
Chapman & Hall/CRC 
Machine Learning & Pattern Recognition Series

Chapman & Hall/CRC 
Machine Learning & Pattern Recognition Series

M
ac

h
in

e Learn
in

g

MACHINE 
LEARNING
An Algorithmic Perspective
S e c o n d  E d i t i o n

M
a

r
sla

n
d

Stephen Marsland

•  Access online or download to your smartphone, tablet or PC/Mac
•  Search the full text of this and other titles you own
•  Make and share notes and highlights
•  Copy and paste text and figures for use in your own documents
•  Customize your view by changing font size and layout

WITH VITALSOURCE®

EBOOK

sec
o

n
d

 ed
it

io
n

Machine Learning: An Algorithmic Perspective, Second Edition helps you understand 
the algorithms of machine learning. It puts you on a path toward mastering the relevant 
mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition
•  Two new chapters on deep belief networks and Gaussian processes 
•  Reorganization of the chapters to make a more natural flow of content
•  Revision of the support vector machine material, including a simple implementation for 

experiments
•  New material on random forests, the perceptron convergence theorem, accuracy 

methods, and conjugate gradient optimization for the multi-layer perceptron
•  Additional discussions of the Kalman and particle filters
•  Improved code, including better use of naming conventions in Python

The text strongly encourages you to practice with the code. Each chapter includes detailed 
examples along with further reading and problems. All of the Python code used to create the 
examples is available on the author’s website. 

Features
•  Reflects recent developments in machine learning, including the rise of deep belief 

networks
•  Presents the necessary preliminaries, including basic probability and statistics
•  Discusses supervised learning using neural networks
•  Covers dimensionality reduction, the EM algorithm, nearest neighbor methods, optimal 

decision boundaries, kernel methods, and optimization
•  Describes evolutionary learning, reinforcement learning, tree-based learners, and 

methods to combine the predictions of many learners
•  Examines the importance of unsupervised learning, with a focus on the self-organizing 

feature map 
•  Explores modern, statistically based approaches to machine learning

K18981

w w w . c r c p r e s s . c o m

Machine Learning 

K18981_cover.indd   1 8/19/14   10:02 AM



MACHINE 
LEARNING
An Algorithmic Perspective
S e c o n d  E d i t i o n

K18981_FM.indd   1 8/26/14   12:45 PM



Chapman & Hall/CRC 
Machine Learning & Pattern Recognition Series

SERIES EDITORS

Ralf Herbrich
Amazon Development Center

Berlin, Germany

Thore Graepel
Microsoft Research Ltd.

Cambridge, UK

AIMS AND SCOPE

This series reflects the latest advances and applications in machine learning and pattern recog-
nition through the publication of a broad range of reference works, textbooks, and handbooks. 
The inclusion of concrete examples, applications, and methods is highly encouraged. The scope 
of the series includes, but is not limited to, titles in the areas of machine learning, pattern rec-
ognition, computational intelligence, robotics, computational/statistical learning theory, natural 
language processing, computer vision, game AI, game theory, neural networks, computational 
neuroscience, and other relevant topics, such as machine learning applied to bioinformatics or 
cognitive science, which might be proposed by potential contributors.

PUBLISHED TITLES

BAYESIAN PROGRAMMING 
Pierre Bessière, Emmanuel Mazer, Juan-Manuel Ahuactzin, and Kamel Mekhnacha

UTILITY-BASED LEARNING FROM DATA
Craig Friedman and Sven Sandow

HANDBOOK OF NATURAL LANGUAGE PROCESSING, SECOND EDITION
Nitin Indurkhya and Fred J. Damerau

COST-SENSITIVE MACHINE LEARNING
Balaji Krishnapuram, Shipeng Yu, and Bharat Rao

COMPUTATIONAL TRUST MODELS AND MACHINE LEARNING 
Xin Liu, Anwitaman Datta, and Ee-Peng Lim

MULTILINEAR SUBSPACE LEARNING: DIMENSIONALITY REDUCTION OF  
MULTIDIMENSIONAL DATA 
Haiping Lu, Konstantinos N. Plataniotis, and Anastasios N. Venetsanopoulos

MACHINE LEARNING: An Algorithmic Perspective, Second Edition
Stephen Marsland

A FIRST COURSE IN MACHINE LEARNING
Simon Rogers and Mark Girolami

MULTI-LABEL DIMENSIONALITY REDUCTION 
Liang Sun, Shuiwang Ji, and Jieping Ye

ENSEMBLE METHODS: FOUNDATIONS AND ALGORITHMS 
Zhi-Hua Zhou

K18981_FM.indd   2 8/26/14   12:45 PM



Chapman & Hall/CRC 
Machine Learning & Pattern Recognition Series

MACHINE 
LEARNING
An Algorithmic Perspective
S e c o n d  E d i t i o n

Stephen Marsland

K18981_FM.indd   3 8/26/14   12:45 PM



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140826

International Standard Book Number-13: 978-1-4665-8333-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been 
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright 
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this 
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may 
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the 
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For 
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for 
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Again, for Monika





Contents

Prologue to 2nd Edition xvii

Prologue to 1st Edition xix

CHAPTER 1 � Introduction 1

1.1 IF DATA HAD MASS, THE EARTH WOULD BE A BLACK HOLE 1
1.2 LEARNING 4

1.2.1 Machine Learning 4
1.3 TYPES OF MACHINE LEARNING 5
1.4 SUPERVISED LEARNING 6

1.4.1 Regression 6
1.4.2 Classification 8

1.5 THE MACHINE LEARNING PROCESS 10
1.6 A NOTE ON PROGRAMMING 11
1.7 A ROADMAP TO THE BOOK 12
FURTHER READING 13

CHAPTER 2 � Preliminaries 15

2.1 SOME TERMINOLOGY 15
2.1.1 Weight Space 16
2.1.2 The Curse of Dimensionality 17

2.2 KNOWING WHAT YOU KNOW: TESTING MACHINE LEARNING AL-
GORITHMS 19
2.2.1 Overfitting 19
2.2.2 Training, Testing, and Validation Sets 20
2.2.3 The Confusion Matrix 21
2.2.4 Accuracy Metrics 22
2.2.5 The Receiver Operator Characteristic (ROC) Curve 24
2.2.6 Unbalanced Datasets 25
2.2.7 Measurement Precision 25

2.3 TURNING DATA INTO PROBABILITIES 27
2.3.1 Minimising Risk 30

vii



viii � Contents

2.3.2 The Naïve Bayes’ Classifier 30
2.4 SOME BASIC STATISTICS 32

2.4.1 Averages 32
2.4.2 Variance and Covariance 32
2.4.3 The Gaussian 34

2.5 THE BIAS-VARIANCE TRADEOFF 35
FURTHER READING 36
PRACTICE QUESTIONS 37

CHAPTER 3 � Neurons, Neural Networks, and Linear Discriminants 39

3.1 THE BRAIN AND THE NEURON 39
3.1.1 Hebb’s Rule 40
3.1.2 McCulloch and Pitts Neurons 40
3.1.3 Limitations of the McCulloch and Pitts Neuronal Model 42

3.2 NEURAL NETWORKS 43
3.3 THE PERCEPTRON 43

3.3.1 The Learning Rate η 46
3.3.2 The Bias Input 46
3.3.3 The Perceptron Learning Algorithm 47
3.3.4 An Example of Perceptron Learning: Logic Functions 48
3.3.5 Implementation 49

3.4 LINEAR SEPARABILITY 55
3.4.1 The Perceptron Convergence Theorem 57
3.4.2 The Exclusive Or (XOR) Function 58
3.4.3 A Useful Insight 59
3.4.4 Another Example: The Pima Indian Dataset 61
3.4.5 Preprocessing: Data Preparation 63

3.5 LINEAR REGRESSION 64
3.5.1 Linear Regression Examples 66

FURTHER READING 67
PRACTICE QUESTIONS 68

CHAPTER 4 � The Multi-layer Perceptron 71

4.1 GOING FORWARDS 73
4.1.1 Biases 73

4.2 GOING BACKWARDS: BACK-PROPAGATION OF ERROR 74
4.2.1 The Multi-layer Perceptron Algorithm 77
4.2.2 Initialising the Weights 80
4.2.3 Different Output Activation Functions 81



Contents � ix

4.2.4 Sequential and Batch Training 82
4.2.5 Local Minima 82
4.2.6 Picking Up Momentum 84
4.2.7 Minibatches and Stochastic Gradient Descent 85
4.2.8 Other Improvements 85

4.3 THE MULTI-LAYER PERCEPTRON IN PRACTICE 85
4.3.1 Amount of Training Data 86
4.3.2 Number of Hidden Layers 86
4.3.3 When to Stop Learning 88

