
Chapter 6

Lazy Learning

Lazy vs Eager learning. K-Nearest Neighbours classification and regression. Kernel
Density Estimation. Kernel Regression.

6.1 Lazy and Eager Learning
So far, we have approached all machine learning problems with the intent of finding a function that can
predict the class or value of new points. This is called Eager Learning, a process in which the training
data is used to fit some model and form a hypothesis that generalizes how the input features relate to
the value to predict. In Lazy Learning, this step is delayed until the moment the system is queried. In
this chapter we will see some examples of this approach.

6.2 Classification with K-Nearest Neighbours
A k-nearest neighbours classifier is an example of a lazy learningmethod. More specifically, an instance
learningmethod, because the algorithm involves comparing new instances with instances in the training
set. Keeping the labelled training set, the k-NN classifier will label a new point with the label of
the majority of the k points in the training set that are closer to the new point. Figure 6.1 shows the
tesselations of a 1-NN, 3-NN and 5-NN classifiers. For a 1-NN classifier, the new points are labelled
with the label of the closest point in the training set, resulting in a Voronoy tesselation. For classifiers
with more neighbours, the labels are determined by the majority label of the k nearest neighbours and
the tesselation becomes more complex.

In all cases, the decision surface is piecewise linear, composed of the hyperplanes across which the
nearest neighbours change. As the number of neighbours used increases, the classifier becomes less
determined by local conditions. Figure 6.2 shows the decision frontiers for 1-NN, 13-NN and 25-NN
classifiers.

To implement a k-NN classifier, we need to start by defining a distance function. For continuous
numerical features we can use the Minkowski distance, or p-norm, which is given by

Dx,x′ = p

√∑
d

|xd − x′d|p

53

54 CHAPTER 6. LAZY LEARNING

Figure 6.1: Tesselations for 1-NN, 3-NN and 5-NN classifiers.

Figure 6.2: Comparison of 1-NN, 13-NN and 25-NN classifiers on the same data set.

Depending on the value of p, this corresponds to the Manhattan distance (p = 1) or Euclidean distance
(p = 2). Other values of p result in different distance measures. For example, for p values between 0
and 1, similarities in one feature become more important. Figure 6.3 shows the effect of different p
values.

Figure 6.3: Comparison of three distance measures, p = 2, p = 1 and p = 0.7.

For categorical features, a good distance function is the Hamming distance:

Dx,x′ =
∑
d

{
1, xd 6= x′d

0, xd = x′d

6.3. EXAMPLE OF K-NN CLASSIFICATION 55

Since we are dealing with continuous numerical features, we can start by defining the Minkowski
distance, or p-norm, with a default p value of 2, so that it defaults to the euclidean distance.

1 import numpy as np

2
3 def mink_dist(x, X, p = 2):

4 """return p-norm values of point x distance to vector X"""

5 sq_diff = np.power(np.abs(X - x),p)

6 dists = np.power(np.sum(sq_diff,1),1.0/p)

7 return dists

Now we create a function to list the nearest k neighbours in the training set given some example,
and then the mode (the most common value) of the label in these nearest k neighbours. This is all we
need to classify new data points given the training set X and respective labels Y.

1 from scipy.stats import mode

2
3 def k_nearest_ixs(x, X,k):

4 """return indexes of k nearest neighbours

5 """

6 ixs = np.argsort(mink_dist(x,X))

7 return ixs[:k]

8
9 def knn_classify(x,X,Y,k):

10 """return class of x"""

11 ix = k_nearest_ixs(x,X,k)

12 return mode(Y[ix,0], axis=None)[0][0]

Depending on the data and features we have to deal with, it may be desirable to standardize or
normalize the inputs. However, this will influence the distance measured between two points and has to
be considered with some care. We should do this preprocessing only if we do not wish for features with
a greater range of values to weigh more heavily on the distance function. This may often be the case
but there can be exceptions. Suppose, for example, that we are dealing with geographical coordinates
and want to predict some property of a point by looking up the properties of the neighbours. In that
case we should not standardize our data because that would distort the distances by shrinking our data
distribution in the direction it spreads the most.

6.3 Example of k-NN Classification
We can use cross-validation to determine the best k value. We load the data set, set aside a third of
the points for testing, and then plot the training and validation error with 10-fold cross-validation.
Figure 6.4 shows this process. The first panel shows the data set, the second panel the plot of the errors
as a function of the k value and the third panel the best model obtained by cross-validation, with k = 9.
Note that we also plotted the test error. However, we cannot use the test error to choose the model,
otherwise the test error would no longer be an unbiased estimator of the true error.

56 CHAPTER 6. LAZY LEARNING

Figure 6.4: Finding the best k value for the k-NN classifier. The first panel shows the data, the second
the training, validation and test error plot, and the last panel shows the result, with k = 9.

6.4 Curse of Dimensionality
The curse of dimensionality is a generic term for a set of problems that arise from dealing with data
with many dimensions. In the case of distance-based methods, the problem of high dimensionality
is that, with many dimensions, most points are at the frontier of any region. Figure 6.5 shows the
proportion of an N-dimensional sphere occupied by another sphere whose diameter is 95

Figure 6.5: Fraction of region occupied by a frontier that is 5% of the diameter as a function of
dimension.

6.5 Instance Based Regression
The k-NN approach can also be used for regression, making the predicted value equal to the average of
the values of the k nearest neighbours. Figure 6.6 shows a regression curve using different values of k.

