
Chapter 14

Decision

Bayesian Decision theory. Maximum a posteriori estimation. Decisions and costs.

14.1 Bayesian Decision theory
So far, we saw several examples of maximizing likelihood as a way to find the best parameters to
fit some set of labelled data. The maximum likelihood (ML) approach consists of maximizing the
predicted joint probability of all features and labels, p(x, y), by adjusting θ, which is the vector of
parameters. Since the joint probability p(x, y) can be decomposed into the conditional probability of y
given x multiplied by the marginal probabilityp(x), and since p(x) is independent of the parameters of
our model, θ, we can simplify the maximization problem:

θ̂ML = arg max
θ

n∏
t=1

p(xt, yt; θ)

= arg max
θ

n∏
t=1

p(yt|xt; θ)×
n∏
t=1

p(xt)

= arg max
θ

n∏
t=1

p(yt|xt; θ)

(14.1)

In other words, we choose the parameters that maximize the probability of the observed labels
given the observed features. These are the maximum likelihood parameters. Note that, in this case, the
probabilities are a function of the parameters but the parameters, θ, are not considered to be random
variables. This is because, under a frequentist interpretation, probability is the measure of the frequency
of a random event in the limit of infinite trials and the parameters values are not random events. Thus,
in a frequentist interpretation, it does not make sense to consider the probability of the parameters
having those values or the probability distribution of the parameters.

However, under a Bayesian interpretation, probability is a measure of rational confidence about
some value or outcome and a probability distribution describes our uncertainty about the values. Under
this interpretation, θ can be considered to be just another random variable, like the features x or the
labels y. Thus, under a Bayesian approach, we may want to find the most probable values of θ given
the evidence obtained from the training sample S and prior assumptions regarding the probability
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distribution of θ. Using Bayes’ rule:

p(θ|S) = p(S|θ)p(θ)
p(S)

⇔ p(θ|S) =

n∏
t=1

p(yt|xt, θ)p(θ)

p(S)

The marginal probability of the sample, the training set, p(S), cannot generally be computed, but
we can see it as simply a normalization value that guarantees that the probability distribution p(θ|S)
integrates to 1. So, again, we can ignore this probability and find the θ that maximizes the numerator in
the expression above. Thus, the maximum a posteriori(MAP) estimate for θ is:

θ̂MAP = arg max
θ

n∏
t=1

p(yt|xt, θ)p(θ) (14.2)

In practice, the difference between equation 14.1 and equation 14.2 is that the MAP estimate
includes the prior probability distribution of the parameters θ. The ML approach is equivalent to MAP
when the prior probability distribution of the parameters is uniform but, if we assume a non-uniform
prior distribution of θ, the results are different. This not only permits the inclusion of prior assumptions
regarding reasonable values of θ but also functions as a regularization term with an explicit probabilistic
justification. For example, if we assume, as a prior probability distribution for θ, that all parameter
values are normally distributed with a mean of 0 and a standard deviation of 1, the MAP estimate will
tend to keep the θ values close to 0 and prevent them from increasing too much, as can happen with
a pure maximum likelihood estimate which does not consider θ to be a random variable or have a
probability distribution.

14.2 Computing Priors
The ML approach makes no assumption about the prior probability distribution of the parameters
because it does not even consider the parameters to be random variables. An uninformative prior is
a Bayesian assumption about the prior distribution of the parameters that leads to approximately the
same result as the ML approach, having no significant impact on the posterior probability. In some
cases, assuming a uniform prior distribution for the model parameters θ can be an uninformative prior.
However, sometimes this is not the case. For example, in a linear regression, the slope of the line varies
from zero for a horizontal line to minus or plus infinity for a vertical line. If we assume a uniform
distribution for the slope we will strongly bias our prior distribution towards nearly vertical lines,
since this is where the vast majority of the values will be. Thus, in many cases, assuming a uniform
distribution of the parameters is not adequate. Furthermore, there are cases where we may want to use
an informative prior because we do have some information about the prior probability distribution of
our parameters.