4.4 EXAMPLES OF USING THE MLP 89
4.4.1 A Regression Problem 89
4.4.2 Classification with the MLP 92
4.4.3 A Classification Example: The Iris Dataset 93
4.4.4 Time-Series Prediction 95
4.4.5 Data Compression: The Auto-Associative Network 97

4.5 A RECIPE FOR USING THE MLP 100
4.6 DERIVING BACK-PROPAGATION 101

4.6.1 The Network Output and the Error 101
4.6.2 The Error of the Network 102
4.6.3 Requirements of an Activation Function 103
4.6.4 Back-Propagation of Error 104
4.6.5 The Output Activation Functions 107
4.6.6 An Alternative Error Function 108

FURTHER READING 108
PRACTICE QUESTIONS 109

CHAPTER 5 � Radial Basis Functions and Splines 111

5.1 RECEPTIVE FIELDS 111
5.2 THE RADIAL BASIS FUNCTION (RBF) NETWORK 114

5.2.1 Training the RBF Network 117
5.3 INTERPOLATION AND BASIS FUNCTIONS 119

5.3.1 Bases and Basis Expansion 122
5.3.2 The Cubic Spline 123
5.3.3 Fitting the Spline to the Data 123
5.3.4 Smoothing Splines 124
5.3.5 Higher Dimensions 125
5.3.6 Beyond the Bounds 127

FURTHER READING 127
PRACTICE QUESTIONS 128



x � Contents

CHAPTER 6 � Dimensionality Reduction 129

6.1 LINEAR DISCRIMINANT ANALYSIS (LDA) 130
6.2 PRINCIPAL COMPONENTS ANALYSIS (PCA) 133

6.2.1 Relation with the Multi-layer Perceptron 137
6.2.2 Kernel PCA 138

6.3 FACTOR ANALYSIS 141
6.4 INDEPENDENT COMPONENTS ANALYSIS (ICA) 142
6.5 LOCALLY LINEAR EMBEDDING 144
6.6 ISOMAP 147

6.6.1 Multi-Dimensional Scaling (MDS) 147
FURTHER READING 150
PRACTICE QUESTIONS 151

CHAPTER 7 � Probabilistic Learning 153

7.1 GAUSSIAN MIXTURE MODELS 153
7.1.1 The Expectation-Maximisation (EM) Algorithm 154
7.1.2 Information Criteria 158

7.2 NEAREST NEIGHBOUR METHODS 158
7.2.1 Nearest Neighbour Smoothing 160
7.2.2 Efficient Distance Computations: the KD-Tree 160
7.2.3 Distance Measures 165

FURTHER READING 167
PRACTICE QUESTIONS 168

CHAPTER 8 � Support Vector Machines 169

8.1 OPTIMAL SEPARATION 170
8.1.1 The Margin and Support Vectors 170
8.1.2 A Constrained Optimisation Problem 172
8.1.3 Slack Variables for Non-Linearly Separable Problems 175

8.2 KERNELS 176
8.2.1 Choosing Kernels 178
8.2.2 Example: XOR 179

8.3 THE SUPPORT VECTOR MACHINE ALGORITHM 179
8.3.1 Implementation 180
8.3.2 Examples 183

8.4 EXTENSIONS TO THE SVM 184
8.4.1 Multi-Class Classification 184
8.4.2 SVM Regression 186



Contents � xi

8.4.3 Other Advances 187
FURTHER READING 187
PRACTICE QUESTIONS 188

CHAPTER 9 � Optimisation and Search 189

9.1 GOING DOWNHILL 190
9.1.1 Taylor Expansion 193

9.2 LEAST-SQUARES OPTIMISATION 194
9.2.1 The Levenberg–Marquardt Algorithm 194

9.3 CONJUGATE GRADIENTS 198
9.3.1 Conjugate Gradients Example 201
9.3.2 Conjugate Gradients and the MLP 201

9.4 SEARCH: THREE BASIC APPROACHES 204
9.4.1 Exhaustive Search 204
9.4.2 Greedy Search 205
9.4.3 Hill Climbing 205

9.5 EXPLOITATION AND EXPLORATION 206
9.6 SIMULATED ANNEALING 207

9.6.1 Comparison 208
FURTHER READING 209
PRACTICE QUESTIONS 209

CHAPTER 10 � Evolutionary Learning 211

10.1 THE GENETIC ALGORITHM (GA) 212
10.1.1 String Representation 213
10.1.2 Evaluating Fitness 213
10.1.3 Population 214
10.1.4 Generating Offspring: Parent Selection 214

10.2 GENERATING OFFSPRING: GENETIC OPERATORS 216
10.2.1 Crossover 216
10.2.2 Mutation 217
10.2.3 Elitism, Tournaments, and Niching 218

10.3 USING GENETIC ALGORITHMS 220
10.3.1 Map Colouring 220
10.3.2 Punctuated Equilibrium 221
10.3.3 Example: The Knapsack Problem 222
10.3.4 Example: The Four Peaks Problem 222
10.3.5 Limitations of the GA 224
10.3.6 Training Neural Networks with Genetic Algorithms 225



xii � Contents

10.4 GENETIC PROGRAMMING 225
10.5 COMBINING SAMPLING WITH EVOLUTIONARY LEARNING 227
FURTHER READING 228
PRACTICE QUESTIONS 229

CHAPTER 11 � Reinforcement Learning 231

11.1 OVERVIEW 232
11.2 EXAMPLE: GETTING LOST 233

11.2.1 State and Action Spaces 235
11.2.2 Carrots and Sticks: The Reward Function 236
11.2.3 Discounting 237
11.2.4 Action Selection 237
11.2.5 Policy 238

11.3 MARKOV DECISION PROCESSES 238
11.3.1 The Markov Property 238
11.3.2 Probabilities in Markov Decision Processes 239

11.4 VALUES 240
11.5 BACK ON HOLIDAY: USING REINFORCEMENT LEARNING 244
11.6 THE DIFFERENCE BETWEEN SARSA AND Q-LEARNING 245
11.7 USES OF REINFORCEMENT LEARNING 246
FURTHER READING 247
PRACTICE QUESTIONS 247

CHAPTER 12 � Learning with Trees 249

12.1 USING DECISION TREES 249
12.2 CONSTRUCTING DECISION TREES 250

12.2.1 Quick Aside: Entropy in Information Theory 251
12.2.2 ID3 251
12.2.3 Implementing Trees and Graphs in Python 255
12.2.4 Implementation of the Decision Tree 255
12.2.5 Dealing with Continuous Variables 257
12.2.6 Computational Complexity 258

12.3 CLASSIFICATION AND REGRESSION TREES (CART) 260
12.3.1 Gini Impurity 260
12.3.2 Regression in Trees 261

12.4 CLASSIFICATION EXAMPLE 261
FURTHER READING 263
PRACTICE QUESTIONS 264



Contents � xiii

CHAPTER 13 � Decision by Committee: Ensemble Learning 267

13.1 BOOSTING 268
13.1.1 AdaBoost 269
13.1.2 Stumping 273

13.2 BAGGING 273
13.2.1 Subagging 274

13.3 RANDOM FORESTS 275
13.3.1 Comparison with Boosting 277

13.4 DIFFERENT WAYS TO COMBINE CLASSIFIERS 277
FURTHER READING 279
PRACTICE QUESTIONS 280

CHAPTER 14 � Unsupervised Learning 281

14.1 THE K-MEANS ALGORITHM 282
14.1.1 Dealing with Noise 285
14.1.2 The k-Means Neural Network 285
14.1.3 Normalisation 287
14.1.4 A Better Weight Update Rule 288
14.1.5 Example: The Iris Dataset Again 289
14.1.6 Using Competitive Learning for Clustering 290

14.2 VECTOR QUANTISATION 291
14.3 THE SELF-ORGANISING FEATURE MAP 291

14.3.1 The SOM Algorithm 294
14.3.2 Neighbourhood Connections 295
14.3.3 Self-Organisation 297
14.3.4 Network Dimensionality and Boundary Conditions 298
14.3.5 Examples of Using the SOM 300

FURTHER READING 300
PRACTICE QUESTIONS 303

CHAPTER 15 � Markov Chain Monte Carlo (MCMC) Methods 305

15.1 SAMPLING 305
15.1.1 Random Numbers 305
15.1.2 Gaussian Random Numbers 306

15.2 MONTE CARLO OR BUST 308
15.3 THE PROPOSAL DISTRIBUTION 310
15.4 MARKOV CHAIN MONTE CARLO 313

15.4.1 Markov Chains 313



xiv � Contents

15.4.2 The Metropolis–Hastings Algorithm 315
15.4.3 Simulated Annealing (Again) 316
15.4.4 Gibbs Sampling 318

FURTHER READING 319
PRACTICE QUESTIONS 320

CHAPTER 16 � Graphical Models 321

16.1 BAYESIAN NETWORKS 322
16.1.1 Example: Exam Fear 323
16.1.2 Approximate Inference 327
16.1.3 Making Bayesian Networks 329

