


Chapter 8

Multi-layer Perceptron

Perceptron. Multi-layer Perceptron. Backpropagation. Regularization in MLP.

8.1 Perceptron
Figure 8.1 shows a neuron cell. Neurons have a set of dendritic branches which can be stimulated by
other cells. If the stimulus passes a threshold, then the neuron fires an impulse over the axon, consisting
of a wave of membrane depolarization. This in turn leads to the release of neurotransmitters in the
synaptic terminals. The neuron provides the inspiration for the perceptron. Originally, the perceptron
model consisted of a linear combination of the inputs, plus a bias value, and a non-linear threshold
response function:

y =
d∑
j=1

wjxj + w0 s(y) =

{
1, y > 0

0, y ≤ 0

Figure 8.1: Neuron anatomy (BruceBlaus, CC-BY, source Wikipedia).

73



74 CHAPTER 8. MULTI-LAYER PERCEPTRON

Note that, as we did in the case of logistic regression, we can include this bias value in the product of
the inputs and the coefficients by adding a bias value of 1 to the input vector. The perceptron represents
a hyperplane that separates the inputs into two classes, 0 and 1. To train a perceptron, we present
labelled examples and adjust the weights according to the following rule:

wi = wi + ∆wi ∆wi = η(t− o)xi

where t is the target label of the example, o the output of the perceptron for that example, xi the input
value for feature i and wi the coefficient i of the perceptron. Since the output of the perceptron is
either 0 or 1, as is the target class of each example, the training rule consists essentially of adjusting
the weights of the perceptron for every example that is incorrectly classified. The problem with this
original formulation of the perceptron is that the response function is discontinuous. This may be
nearer to the biological features of the neuron but raises problems with the minimization of the error
functions. An alternative is to use a differentiable threshold function. One often used function is the
logistic function, also called the sigmoid function:

s(y) =
1

1 + e−y
=

1

1 + e−~wT ~x

There are other functions that can be used in this role, such as the hyperbolic tangent, for example.
However, here we will only focus on the familiar logistic function. Although this is strictly not the same
as the perceptron, in the original formulation, it is also common to call this variant a perceptron too.

8.2 A Single Neuron
Training a logistic response neuron can be done by minimizing the squared error between the response
of the perceptron and the target class. This is the idea behind the Brier score we saw in Chapter 5. So
we minimize the error function:

E =
1

2

N∑
j=1

(tj − sj)2

But we can do this in a way similar to the one used for the perceptron, by adjusting the weights of the
neuron in small steps as a function of the error at each example j, Et = 1

2
(tj − sj)2, where tj is the

class of example j and sj is the neuron’s response for example j. To do this, we need to compute the
derivative of the error as a function of the weights of the neuron in order to compute how to update the
neuron weights. Since the error is a function of the activation of the neuron for example j (sj), the
activation is a function of the weighted sum of the inputs (netj) and this is, in turn, a function of the
weights, we use the chain rule for the derivative of compositions of functions to obtain the gradient as
a function of each weight:

−δE
j

δw
= −δE

j

δsj
δsj

δnetj
δnetj

δw

where

st =
1

1 + e−netj
netj = w0 +

M∑
i=1

wixi



8.2. A SINGLE NEURON 75

Since
δnetj

δw
= x

δsj

δnetj
= sj(1 − sj)

δEj

δsj
= −(tj − sj)

We obtain the following update rule for the weight i of the neuron given example j:

∆wji = −ηδE
j

δwi
= η(tj − sj)sj(1 − sj)xji

Using this update function we descend the error surface in small steps in different directions according
to each example presented to the net. With examples presented in random order, this is a stochastic
gradient descent. Figure 8.2 illustrates this process of stochastically descending the error surface. The
process of updating the weights at each example is called online learning. An alternative training
schedule consists of summing the ∆wji updates for the whole training set (an epoch) and then updating
the weights with the total. This is called batch learning. These are examples of stochastic gradient
descent because they are ways of descending along the gradient of the error function along random
paths depending on the data.

Figure 8.2: Stochastic gradient descent with online training (left panel) and batch training (right panel).

With a single neuron it is possible to learn to classify any linearly separable set of classes. One
classical example is the OR function, as shown in Table ??.