This often results in prior probability distributions for which we do not have analytical solutions
for means and standard deviations. Thus, in MAP parameter estimation, it is often necessary to use
numerical techniques to sample these prior probability distributions and obtain the necessary statistics.
This is done by Monte Carlo techniques, most commonly by Markov Chain Monte Carlo (MCMC),
which computes random walks over parameter values based on the probability distribution function in
order to generate the appropriate samples. VanderPlas [22] illustrates this problem and shows some
solutions using Python MCMC libraries.
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In practice, even when using maximum likelihood methods in machine learning, we resort to
regularization, which can be seen as a way to encourage our parameters to fall within reasonable
intervals even though we do not make explicit assumptions about their prior probability distributions
nor consider them to be random variables. Bayesian learning provides a more rigorous alternative, but
often at significant computational cost due to the need to rely on numerical sampling methods.

14.3 Decision and Costs
Aside from the question of prior assumptions, which we can deal with explicitly in a Bayesian approach,
another problem that may occur when fitting parameters to create a classifier is the cost of different
mistakes.

Let us consider, as a simple example, a binary classification problem in one dimension. For each
class C1 and C2, there is a different distribution of the feature value x, with different joint probabilities
P (x,C1) and P (x,C2). If we want to create a classifier that classifies an example as C2 if x > x̂ or
C1, then we need to find the best value for the threshold x̂. The probability and type of each error will
depend on the value of x̂, as illustrated in Figure 14.1. One possibility would be to minimize the total
probability of committing an error, as shown on the right panel of Figure 14.1.

Figure 14.1: For a given value of x̂, the threshold dividing the two classes determines the probability
of each type of error. Red and green show the probability of classifying as class 1 a point of class 2
and blue the probability of classifying as class 2 a point in class 1.

However, this may not be the best option in general. Suppose class 1 corresponds to subjects with
cancer and class 2 to healthy subjects. In this case, the error of misdiagnosing a healthy subject and
concluding the subject has cancer is not as serious as the error of misdiagnosing a cancer patient and
concluding them healthy. Let us consider the loss matrix shown in Table 14.1. This indicates that the
cost of misdiagnosing a cancer patient is five times greater than the cost of misdiagnosing a healthy
subject.

Table 14.1: Loss matrix for cancer diagnosis.

Predict Cancer Predict Healthy
Has Cancer 0 5
Is Healthy 1 0

Instead of trying to minimize the probability of error, we canminimize the expected loss by assigning
each example to the class j that minimizes the loss function, which sum, for all classes k, of the joint
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probability of the class multiplied by the cost of classifying the example as class j when the true class
is k:

arg min
j

∑
k

Lk,jp(Ck|x)

In this case, the frontier dividing the two classes may not correspond to the point of lowest error
probability but, rather, to the point where the error cost is minimum, as illustrated in Figure 14.2.

Figure 14.2: When taking into account the different costs (loss) of different errors, according to the loss
matrix in Table 14.1, the frontier between the two classes gets shifter by the cost values. In this simple
example, this can be understood as finding the minimum point of the probability curves multiplied by
the misclassification costs (right panel).

Another problem with classification and learning is how to deal with the different levels of certainty
in deciding which class or value to predict. In some cases, the predicted probability of an example
belonging to one class may be only marginally larger than the probability of belonging to another class,
which makes the prediction much less reliable than it would be if one probability was large and the
remaining small. Figure 14.3 illustrates this problem. For low values of x, the class represented by the
blue line has a much larger probability than the class represented by the black line, with the converse
for high values of x. But in the mid range, the probabilities of both classes approach and a decision
there is less reliable. One way to avoid this problem is to abstain from offering a classification when
the probabilities for all classes, k, are below some threshold:

p(Ck|x) ≤ φ ∀k

. In the figure, this would be the 0.7 threshold. For these cases, no classification is given. This is called
the reject option.

14.4 Further Reading

1. Alpaydin [2], Chapter 3 up to sections 3.5

2. Bishop [4], Section 1.5

3. VanderPlas, Jake, Frequentism and bayesianism: a python-driven primer, [22]
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Figure 14.3: The probability of an example being in each class (blue and black) as a function of the
feature value x. The region marked in red is the reject region, in which the classifier will not propose
any classification because the probability for all classes is below the predefined threshold (0.7 in this
case).
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