16.2 MARKOV RANDOM FIELDS 330
16.3 HIDDEN MARKOV MODELS (HMMS) 333

16.3.1 The Forward Algorithm 335
16.3.2 The Viterbi Algorithm 337
16.3.3 The Baum–Welch or Forward–Backward Algorithm 339

16.4 TRACKING METHODS 343
16.4.1 The Kalman Filter 343
16.4.2 The Particle Filter 350

FURTHER READING 355
PRACTICE QUESTIONS 356

CHAPTER 17 � Symmetric Weights and Deep Belief Networks 359

17.1 ENERGETIC LEARNING: THE HOPFIELD NETWORK 360
17.1.1 Associative Memory 360
17.1.2 Making an Associative Memory 361
17.1.3 An Energy Function 365
17.1.4 Capacity of the Hopfield Network 367
17.1.5 The Continuous Hopfield Network 368

17.2 STOCHASTIC NEURONS — THE BOLTZMANN MACHINE 369
17.2.1 The Restricted Boltzmann Machine 371
17.2.2 Deriving the CD Algorithm 375
17.2.3 Supervised Learning 380
17.2.4 The RBM as a Directed Belief Network 381

17.3 DEEP LEARNING 385
17.3.1 Deep Belief Networks (DBN) 388

FURTHER READING 393
PRACTICE QUESTIONS 393



Contents � xv

CHAPTER 18 � Gaussian Processes 395

18.1 GAUSSIAN PROCESS REGRESSION 397
18.1.1 Adding Noise 398
18.1.2 Implementation 402
18.1.3 Learning the Parameters 403
18.1.4 Implementation 404
18.1.5 Choosing a (set of) Covariance Functions 406

18.2 GAUSSIAN PROCESS CLASSIFICATION 407
18.2.1 The Laplace Approximation 408
18.2.2 Computing the Posterior 408
18.2.3 Implementation 410

FURTHER READING 412
PRACTICE QUESTIONS 413

APPENDIX A � Python 415

A.1 INSTALLING PYTHON AND OTHER PACKAGES 415
A.2 GETTING STARTED 415

A.2.1 Python for MATLAB® and R users 418
A.3 CODE BASICS 419

A.3.1 Writing and Importing Code 419
A.3.2 Control Flow 420
A.3.3 Functions 420
A.3.4 The doc String 421
A.3.5 map and lambda 421
A.3.6 Exceptions 422
A.3.7 Classes 422

A.4 USING NUMPY AND MATPLOTLIB 423
A.4.1 Arrays 423
A.4.2 Random Numbers 427
A.4.3 Linear Algebra 427
A.4.4 Plotting 427
A.4.5 One Thing to Be Aware of 429

FURTHER READING 430
PRACTICE QUESTIONS 430

Index 431





Prologue to 2nd Edition

There have been some interesting developments in machine learning over the past four years,
since the 1st edition of this book came out. One is the rise of Deep Belief Networks as an
area of real research interest (and business interest, as large internet-based companies look
to snap up every small company working in the area), while another is the continuing work
on statistical interpretations of machine learning algorithms. This second one is very good
for the field as an area of research, but it does mean that computer science students, whose
statistical background can be rather lacking, find it hard to get started in an area that
they are sure should be of interest to them. The hope is that this book, focussing on the
algorithms of machine learning as it does, will help such students get a handle on the ideas,
and that it will start them on a journey towards mastery of the relevant mathematics and
statistics as well as the necessary programming and experimentation.

In addition, the libraries available for the Python language have continued to develop,
so that there are now many more facilities available for the programmer. This has enabled
me to provide a simple implementation of the Support Vector Machine that can be used
for experiments, and to simplify the code in a few other places. All of the code that was
used to create the examples in the book is available at http://stephenmonika.net/ (in
the ‘Book’ tab), and use and experimentation with any of this code, as part of any study
on machine learning, is strongly encouraged.

Some of the changes to the book include:

• the addition of two new chapters on two of those new areas: Deep Belief Networks
(Chapter 17) and Gaussian Processes (Chapter 18).

• a reordering of the chapters, and some of the material within the chapters, to make a
more natural flow.

• the reworking of the Support Vector Machine material so that there is running code
and the suggestions of experiments to be performed.

• the addition of Random Forests (as Section 13.3), the Perceptron convergence theorem
(Section 3.4.1), a proper consideration of accuracy methods (Section 2.2.4), conjugate
gradient optimisation for the MLP (Section 9.3.2), and more on the Kalman filter and
particle filter in Chapter 16.

• improved code including better use of naming conventions in Python.

• various improvements in the clarity of explanation and detail throughout the book.

I would like to thank the people who have written to me about various parts of the book,
and made suggestions about things that could be included or explained better. I would also
like to thank the students at Massey University who have studied the material with me,
either as part of their coursework, or as first steps in research, whether in the theory or the
application of machine learning. Those that have contributed particularly to the content
of the second edition include Nirosha Priyadarshani, James Curtis, Andy Gilman, Örjan

xvii



xviii � Prologue to 2nd Edition

Ekeberg, and the Osnabrück Knowledge-Based Systems Research group, especially Joachim
Hertzberg, Sven Albrecht, and Thomas Wieman.

Stephen Marsland
Ashhurst, New Zealand



Prologue to 1st Edition

One of the most interesting features of machine learning is that it lies on the boundary of
several different academic disciplines, principally computer science, statistics, mathematics,
and engineering. This has been a problem as well as an asset, since these groups have
traditionally not talked to each other very much. To make it even worse, the areas where
machine learning methods can be applied vary even more widely, from finance to biology
and medicine to physics and chemistry and beyond. Over the past ten years this inherent
multi-disciplinarity has been embraced and understood, with many benefits for researchers
in the field. This makes writing a textbook on machine learning rather tricky, since it is
potentially of interest to people from a variety of different academic backgrounds.

In universities, machine learning is usually studied as part of artificial intelligence, which
puts it firmly into computer science and—given the focus on algorithms—it certainly fits
there. However, understanding why these algorithms work requires a certain amount of
statistical and mathematical sophistication that is often missing from computer science
undergraduates. When I started to look for a textbook that was suitable for classes of
undergraduate computer science and engineering students, I discovered that the level of
mathematical knowledge required was (unfortunately) rather in excess of that of the ma-
jority of the students. It seemed that there was a rather crucial gap, and it resulted in
me writing the first draft of the student notes that have become this book. The emphasis
is on the algorithms that make up the machine learning methods, and on understanding
how and why these algorithms work. It is intended to be a practical book, with lots of
programming examples and is supported by a website that makes available all of the code
that was used to make the figures and examples in the book. The website for the book is:
http://stephenmonika.net/MLbook.html.

For this kind of practical approach, examples in a real programming language are pre-
ferred over some kind of pseudocode, since it enables the reader to run the programs and
experiment with data without having to work out irrelevant implementation details that are
specific to their chosen language. Any computer language can be used for writing machine
learning code, and there are very good resources available in many different languages, but
the code examples in this book are written in Python. I have chosen Python for several
reasons, primarily that it is freely available, multi-platform, relatively nice to use and is
becoming a default for scientific computing. If you already know how to write code in any
other programming language, then you should not have many problems learning Python.
If you don’t know how to code at all, then it is an ideal first language as well. Chapter A
provides a basic primer on using Python for numerical computing.

Machine learning is a rich area. There are lots of very good books on machine learning
for those with the mathematical sophistication to follow them, and it is hoped that this book
could provide an entry point to students looking to study the subject further as well as those
studying it as part of a degree. In addition to books, there are many resources for machine
learning available via the Internet, with more being created all the time. The Machine
Learning Open Source Software website at http://mloss.org/software/ provides links
to a host of software in different languages.

There is a very useful resource for machine learning in the UCI Machine Learning Repos-

xix



xx � Prologue to 1st Edition

itory (http://archive.ics.uci.edu/ml/). This website holds lots of datasets that can be
downloaded and used for experimenting with different machine learning algorithms and see-
ing how well they work. The repository is going to be the principal source of data for this
book. By using these test datasets for experimenting with the algorithms, we do not have
to worry about getting hold of suitable data and preprocessing it into a suitable form for
learning. This is typically a large part of any real problem, but it gets in the way of learning
about the algorithms.

I am very grateful to a lot of people who have read sections of the book and provided
suggestions, spotted errors, and given encouragement when required. In particular for the
first edition, thanks to Zbigniew Nowicki, Joseph Marsland, Bob Hodgson, Patrick Rynhart,
Gary Allen, Linda Chua, Mark Bebbington, JP Lewis, Tom Duckett, and Monika Nowicki.
Thanks especially to Jonathan Shapiro, who helped me discover machine learning and who
may recognise some of his own examples.

