevant features [14]. Embedded
feature selection can also be done through regularization. For example, using L1 regularization, which
penalizes the sum of the absolute values of the parameters. This forces some parameters to be 0,
effectively ignoring the corresponding features. Logistic Regression in Scikit-Learn can be done with
L1 regularization.

15.4 Further Reading

1. Pandas library visualization tutorial: http://pandas.pydata.org/pandas-docs/stable/
visualization.html

2. Scikit-Learn feature selection tutorial: http://scikit-learn.org/stable/modules/feature_
selection.html

3. Alpaydin [2], Sections 6.2. and 6.9

4. A review of feature selection techniques in bioinformatics [19]

http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://pandas.pydata.org/pandas-docs/stable/visualization.html
http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html




Bibliography

[1] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra, Daniel Mack, and
Arnold J Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, 96(12):6745–6750, 1999.

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

[3] David F Andrews. Plots of high-dimensional data. Biometrics, pages 125–136, 1972.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, New York, 1st ed. edition, oct 2006.

[5] Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma, and Ji-Rong Wen. Hierarchical clustering of
www image search results using visual. Association for Computing Machinery, Inc., October
2004.

[6] Guanghua Chi, Yu Liu, and Haishandbscan Wu. Ghost cities analysis based on positioning data
in china. arXiv preprint arXiv:1510.08505, 2015.

[7] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Hand-
written digit recognition with a back-propagation network. In Advances in Neural Information
Processing Systems, pages 396–404. Morgan Kaufmann, 1990.

[8] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning. Stanford CA Morgan Kaufmann, pages 231–238, 2000.

[9] Hakan Erdogan, Ruhi Sarikaya, Stanley F Chen, Yuqing Gao, and Michael Picheny. Using
semantic analysis to improve speech recognition performance. Computer Speech & Language,
19(3):321–343, 2005.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[11] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

181



182 BIBLIOGRAPHY

[12] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[13] Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley. Dna visual
and analytic data mining. In Visualization’97., Proceedings, pages 437–441. IEEE, 1997.

[14] Chang-Hwan Lee, Fernando Gutierrez, and Dejing Dou. Calculating feature weights in naive
bayes with kullback-leibler measure. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1146–1151. IEEE, 2011.

[15] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[16] James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA., 1967.

[17] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC, 1st
edition, 2009.

[18] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

[19] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[20] Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen. Machine learning techniques for face
analysis. In Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques for
Multimedia, Cognitive Technologies, pages 159–187. Springer Berlin Heidelberg, 2008.

[21] Giorgio Valentini and Thomas G Dietterich. Bias-variance analysis of support vector machines for
the development of svm-based ensemble methods. The Journal of Machine Learning Research,
5:725–775, 2004.

[22] Jake VanderPlas. Frequentism and bayesianism: a python-driven primer. arXiv preprint
arXiv:1411.5018, 2014.


	Decision
	Bayesian Decision theory
	Computing Priors
	Decision and Costs
	Further Reading

	Bibliography