76 CHAPTER 8. MULTI-LAYER PERCEPTRON

Table 8.1: The OR function

x1 x2 OR
0 0 0
0 1 1
1 0 1
1 1 1

Figure 8.3: Set of points from the OR function.

Figurer̃ef8-neuro-or shows the training error for one neuron being presented the four examples of
the OR function and the final classifier, separating the two classes. The frontier corresponds to the line
where the response of the neuron is 0.5.

Figure 8.4: Training error and final classifier for one neuron trained to separate the classes in the OR
function.

However, if the sets are not linearly separable, a single neuron cannot be trained to classify them
correctly. This is because the neuron defines a hyperplane separating the two classes. For example, the
exclusive or (XOR) function results in two classes that are not linearly separable, as Table 8.2 illustrates.
So, if we try to train a neuron to separate these classes there is no reduction in the training error nor
does the final classifier manage to separate the classes, as shown in Figure 8.6.



8.3. MULTILAYER PERCEPTRON 77

Table 8.2: The XOR function

x1 x2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

Figure 8.5: Set of points from the OR function.

Figure 8.6: Training error and final classifier for one neuron trained to separate the classes in the OR
function.

The solution for this problem is to add more neurons in sequence.

8.3 Multilayer Perceptron
The multilayer perceptron is a fully connected, feedforward neural network. This means that each
neuron of one layer receives as input the output of all neurons of the layer immediately before. Figure 8.7
shows two examples of multilayer perceptrons (MLP).

To update the coefficients of the output neurons, we derive the same update rule as for the single
neuron with the only difference that the input value is not the value of an example feature but rather the
value of the output of the neuron from the previous layer. Thus, the update rule for weightm of neuron
n in layer k is:



78 CHAPTER 8. MULTI-LAYER PERCEPTRON

Figure 8.7: Two examples of multilayer perceptrons. Both have a hidden layer. The left panel shows a
MLP with one output neuron, the right panel an MLP with two output neurons.

∆wjm,k,n = −η δE
j
k,n

δsjk,n

δsjk,n

δnetjk,n

δnetjk,n
δwm,k,n

= η(tj − sjk,n)sjk,n(1 − sjk,n)sji,n = ηδk,ns
j
k−1,n

Where sjk−1,n is the output from neuron n of layer k − 1.
For neurons in hidden layers, we need to backpropagate the error through the layers in front:

∆wjm,i,n = −η
(∑

p

δEj
k,p

δsjk,p

δsjk,p

δnetjk,p

δnetjk,p

δsji,n

)
δsji,n

δnetji,n

δnetji,n
δwm,i,n

= η(
∑
p

δkpwm,k,p)s
j
in(1 − sji,n)xji = ηδi,nx

j
i

The intuition for this is that the neuron in the hidden layer will contribute its output to several
neurons in the layer ahead. Thus, we need to sum the errors from the neurons of the front layer,
propagated through the respective coefficients of those front neurons.

This is the backpropagation algorithm:

• Present the example to the MLP and activate all neurons, propagating the activation forward
through the network.

• Compute the δn,k for each neuron n of layer k, starting from the output layer and then backpropa-
gating the error through to the first layer.

• With the δn,k values .

With this algorithm and the MLP architecture shown on the left panel of Figure 8.7, we can train
the network to classify the XOR function output. During training the two neurons on the hidden layer
learn to transform the training set so that their outputs result in a linearly separable set that the neuron
on the output layer can then separate.



8.4. TRAINING THE MULTILAYER PERCEPTRON 79

Figure 8.8: Training the MLP with one hidden layer for classifying the XOR function output. The first
panel shows the training error over 10 training runs. Note that, due to the stochastic initialization and
ordering of the examples presented, there are differences between different runs. The second panel
shows the resulting classifier, successfully separating the classes. The third panel shows the output of
the two neurons in the hidden layer of the network. This layer transforms the features of the training set
making it linearly separable.