Stephen Marsland
Ashhurst, New Zealand



CHA PT E R 1

Introduction

Suppose that you have a website selling software that you’ve written. You want to make the
website more personalised to the user, so you start to collect data about visitors, such as
their computer type/operating system, web browser, the country that they live in, and the
time of day they visited the website. You can get this data for any visitor, and for people
who actually buy something, you know what they bought, and how they paid for it (say
PayPal or a credit card). So, for each person who buys something from your website, you
have a list of data that looks like (computer type, web browser, country, time, software bought,
how paid). For instance, the first three pieces of data you collect could be:

• Macintosh OS X, Safari, UK, morning, SuperGame1, credit card

• Windows XP, Internet Explorer, USA, afternoon, SuperGame1, PayPal

• Windows Vista, Firefox, NZ, evening, SuperGame2, PayPal

Based on this data, you would like to be able to populate a ‘Things You Might Be Inter-
ested In’ box within the webpage, so that it shows software that might be relevant to each
visitor, based on the data that you can access while the webpage loads, i.e., computer and
OS, country, and the time of day. Your hope is that as more people visit your website and
you store more data, you will be able to identify trends, such as that Macintosh users from
New Zealand (NZ) love your first game, while Firefox users, who are often more knowledge-
able about computers, want your automatic download application and virus/internet worm
detector, etc.

Once you have collected a large set of such data, you start to examine it and work out
what you can do with it. The problem you have is one of prediction: given the data you
have, predict what the next person will buy, and the reason that you think that it might
work is that people who seem to be similar often act similarly. So how can you actually go
about solving the problem? This is one of the fundamental problems that this book tries
to solve. It is an example of what is called supervised learning, because we know what the
right answers are for some examples (the software that was actually bought) so we can give
the learner some examples where we know the right answer. We will talk about supervised
learning more in Section 1.3.

1.1 IF DATA HAD MASS, THE EARTH WOULD BE A BLACK HOLE
Around the world, computers capture and store terabytes of data every day. Even leaving
aside your collection of MP3s and holiday photographs, there are computers belonging
to shops, banks, hospitals, scientific laboratories, and many more that are storing data
incessantly. For example, banks are building up pictures of how people spend their money,

1



2 � Machine Learning: An Algorithmic Perspective

hospitals are recording what treatments patients are on for which ailments (and how they
respond to them), and engine monitoring systems in cars are recording information about
the engine in order to detect when it might fail. The challenge is to do something useful with
this data: if the bank’s computers can learn about spending patterns, can they detect credit
card fraud quickly? If hospitals share data, then can treatments that don’t work as well as
expected be identified quickly? Can an intelligent car give you early warning of problems so
that you don’t end up stranded in the worst part of town? These are some of the questions
that machine learning methods can be used to answer.

Science has also taken advantage of the ability of computers to store massive amounts of
data. Biology has led the way, with the ability to measure gene expression in DNA microar-
rays producing immense datasets, along with protein transcription data and phylogenetic
trees relating species to each other. However, other sciences have not been slow to follow.
Astronomy now uses digital telescopes, so that each night the world’s observatories are stor-
ing incredibly high-resolution images of the night sky; around a terabyte per night. Equally,
medical science stores the outcomes of medical tests from measurements as diverse as mag-
netic resonance imaging (MRI) scans and simple blood tests. The explosion in stored data
is well known; the challenge is to do something useful with that data. The Large Hadron
Collider at CERN apparently produces about 25 petabytes of data per year.

The size and complexity of these datasets mean that humans are unable to extract
useful information from them. Even the way that the data is stored works against us. Given
a file full of numbers, our minds generally turn away from looking at them for long. Take
some of the same data and plot it in a graph and we can do something. Compare the
table and graph shown in Figure 1.1: the graph is rather easier to look at and deal with.
Unfortunately, our three-dimensional world doesn’t let us do much with data in higher
dimensions, and even the simple webpage data that we collected above has four different
features, so if we plotted it with one dimension for each feature we’d need four dimensions!
There are two things that we can do with this: reduce the number of dimensions (until
our simple brains can deal with the problem) or use computers, which don’t know that
high-dimensional problems are difficult, and don’t get bored with looking at massive data
files of numbers. The two pictures in Figure 1.2 demonstrate one problem with reducing the
number of dimensions (more technically, projecting it into fewer dimensions), which is that
it can hide useful information and make things look rather strange. This is one reason why
machine learning is becoming so popular — the problems of our human limitations go away
if we can make computers do the dirty work for us. There is one other thing that can help
if the number of dimensions is not too much larger than three, which is to use glyphs that
use other representations, such as size or colour of the datapoints to represent information
about some other dimension, but this does not help if the dataset has 100 dimensions in it.

In fact, you have probably interacted with machine learning algorithms at some time.
They are used in many of the software programs that we use, such as Microsoft’s infamous
paperclip in Office (maybe not the most positive example), spam filters, voice recognition
software, and lots of computer games. They are also part of automatic number-plate recog-
nition systems for petrol station security cameras and toll roads, are used in some anti-skid
braking and vehicle stability systems, and they are even part of the set of algorithms that
decide whether a bank will give you a loan.

The attention-grabbing title to this section would only be true if data was very heavy.
It is very hard to work out how much data there actually is in all of the world’s computers,
but it was estimated in 2012 that was about 2.8 zettabytes (2.8×1021 bytes), up from about
160 exabytes (160× 1018 bytes) of data that were created and stored in 2006, and projected
to reach 40 zettabytes by 2020. However, to make a black hole the size of the earth would



Introduction � 3

x1 x2 Class
0.1 1 1
0.15 0.2 2
0.48 0.6 3
0.1 0.6 1
0.2 0.15 2
0.5 0.55 3
0.2 1 1
0.3 0.25 2
0.52 0.6 3
0.3 0.6 1
0.4 0.2 2
0.52 0.5 3

FIGURE 1.1 A set of datapoints as numerical values and as points plotted on a graph. It
is easier for us to visualise data than to see it in a table, but if the data has more than
three dimensions, we can’t view it all at once.

FIGURE 1.2 Two views of the same two wind turbines (Te Apiti wind farm, Ashhurst, New
Zealand) taken at an angle of about 30◦ to each other. The two-dimensional projections
of three-dimensional objects hides information.



4 � Machine Learning: An Algorithmic Perspective

take a mass of about 40× 1035 grams. So data would have to be so heavy that you couldn’t
possibly lift a data pen, let alone a computer before the section title were true! However,
and more interestingly for machine learning, the same report that estimated the figure of
2.8 zettabytes (‘Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East’
by John Gantz and David Reinsel and sponsored by EMC Corporation) also reported that
while a quarter of this data could produce useful information, only around 3% of it was
tagged, and less that 0.5% of it was actually used for analysis!

1.2 LEARNING
Before we delve too much further into the topic, let’s step back and think about what
learning actually is. The key concept that we will need to think about for our machines is
learning from data, since data is what we have; terabytes of it, in some cases. However, it
isn’t too large a step to put that into human behavioural terms, and talk about learning from
experience. Hopefully, we all agree that humans and other animals can display behaviours
that we label as intelligent by learning from experience. Learning is what gives us flexibility
in our life; the fact that we can adjust and adapt to new circumstances, and learn new
tricks, no matter how old a dog we are! The important parts of animal learning for this
book are remembering, adapting, and generalising: recognising that last time we were in
this situation (saw this data) we tried out some particular action (gave this output) and it
worked (was correct), so we’ll try it again, or it didn’t work, so we’ll try something different.
The last word, generalising, is about recognising similarity between different situations, so
that things that applied in one place can be used in another. This is what makes learning
useful, because we can use our knowledge in lots of different places.

Of course, there are plenty of other bits to intelligence, such as reasoning, and logical
deduction, but we won’t worry too much about those. We are interested in the most fun-
damental parts of intelligence—learning and adapting—and how we can model them in a
computer. There has also been a lot of interest in making computers reason and deduce
facts. This was the basis of most early Artificial Intelligence, and is sometimes known as sym-
bolic processing because the computer manipulates symbols that reflect the environment. In
contrast, machine learning methods are sometimes called subsymbolic because no symbols
or symbolic manipulation are involved.

1.2.1 Machine Learning
Machine learning, then, is about making computers modify or adapt their actions (whether
these actions are making predictions, or controlling a robot) so that these actions get more
accurate, where accuracy is measured by how well the chosen actions reflect the correct
ones. Imagine that you are playing Scrabble (or some other game) against a computer. You
might beat it every time in the beginning, but after lots of games it starts beating you, until
finally you never win. Either you are getting worse, or the computer is learning how to win
at Scrabble. Having learnt to beat you, it can go on and use the same strategies against
other players, so that it doesn’t start from scratch with each new player; this is a form of
generalisation.