However, a better way to perform instance based regression is to use a continuous function that
reduces the weight of points farther from the point of interest, and then estimate the desired value
using a weighted average of these values. This is called kernel regression. The function that weighs

6.5. INSTANCE BASED REGRESSION 57

Figure 6.6: K-Nearest Neighbours regression with different values of k.

different points in the training set according to distance is a kernel function. A kernel functionK(u) is
a function that satisfies these three conditions:

K(u) ≥ 0 ∀u (6.1)∫ ∞
−∞

K(u)du = 1 (6.2)

K(−u) = K(u) ∀u (6.3)

An example of an often used kernel function is the gaussian kernel1.

K(u) =
1√
2π
e−

u2

2

Then we also need an estimator that predicts the value at x from some function of the y values in the
data set weighted by the kernel function. For example, the Nadaraya-Watson estimator:

ŷ(x) =

N∑
t=1

K
(

x−xt

h

)
yt

N∑
t=1

K
(
x−xt

h

)
or the Priestley-Chao estimator

ŷ(x) =
1

h

N∑
t=2

(xt − xt−1)K
(
x− xt

h

)
yt

For example, we can implement the gaussian kernel and the Nadaraya-Watson estimator:

1 def gaussiank(u):

2 k=np.e**(-0.5*u**2)/np.sqrt(2*np.pi)

3 return k

4
5 def nad_wat(K, h, X, Y, x):

6 num = 0

7 den = 0

8 for ix in range(len(X)):

1A list of common kernel functions can be found on Wikipedia: https://en.wikipedia.org/wiki/Kernel_
(statistics)

https://en.wikipedia.org/wiki/Kernel_(statistics)
https://en.wikipedia.org/wiki/Kernel_(statistics)

58 CHAPTER 6. LAZY LEARNING

9 yf = Y[ix]

10 u = (x-X[ix])/h

11 k = K(u)

12 den = den + k

13 num = num + yf * k

14 return num/den

And then use them to compute the regression curve from the data, as shown in Figure 6.7.

Figure 6.7: Kernel regression with a gaussian kernel and a Nadaraya-Watson estimator. The three
lines show the effect of three different values of the parameter h.

6.6 Kernel Density Estimation
Kernel functions can also be used to smooth density estimates. Given a distribution of points, for
example sampled from a normal distribution as shown in the left panel of Figure 6.8, we can depict the
varying density of the points using histograms. However, histograms are discontinuous and the result
is very dependent on bin size. An alternative is to apply a kernel function to each point and then sum
them all. This, shown on the right panel, and leads to a much smoother estimate.

Figure 6.8: Kernel density estimation.

6.7. SUMMARY 59

6.7 Summary
In this chapter we saw lazy learning, in which inference from the data is delayed until the moment the
system is queried, in contrast with eager learning, which we covered before, and which involves first
training a model of the data. K-nearest neighbours is a lazy learning technique for predicting values of
new points based on the neighbouring points of the training data, for some distance function. Finally,
we covered kernel regression and density estimation.

6.8 Further Reading

1. Alpaydin [2], Sections 8.1 through 8.4

2. Mitchell [18], Sections 8.1 and 8.2

3. Marsland [17], Section 8.4.

Bibliography

[1] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra, Daniel Mack, and
Arnold J Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, 96(12):6745–6750, 1999.

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

[3] David F Andrews. Plots of high-dimensional data. Biometrics, pages 125–136, 1972.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, New York, 1st ed. edition, oct 2006.

[5] Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma, and Ji-Rong Wen. Hierarchical clustering of
www image search results using visual. Association for Computing Machinery, Inc., October
2004.

[6] Guanghua Chi, Yu Liu, and Haishandbscan Wu. Ghost cities analysis based on positioning data
in china. arXiv preprint arXiv:1510.08505, 2015.

[7] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Hand-
written digit recognition with a back-propagation network. In Advances in Neural Information
Processing Systems, pages 396–404. Morgan Kaufmann, 1990.

[8] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning. Stanford CA Morgan Kaufmann, pages 231–238, 2000.

[9] Hakan Erdogan, Ruhi Sarikaya, Stanley F Chen, Yuqing Gao, and Michael Picheny. Using
semantic analysis to improve speech recognition performance. Computer Speech & Language,
19(3):321–343, 2005.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[11] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

181

182 BIBLIOGRAPHY

[12] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[13] Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley. Dna visual
and analytic data mining. In Visualization’97., Proceedings, pages 437–441. IEEE, 1997.

[14] Chang-Hwan Lee, Fernando Gutierrez, and Dejing Dou. Calculating feature weights in naive
bayes with kullback-leibler measure. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1146–1151. IEEE, 2011.

[15] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[16] James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA., 1967.

[17] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC, 1st
edition, 2009.

[18] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

[19] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[20] Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen. Machine learning techniques for face
analysis. In Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques for
Multimedia, Cognitive Technologies, pages 159–187. Springer Berlin Heidelberg, 2008.

[21] Giorgio Valentini and Thomas G Dietterich. Bias-variance analysis of support vector machines for
the development of svm-based ensemble methods. The Journal of Machine Learning Research,
5:725–775, 2004.

[22] Jake VanderPlas. Frequentism and bayesianism: a python-driven primer. arXiv preprint
arXiv:1411.5018, 2014.

	Overfitting Logistic Regression
	Scoring binary classifiers
	Cross-Validation and Model Selection
	Cross-Validation and Regularization
	Summary
	Further Reading

	Bibliography