This ability to recode the features can be used explicitly in autoassociator networks. These networks
are trained so that the output equals the input, while a hidden layer with a smaller number of neurons
re-encodes the data. Figure 8.9 shows an example, from Mitchell [18], showing a MLP with 8 inputs, 8
output neurons and 3 neurons on the hidden layer. By forcing the output neuron activated to correspond
to the input neuron set to 1, the hidden layer learns to recode the 8 possible values in combinations of
three 0,1 values.

Figure 8.9: Autoassociator example. The network, shown on the left, was trained with the 8 different
values consisting of one input set to 1 and the remainder set to 0, and forced to generate the same output.
The hidden neurons recode the input into different combinations of neuron activations.

8.4 Training the Multilayer Perceptron
To train the MLP it is important to start with small, random weights, close to 0. This is because the
sigmoidal activation functions saturate away from zero. It is also important to run the training process
several times, since the training is not always exactly the same. Normalizing or standardizing the inputs



80 CHAPTER 8. MULTI-LAYER PERCEPTRON

is also important, since input features at different scales will force the network to adjust weights at
different rates.

To train the network, we present all training examples in a random order. One pass through all
the training examples is one epoch. Then we repeat this process until the error converges or we detect
overfitting. We can detect overfitting using cross-validation. This is also a form of regularization in
training neural networks, as it allows us to stop training before the training error converges to a fixed
value and thus avoid overfitting. Figure 8.10 illustrates this method.

Figure 8.10: Validation (blue) and training error for five-fold cross-validation. Although training error
keeps decreasing, it is best to stop training at epoch 40 to prevent overfitting.

Another form of regularization is to decay the coefficient weights by a small amount at each iteration,
changing the update function to :

∆wj = −η δE
δwj

− λwj

8.5 Further Reading

1. Alpaydin [2], Chapter 11

2. Mitchell [18], Chapter 4

3. Marsland [17], Chapter 3

4. (Bishop [4], Chapter 5)





Bibliography

[1] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra, Daniel Mack, and
Arnold J Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, 96(12):6745–6750, 1999.

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

[3] David F Andrews. Plots of high-dimensional data. Biometrics, pages 125–136, 1972.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, New York, 1st ed. edition, oct 2006.

[5] Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma, and Ji-Rong Wen. Hierarchical clustering of
www image search results using visual. Association for Computing Machinery, Inc., October
2004.

[6] Guanghua Chi, Yu Liu, and Haishandbscan Wu. Ghost cities analysis based on positioning data
in china. arXiv preprint arXiv:1510.08505, 2015.

[7] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Hand-
written digit recognition with a back-propagation network. In Advances in Neural Information
Processing Systems, pages 396–404. Morgan Kaufmann, 1990.

[8] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning. Stanford CA Morgan Kaufmann, pages 231–238, 2000.

[9] Hakan Erdogan, Ruhi Sarikaya, Stanley F Chen, Yuqing Gao, and Michael Picheny. Using
semantic analysis to improve speech recognition performance. Computer Speech & Language,
19(3):321–343, 2005.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[11] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

181



182 BIBLIOGRAPHY

[12] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[13] Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley. Dna visual
and analytic data mining. In Visualization’97., Proceedings, pages 437–441. IEEE, 1997.

[14] Chang-Hwan Lee, Fernando Gutierrez, and Dejing Dou. Calculating feature weights in naive
bayes with kullback-leibler measure. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1146–1151. IEEE, 2011.

[15] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[16] James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA., 1967.

[17] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC, 1st
edition, 2009.

[18] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

[19] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[20] Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen. Machine learning techniques for face
analysis. In Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques for
Multimedia, Cognitive Technologies, pages 159–187. Springer Berlin Heidelberg, 2008.

[21] Giorgio Valentini and Thomas G Dietterich. Bias-variance analysis of support vector machines for
the development of svm-based ensemble methods. The Journal of Machine Learning Research,
5:725–775, 2004.

[22] Jake VanderPlas. Frequentism and bayesianism: a python-driven primer. arXiv preprint
arXiv:1411.5018, 2014.


	Naïve Bayes
	Bayes rule
	Bayes Classifier
	Naïve Bayes Classifier
	Naïve Bayes, example 1: continuous features
	Naïve Bayes, example 2: categorical featues
	Discriminative and Generative classifiers
	Comparing classifiers
	Further Reading

	Bibliography