It is only over the past decade or so that the inherent multi-disciplinarity of machine
learning has been recognised. It merges ideas from neuroscience and biology, statistics,
mathematics, and physics, to make computers learn. There is a fantastic existence proof
that learning is possible, which is the bag of water and electricity (together with a few trace
chemicals) sitting between your ears. In Section 3.1 we will have a brief peek inside and see



Introduction � 5

if there is anything we can borrow/steal in order to make machine learning algorithms. It
turns out that there is, and neural networks have grown from exactly this, although even
their own father wouldn’t recognise them now, after the developments that have seen them
reinterpreted as statistical learners. Another thing that has driven the change in direction of
machine learning research is data mining, which looks at the extraction of useful information
from massive datasets (by men with computers and pocket protectors rather than pickaxes
and hard hats), and which requires efficient algorithms, putting more of the emphasis back
onto computer science.

The computational complexity of the machine learning methods will also be of interest to
us since what we are producing is algorithms. It is particularly important because we might
want to use some of the methods on very large datasets, so algorithms that have high-
degree polynomial complexity in the size of the dataset (or worse) will be a problem. The
complexity is often broken into two parts: the complexity of training, and the complexity
of applying the trained algorithm. Training does not happen very often, and is not usually
time critical, so it can take longer. However, we often want a decision about a test point
quickly, and there are potentially lots of test points when an algorithm is in use, so this
needs to have low computational cost.

1.3 TYPES OF MACHINE LEARNING
In the example that started the chapter, your webpage, the aim was to predict what software
a visitor to the website might buy based on information that you can collect. There are a
couple of interesting things in there. The first is the data. It might be useful to know what
software visitors have bought before, and how old they are. However, it is not possible to
get that information from their web browser (even cookies can’t tell you how old somebody
is), so you can’t use that information. Picking the variables that you want to use (which are
called features in the jargon) is a very important part of finding good solutions to problems,
and something that we will talk about in several places in the book. Equally, choosing how
to process the data can be important. This can be seen in the example in the time of access.
Your computer can store this down to the nearest millisecond, but that isn’t very useful,
since you would like to spot similar patterns between users. For this reason, in the example
above I chose to quantise it down to one of the set morning, afternoon, evening, night;
obviously I need to ensure that these times are correct for their time zones, too.

We are going to loosely define learning as meaning getting better at some task through
practice. This leads to a couple of vital questions: how does the computer know whether it
is getting better or not, and how does it know how to improve? There are several different
possible answers to these questions, and they produce different types of machine learning.
For now we will consider the question of knowing whether or not the machine is learning.
We can tell the algorithm the correct answer for a problem so that it gets it right next time
(which is what would happen in the webpage example, since we know what software the
person bought). We hope that we only have to tell it a few right answers and then it can
‘work out’ how to get the correct answers for other problems (generalise). Alternatively, we
can tell it whether or not the answer was correct, but not how to find the correct answer,
so that it has to search for the right answer. A variant of this is that we give a score for the
answer, according to how correct it is, rather than just a ‘right or wrong’ response. Finally,
we might not have any correct answers; we just want the algorithm to find inputs that have
something in common.

These different answers to the question provide a useful way to classify the different
algorithms that we will be talking about:



6 � Machine Learning: An Algorithmic Perspective

Supervised learning A training set of examples with the correct responses (targets) is
provided and, based on this training set, the algorithm generalises to respond correctly
to all possible inputs. This is also called learning from exemplars.

Unsupervised learning Correct responses are not provided, but instead the algorithm
tries to identify similarities between the inputs so that inputs that have something in
common are categorised together. The statistical approach to unsupervised learning is
known as density estimation.

Reinforcement learning This is somewhere between supervised and unsupervised learn-
ing. The algorithm gets told when the answer is wrong, but does not get told how to
correct it. It has to explore and try out different possibilities until it works out how to
get the answer right. Reinforcement learning is sometime called learning with a critic
because of this monitor that scores the answer, but does not suggest improvements.

Evolutionary learning Biological evolution can be seen as a learning process: biological
organisms adapt to improve their survival rates and chance of having offspring in their
environment. We’ll look at how we can model this in a computer, using an idea of
fitness, which corresponds to a score for how good the current solution is.

The most common type of learning is supervised learning, and it is going to be the focus
of the next few chapters. So, before we get started, we’ll have a look at what it is, and the
kinds of problems that can be solved using it.

1.4 SUPERVISED LEARNING
As has already been suggested, the webpage example is a typical problem for supervised
learning. There is a set of data (the training data) that consists of a set of input data that
has target data, which is the answer that the algorithm should produce, attached. This is
usually written as a set of data (xi, ti), where the inputs are xi, the targets are ti, and
the i index suggests that we have lots of pieces of data, indexed by i running from 1 to
some upper limit N . Note that the inputs and targets are written in boldface font to signify
vectors, since each piece of data has values for several different features; the notation used
in the book is described in more detail in Section 2.1. If we had examples of every possible
piece of input data, then we could put them together into a big look-up table, and there
would be no need for machine learning at all. The thing that makes machine learning better
than that is generalisation: the algorithm should produce sensible outputs for inputs that
weren’t encountered during learning. This also has the result that the algorithm can deal
with noise, which is small inaccuracies in the data that are inherent in measuring any real
world process. It is hard to specify rigorously what generalisation means, but let’s see if an
example helps.

1.4.1 Regression
Suppose that I gave you the following datapoints and asked you to tell me the value of the
output (which we will call y since it is not a target datapoint) when x = 0.44 (here, x, t,
and y are not written in boldface font since they are scalars, as opposed to vectors).



Introduction � 7

FIGURE 1.3 Top left: A few datapoints from a sample problem. Bottom left: Two possible
ways to predict the values between the known datapoints: connecting the points with
straight lines, or using a cubic approximation (which in this case misses all of the points).
Top and bottom right: Two more complex approximators (see the text for details) that
pass through the points, although the lower one is rather better than the top.

x t
0 0

0.5236 1.5
1.0472 -2.5981
1.5708 3.0
2.0944 -2.5981
2.6180 1.5
3.1416 0

Since the value x = 0.44 isn’t in the examples given, you need to find some way to predict
what value it has. You assume that the values come from some sort of function, and try to
find out what the function is. Then you’ll be able to give the output value y for any given
value of x. This is known as a regression problem in statistics: fit a mathematical function
describing a curve, so that the curve passes as close as possible to all of the datapoints.
It is generally a problem of function approximation or interpolation, working out the value
between values that we know.

The problem is how to work out what function to choose. Have a look at Figure 1.3.
The top-left plot shows a plot of the 7 values of x and y in the table, while the other
plots show different attempts to fit a curve through the datapoints. The bottom-left plot
shows two possible answers found by using straight lines to connect up the points, and
also what happens if we try to use a cubic function (something that can be written as
ax3 + bx2 + cx+ d = 0). The top-right plot shows what happens when we try to match the
function using a different polynomial, this time of the form ax10 + bx9 + . . .+ jx+ k = 0,



8 � Machine Learning: An Algorithmic Perspective

and finally the bottom-right plot shows the function y = 3 sin(5x). Which of these functions
would you choose?

The straight-line approximation probably isn’t what we want, since it doesn’t tell us
much about the data. However, the cubic plot on the same set of axes is terrible: it doesn’t
get anywhere near the datapoints. What about the plot on the top-right? It looks like it
goes through all of the datapoints exactly, but it is very wiggly (look at the value on the
y-axis, which goes up to 100 instead of around three, as in the other figures). In fact, the
data were made with the sine function plotted on the bottom-right, so that is the correct
answer in this case, but the algorithm doesn’t know that, and to it the two solutions on the
right both look equally good. The only way we can tell which solution is better is to test
how well they generalise. We pick a value that is between our datapoints, use our curves
to predict its value, and see which is better. This will tell us that the bottom-right curve is
better in the example.

So one thing that our machine learning algorithms can do is interpolate between dat-
apoints. This might not seem to be intelligent behaviour, or even very difficult in two
dimensions, but it is rather harder in higher dimensional spaces. The same thing is true
of the other thing that our algorithms will do, which is classification—grouping examples
into different classes—which is discussed next. However, the algorithms are learning by our
definition if they adapt so that their performance improves, and it is surprising how often
real problems that we want to solve can be reduced to classification or regression problems.

1.4.2 Classification
The classification problem consists of taking input vectors and deciding which of N classes
they belong to, based on training from exemplars of each class. The most important point
about the classification problem is that it is discrete — each example belongs to precisely one
class, and the set of classes covers the whole possible output space. These two constraints
are not necessarily realistic; sometimes examples might belong partially to two different
classes. There are fuzzy classifiers that try to solve this problem, but we won’t be talking
about them in this book. In addition, there are many places where we might not be able
to categorise every possible input. For example, consider a vending machine, where we use
a neural network to learn to recognise all the different coins. We train the classifier to
recognise all New Zealand coins, but what if a British coin is put into the machine? In that
case, the classifier will identify it as the New Zealand coin that is closest to it in appearance,
but this is not really what is wanted: rather, the classifier should identify that it is not one
of the coins it was trained on. This is called novelty detection. For now we’ll assume that we
will not receive inputs that we cannot classify accurately.

Let’s consider how to set up a coin classifier. When the coin is pushed into the slot,
the machine takes a few measurements of it. These could include the diameter, the weight,
and possibly the shape, and are the features that will generate our input vector. In this
case, our input vector will have three elements, each of which will be a number showing
the measurement of that feature (choosing a number to represent the shape would involve
an encoding, for example that 1=circle, 2=hexagon, etc.). Of course, there are many other
features that we could measure. If our vending machine included an atomic absorption
spectroscope, then we could estimate the density of the material and its composition, or
if it had a camera, we could take a photograph of the coin and feed that image into the
classifier. The question of which features to choose is not always an easy one. We don’t want
to use too many inputs, because that will make the training of the classifier take longer (and
also, as the number of input dimensions grows, the number of datapoints required increases



Introduction � 9

FIGURE 1.4 The New Zealand coins.

FIGURE 1.5 Left: A set of straight line decision boundaries for a classification problem.
Right: An alternative set of decision boundaries that separate the plusses from the light-
ening strikes better, but requires a line that isn’t straight.

faster; this is known as the curse of dimensionality and will be discussed in Section 2.1.2), but
we need to make sure that we can reliably separate the classes based on those features. For
example, if we tried to separate coins based only on colour, we wouldn’t get very far, because
the 20 ¢ and 50 ¢ coins are both silver and the $1 and $2 coins both bronze. However, if
we use colour and diameter, we can do a pretty good job of the coin classification problem
for NZ coins. There are some features that are entirely useless. For example, knowing that
the coin is circular doesn’t tell us anything about NZ coins, which are all circular (see
Figure 1.4). In other countries, though, it could be very useful.

The methods of performing classification that we will see during this book are very
different in the ways that they learn about the solution; in essence they aim to do the same
thing: find decision boundaries that can be used to separate out the different classes. Given
the features that are used as inputs to the classifier, we need to identify some values of those
features that will enable us to decide which class the current input is in. Figure 1.5 shows a
set of 2D inputs with three different classes shown, and two different decision boundaries;
on the left they are straight lines, and are therefore simple, but don’t categorise as well as
the non-linear curve on the right.

Now that we have seen these two types of problem, let’s take a look at the whole process
of machine learning from the practitioner’s viewpoint.



10 � Machine Learning: An Algorithmic Perspective

1.5 THE MACHINE LEARNING PROCESS
This section assumes that you have some problem that you are interested in using machine
learning on, such as the coin classification that was described previously. It briefly examines
the process by which machine learning algorithms can be selected, applied, and evaluated
for the problem.

Data Collection and Preparation Throughout this book we will be in the fortunate
position of having datasets readily available for downloading and using to test the
algorithms. This is, of course, less commonly the case when the desire is to learn
about some new problem, when either the data has to be collected from scratch, or
at the very least, assembled and prepared. In fact, if the problem is completely new,
so that appropriate data can be chosen, then this process should be merged with the
next step of feature selection, so that only the required data is collected. This can
typically be done by assembling a reasonably small dataset with all of the features
that you believe might be useful, and experimenting with it before choosing the best
features and collecting and analysing the full dataset.
Often the difficulty is that there is a large amount of data that might be relevant,
but it is hard to collect, either because it requires many measurements to be taken,
or because they are in a variety of places and formats, and merging it appropriately
is difficult, as is ensuring that it is clean; that is, it does not have significant errors,
missing data, etc.
For supervised learning, target data is also needed, which can require the involvement
of experts in the relevant field and significant investments of time.
Finally, the quantity of data needs to be considered. Machine learning algorithms need
significant amounts of data, preferably without too much noise, but with increased
dataset size comes increased computational costs, and the sweet spot at which there
is enough data without excessive computational overhead is generally impossible to
predict.

Feature Selection An example of this part of the process was given in Section 1.4.2 when
we looked at possible features that might be useful for coin recognition. It consists of
identifying the features that are most useful for the problem under examination. This
invariably requires prior knowledge of the problem and the data; our common sense
was used in the coins example above to identify some potentially useful features and
to exclude others.
As well as the identification of features that are useful for the learner, it is also
necessary that the features can be collected without significant expense or time, and
that they are robust to noise and other corruption of the data that may arise in the
collection process.

Algorithm Choice Given the dataset, the choice of an appropriate algorithm (or algo-
rithms) is what this book should be able to prepare you for, in that the knowledge
of the underlying principles of each algorithm and examples of their use is precisely
what is required for this.

Parameter and Model Selection For many of the algorithms there are parameters that
have to be set manually, or that require experimentation to identify appropriate values.
These requirements are discussed at the appropriate points of the book.



Introduction � 11

Training Given the dataset, algorithm, and parameters, training should be simply the use
of computational resources in order to build a model of the data in order to predict
the outputs on new data.

Evaluation Before a system can be deployed it needs to be tested and evaluated for ac-
curacy on data that it was not trained on. This can often include a comparison with
human experts in the field, and the selection of appropriate metrics for this compari-
son.

1.6 A NOTE ON PROGRAMMING
This book is aimed at helping you understand and use machine learning algorithms, and that
means writing computer programs. The book contains algorithms in both pseudocode, and
as fragments of Python programs based on NumPy (Appendix A provides an introduction
to both Python and NumPy for the beginner), and the website provides complete working
code for all of the algorithms.

Understanding how to use machine learning algorithms is fine in theory, but without
testing the programs on data, and seeing what the parameters do, you won’t get the complete
picture. In general, writing the code for yourself is always the best way to check that you
understand what the algorithm is doing, and finding the unexpected details.

Unfortunately, debugging machine learning code is even harder than general debugging –
it is quite easy to make a program that compiles and runs, but just doesn’t seem to actually
learn. In that case, you need to start testing the program carefully. However, you can quickly
get frustrated with the fact that, because so many of the algorithms are stochastic, the results
are not repeatable anyway. This can be temporarily avoided by setting the random number
seed, which has the effect of making the random number generator follow the same pattern
each time, as can be seen in the following example of running code at the Python command
line (marked as >>>), where the 10 numbers that appear after the seed is set are the same
in both cases, and would carry on the same forever (there is more about the pseudo-random
numbers that computers generate in Section 15.1.1):

>>> import numpy as np
>>> np.random.seed(4)
>>> np.random.rand(10)
array([ 0.96702984, 0.54723225, 0.97268436, 0.71481599, 0.69772882,

0.2160895 , 0.97627445, 0.00623026, 0.25298236, 0.43479153])
>>> np.random.rand(10)
array([ 0.77938292, 0.19768507, 0.86299324, 0.98340068, 0.16384224,

0.59733394, 0.0089861 , 0.38657128, 0.04416006, 0.95665297])
>>> np.random.seed(4)
>>> np.random.rand(10)
array([ 0.96702984, 0.54723225, 0.97268436, 0.71481599, 0.69772882,

0.2160895 , 0.97627445, 0.00623026, 0.25298236, 0.43479153])

This way, on each run the randomness will be avoided, and the parameters will all be
the same.

Another thing that is useful is the use of 2D toy datasets, where you can plot things,
since you can see whether or not something unexpected is going on. In addition, these



12 � Machine Learning: An Algorithmic Perspective

datasets can be made very simple, such as separable by a straight line (we’ll see more of
this in Chapter 3) so that you can see whether it deals with simple cases, at least.

Another way to ‘cheat’ temporarily is to include the target as one of the inputs, so that
the algorithm really has no excuse for getting the wrong answer.

Finally, having a reference program that works and that you can compare is also useful,
and I hope that the code on the book website will help people get out of unexpected traps
and strange errors.

1.7 A ROADMAP TO THE BOOK
As far as possible, this book works from general to specific and simple to complex, while
keeping related concepts in nearby chapters. Given the focus on algorithms and encouraging
the use of experimentation rather than starting from the underlying statistical concepts,
the book starts with some older, and reasonably simple algorithms, which are examples of
supervised learning.

Chapter 2 follows up many of the concepts in this introductory chapter in order to
highlight some of the overarching ideas of machine learning and thus the data requirements
of it, as well as providing some material on basic probability and statistics that will not be
required by all readers, but is included for completeness.

Chapters 3, 4, and 5 follow the main historical sweep of supervised learning using neural
networks, as well as introducing concepts such as interpolation. They are followed by chap-
ters on dimensionality reduction (Chapter 6) and the use of probabilistic methods like the
EM algorithm and nearest neighbour methods (Chapter 7). The idea of optimal decision
boundaries and kernel methods are introduced in Chapter 8, which focuses on the Support
Vector Machine and related algorithms.

One of the underlying methods for many of the preceding algorithms, optimisation, is
surveyed briefly in Chapter 9, which then returns to some of the material in Chapter 4 to
consider the Multi-layer Perceptron purely from the point of view of optimisation. The chap-
ter then continues by considering search as the discrete analogue of optimisation. This leads
naturally into evolutionary learning including genetic algorithms (Chapter 10), reinforce-
ment learning (Chapter 11), and tree-based learners (Chapter 12) which are search-based
methods. Methods to combine the predictions of many learners, which are often trees, are
described in Chapter 13.

The important topic of unsupervised learning is considered in Chapter 14, which fo-
cuses on the Self-Organising Feature Map; many unsupervised learning algorithms are also
presented in Chapter 6.

The remaining four chapters primarily describe more modern, and statistically based,
approaches to machine learning, although not all of the algorithms are completely new:
following an introduction to Markov Chain Monte Carlo techniques in Chapter 15 the area
of Graphical Models is surveyed, with comparatively old algorithms such as the Hidden
Markov Model and Kalman Filter being included along with particle filters and Bayesian
networks. The ideas behind Deep Belief Networks are given in Chapter 17, starting from
the historical idea of symmetric networks with the Hopfield network. An introduction to
Gaussian Processes is given in Chapter 18.

Finally, an introduction to Python and NumPy is given in Appendix A, which should be
sufficient to enable readers to follow the code descriptions provided in the book and use the
code supplied on the book website, assuming that they have some programming experience
in any programming language.

I would suggest that Chapters 2 to 4 contain enough introductory material to be essential



Introduction � 13

for anybody looking for an introduction to machine learning ideas. For an introductory one
semester course I would follow them with Chapters 6 to 8, and then use the second half of
Chapter 9 to introduce Chapters 10 and 11, and then Chapter 14.

A more advanced course would certainly take in Chapters 13 and 15 to 18 along with
the optimisation material in Chapter 9.

I have attempted to make the material reasonably self-contained, with the relevant
mathematical ideas either included in the text at the appropriate point, or with a reference
to where that material is covered. This means that the reader with some prior knowledge
will certainly find some parts can be safely ignored or skimmed without loss.

FURTHER READING
For a different (more statistical and example-based) take on machine learning, look at:

• Chapter 1 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning, 2nd edition, Springer, Berlin, Germany, 2008.

Other texts that provide alternative views of similar material include:

• Chapter 1 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

• Chapter 1 of S. Haykin. Neural Networks: A Comprehensive Foundation, 2nd edition,
Prentice-Hall, New Jersey, USA, 1999.





CHA PT E R 2

Preliminaries

This chapter has two purposes: to present some of the overarching important concepts of
machine learning, and to see how some of the basic ideas of data processing and statistics
arise in machine learning. One of the most useful ways to break down the effects of learning,
which is to put it in terms of the statistical concepts of bias and variance, is given in
Section 2.5, following on from a section where those concepts are introduced for the beginner.

2.1 SOME TERMINOLOGY
We start by considering some of the terminology that we will use throughout the book; we’ve
already seen a bit of it in the Introduction. We will talk about inputs and input vectors for our
learning algorithms. Likewise, we will talk about the outputs of the algorithm. The inputs
are the data that is fed into the algorithm. In general, machine learning algorithms all work
by taking a set of input values, producing an output (answer) for that input vector, and
then moving on to the next input. The input vector will typically be several real numbers,
which is why it is described as a vector: it is written down as a series of numbers, e.g.,
(0.2, 0.45, 0.75,−0.3). The size of this vector, i.e., the number of elements in the vector, is
called the dimensionality of the input. This is because if we were to plot the vector as a
point, we would need one dimension of space for each of the different elements of the vector,
so that the example above has 4 dimensions. We will talk about this more in Section 2.1.1.

We will often write equations in vector and matrix notation, with lowercase boldface
letters being used for vectors and uppercase boldface letters for matrices. A vector x has
elements (x1, x2, . . . , xm). We will use the following notation in the book:

Inputs An input vector is the data given as one input to the algorithm. Written as x, with
elements xi, where i runs from 1 to the number of input dimensions, m.

Weights wij , are the weighted connections between nodes i and j. For neural networks
these weights are analogous to the synapses in the brain. They are arranged into a
matrix W.

Outputs The output vector is y, with elements yj , where j runs from 1 to the number
of output dimensions, n. We can write y(x,W) to remind ourselves that the output
depends on the inputs to the algorithm and the current set of weights of the network.

Targets The target vector t, with elements tj , where j runs from 1 to the number of
output dimensions, n, are the extra data that we need for supervised learning, since
they provide the ‘correct’ answers that the algorithm is learning about.

15



16 � Machine Learning: An Algorithmic Perspective

Activation Function For neural networks, g(·) is a mathematical function that describes
the firing of the neuron as a response to the weighted inputs, such as the threshold
function described in Section 3.1.2.

Error E, a function that computes the inaccuracies of the network as a function of the
outputs y and targets t.

2.1.1 Weight Space
When working with data it is often useful to be able to plot it and look at it. If our data has
only two or three input dimensions, then this is pretty easy: we use the x-axis for feature
1, the y-axis for feature 2, and the z-axis for feature 3. We then plot the positions of the
input vectors on these axes. The same thing can be extended to as many dimensions as we
like provided that we don’t actually want to look at it in our 3D world. Even if we have
200 input dimensions (that is, 200 elements in each of our input vectors) then we can try to
imagine it plotted by using 200 axes that are all mutually orthogonal (that is, at right angles
to each other). One of the great things about computers is that they aren’t constrained
in the same way we are—ask a computer to hold a 200-dimensional array and it does it.
Provided that you get the algorithm right (always the difficult bit!), then the computer
doesn’t know that 200 dimensions is harder than 2 for us humans.

We can look at projections of the data into our 3D world by plotting just three of the
features against each other, but this is usually rather confusing: things can look very close
together in your chosen three axes, but can be a very long way apart in the full set. You’ve
experienced this in your 2D view of the 3D world; Figure 1.2 shows two different views of
some wind turbines. The two turbines appear to be very close together from one angle, but
are obviously separate from another.

As well as plotting datapoints, we can also plot anything else that we feel like. In
particular, we can plot some of the parameters of a machine learning algorithm. This is
particularly useful for neural networks (which we will start to see in the next chapter) since
the parameters of a neural network are the values of a set of weights that connect the
neurons to the inputs. There is a schematic of a neural network on the left of Figure 2.1,
showing the inputs on the left, and the neurons on the right. If we treat the weights that
get fed into one of the neurons as a set of coordinates in what is known as weight space,
then we can plot them. We think about the weights that connect into a particular neuron,
and plot the strengths of the weights by using one axis for each weight that comes into the
neuron, and plotting the position of the neuron as the location, using the value of w1 as the
position on the 1st axis, the value of w2 on the 2nd axis, etc. This is shown on the right of
Figure 2.1.

Now that we have a space in which we can talk about how close together neurons and
inputs are, since we can imagine positioning neurons and inputs in the same space by
plotting the position of each neuron as the location where its weights say it should be. The
two spaces will have the same dimension (providing that we don’t use a bias node (see
Section 3.3.2), otherwise the weight space will have one extra dimension) so we can plot the
position of neurons in the input space. This gives us a different way of learning, since by
changing the weights we are changing the location of the neurons in this weight space. We
can measure distances between inputs and neurons by computing the Euclidean distance,
which in two dimensions can be written as:

d =
√

(x1 − x2)2 + (y1 − y2)2. (2.1)
So we can use the idea of neurons and inputs being ‘close together’ in order to decide



Preliminaries � 17

FIGURE 2.1 The position of two neurons in weight space. The labels on the network refer
to the dimension in which that weight is plotted, not its value.

when a neuron should fire and when it shouldn’t. If the neuron is close to the input in
this sense then it should fire, and if it is not close then it shouldn’t. This picture of weight
space can be helpful for understanding another important concept in machine learning,
which is what effect the number of input dimensions can have. The input vector is telling
us everything we know about that example, and usually we don’t know enough about the
data to know what is useful and what is not (think back to the coin classification example
in Section 1.4.2), so it might seem sensible to include all of the information that we can get,
and let the algorithm sort out for itself what it needs. Unfortunately, we are about to see
that doing this comes at a significant cost.

2.1.2 The Curse of Dimensionality
The curse of dimensionality is a very strong name, so you can probably guess that it is a bit
of a problem. The essence of the curse is the realisation that as the number of dimensions
increases, the volume of the unit hypersphere does not increase with it. The unit hypersphere
is the region we get if we start at the origin (the centre of our coordinate system) and draw all
the points that are distance 1 away from the origin. In 2 dimensions we get a circle of radius
1 around (0, 0) (drawn in Figure 2.2), and in 3D we get a sphere around (0, 0, 0) (Figure 2.3).
In higher dimensions, the sphere becomes a hypersphere. The following table shows the size
of the unit hypersphere for the first few dimensions, and the graph in Figure 2.4 shows the
same thing, but also shows clearly that as the number of dimensions tends to infinity, so
the volume of the hypersphere tends to zero.



18 � Machine Learning: An Algorithmic Perspective

FIGURE 2.2 The unit circle in 2D with
its bounding box.

FIGURE 2.3 The unit sphere in 3D with
its bounding cube. The sphere does not
reach as far into the corners as the circle
does, and this gets more noticeable as
the number of dimensions increases.

Dimension Volume
1 2.0000
2 3.1416
3 4.1888
4 4.9348
5 5.2636
6 5.1677
7 4.7248
8 4.0587
9 3.2985
10 2.5502

At first sight this seems completely counterintuitive. However, think about enclosing the
hypersphere in a box of width 2 (between -1 and 1 along each axis), so that the box just
touches the sides of the hypersphere. For the circle, almost all of the area inside the box is
included in the circle, except for a little bit at each corner (see Figure 2.2) The same is true
in 3D (Figure 2.3), but if we think about the 100-dimensional hypersphere (not necessarily
something you want to imagine), and follow the diagonal line from the origin out to one
of the corners of the box, then we intersect the boundary of the hypersphere when all the
coordinates are 0.1. The remaining 90% of the line inside the box is outside the hypersphere,
and so the volume of the hypersphere is obviously shrinking as the number of dimensions
grows. The graph in Figure 2.4 shows that when the number of dimensions is above about
20, the volume is effectively zero. It was computed using the formula for the volume of the
hypersphere of dimension n as vn = (2π/n)vn−2. So as soon as n > 2π, the volume starts
to shrink.

The curse of dimensionality will apply to our machine learning algorithms because as
the number of input dimensions gets larger, we will need more data to enable the algorithm
to generalise sufficiently well. Our algorithms try to separate data into classes based on the
features; therefore as the number of features increases, so will the number of datapoints we
need. For this reason, we will often have to be careful about what information we give to
the algorithm, meaning that we need to understand something about the data in advance.

Regardless of how many input dimensions there are, the point of machine learning is to



Preliminaries � 19

FIGURE 2.4 The volume of the unit hypersphere for different numbers of dimensions.

make predictions on data inputs. In the next section we consider how to evaluate how well
an algorithm actually achieves this.

2.2 KNOWING WHAT YOU KNOW: TESTING MACHINE LEARNING ALGO-
RITHMS

The purpose of learning is to get better at predicting the outputs, be they class labels or
continuous regression values. The only real way to know how successfully the algorithm has
learnt is to compare the predictions with known target labels, which is how the training is
done for supervised learning. This suggests that one thing you can do is just to look at the
error that the algorithm makes on the training set.

However, we want the algorithms to generalise to examples that were not seen in the
training set, and we obviously can’t test this by using the training set. So we need some
different data, a test set, to test it on as well. We use this test set of (input, target) pairs by
feeding them into the network and comparing the predicted output with the target, but we
don’t modify the weights or other parameters for them: we use them to decide how well the
algorithm has learnt. The only problem with this is that it reduces the amount of data that
we have available for training, but that is something that we will just have to live with.

2.2.1 Overfitting
Unfortunately, things are a little bit more complicated than that, since we might also want
to know how well the algorithm is generalising as it learns: we need to make sure that we
do enough training that the algorithm generalises well. In fact, there is at least as much
danger in over-training as there is in under-training. The number of degrees of variability in
most machine learning algorithms is huge — for a neural network there are lots of weights,
and each of them can vary. This is undoubtedly more variation than there is in the function
we are learning, so we need to be careful: if we train for too long, then we will overfit the
data, which means that we have learnt about the noise and inaccuracies in the data as well
as the actual function. Therefore, the model that we learn will be much too complicated,
and won’t be able to generalise.

Figure 2.5 shows this by plotting the predictions of some algorithm (as the curve) at



20 � Machine Learning: An Algorithmic Perspective

FIGURE 2.5 The effect of overfitting is that rather than finding the generating function
(as shown on the left), the neural network matches the inputs perfectly, including the
noise in them (on the right). This reduces the generalisation capabilities of the network.

two different points in the learning process. On the left of the figure the curve fits the
overall trend of the data well (it has generalised to the underlying general function), but
the training error would still not be that close to zero since it passes near, but not through,
the training data. As the network continues to learn, it will eventually produce a much
more complex model that has a lower training error (close to zero), meaning that it has
memorised the training examples, including any noise component of them, so that is has
overfitted the training data.

We want to stop the learning process before the algorithm overfits, which means that
we need to know how well it is generalising at each timestep. We can’t use the training data
for this, because we wouldn’t detect overfitting, but we can’t use the testing data either,
because we’re saving that for the final tests. So we need a third set of data to use for this
purpose, which is called the validation set because we’re using it to validate the learning so
far. This is known as cross-validation in statistics. It is part of model selection: choosing the
right parameters for the model so that it generalises as well as possible.

2.2.2 Training, Testing, and Validation Sets
We now need three sets of data: the training set to actually train the algorithm, the validation
set to keep track of how well it is doing as it learns, and the test set to produce the final
results. This is becoming expensive in data, especially since for supervised learning it all has
to have target values attached (and even for unsupervised learning, the validation and test
sets need targets so that you have something to compare to), and it is not always easy to
get accurate labels (which may well be why you want to learn about the data). The area of
semi-supervised learning attempts to deal with this need for large amounts of labelled data;
see the Further Reading section for some references.

Clearly, each algorithm is going to need some reasonable amount of data to learn from
(precise needs vary, but the more data the algorithm sees, the more likely it is to have seen
examples of each possible type of input, although more data also increases the computational
time to learn). However, the same argument can be used to argue that the validation and



Preliminaries � 21

FIGURE 2.6 The dataset is split into different sets, some for training, some for validation,
and some for testing.

test sets should also be reasonably large. Generally, the exact proportion of training to
testing to validation data is up to you, but it is typical to do something like 50:25:25 if you
have plenty of data, and 60:20:20 if you don’t. How you do the splitting can also matter.
Many datasets are presented with the first set of datapoints being in class 1, the next in
class 2, and so on. If you pick the first few points to be the training set, the next the test
set, etc., then the results are going to be pretty bad, since the training did not see all the
classes. This can be dealt with by randomly reordering the data first, or by assigning each
datapoint randomly to one of the sets, as is shown in Figure 2.6.

If you are really short of training data, so that if you have a separate validation set there
is a worry that the algorithm won’t be sufficiently trained; then it is possible to perform
leave-some-out, multi-fold cross-validation. The idea is shown in Figure 2.7. The dataset is
randomly partitioned into K subsets, and one subset is used as a validation set, while the
algorithm is trained on all of the others. A different subset is then left out and a new model
is trained on that subset, repeating the same process for all of the different subsets. Finally,
the model that produced the lowest validation error is tested and used. We’ve traded off
data for computation time, since we’ve had to train K different models instead of just one.
In the most extreme case of this there is leave-one-out cross-validation, where the algorithm
is validated on just one piece of data, training on all of the rest.

2.2.3 The Confusion Matrix
Regardless of how much data we use to test the trained algorithm, we still need to work
out whether or not the result is good. We will look here at a method that is suitable for
classification problems that is known as the confusion matrix. For regression problems things
are more complicated because the results are continuous, and so the most common thing
to use is the sum-of-squares error that we will use to drive the training in the following
chapters. We will see these methods being used as we look at examples.

The confusion matrix is a nice simple idea: make a square matrix that contains all the
possible classes in both the horizontal and vertical directions and list the classes along the
top of a table as the predicted outputs, and then down the left-hand side as the targets. So
for example, the element of the matrix at (i, j) tells us how many input patterns were put



22 � Machine Learning: An Algorithmic Perspective

FIGURE 2.7 Leave-some-out, multi-fold cross-validation gets around the problem of data
shortage by training many models. It works by splitting the data into sets, training a
model on most sets and holding one out for validation (and another for testing). Different
models are trained with different sets being held out.

into class i in the targets, but class j by the algorithm. Anything on the leading diagonal
(the diagonal that starts at the top left of the matrix and runs down to the bottom right)
is a correct answer. Suppose that we have three classes: C1, C2, and C3. Now we count the
number of times that the output was class C1 when the target was C1, then when the target
was C2, and so on until we’ve filled in the table:

Outputs
C1 C2 C3

C1 5 1 0
C2 1 4 1
C3 2 0 4

This table tells us that, for the three classes, most examples were classified correctly, but
two examples of class C3 were misclassified as C1, and so on. For a small number of classes
this is a nice way to look at the outputs. If you just want one number, then it is possible
to divide the sum of the elements on the leading diagonal by the sum of all of the elements
in the matrix, which gives the fraction of correct responses. This is known as the accuracy,
and we are about to see that it is not the last word in evaluating the results of a machine
learning algorithm.

2.2.4 Accuracy Metrics
We can do more to analyse the results than just measuring the accuracy. If you consider
the possible outputs of the classes, then they can be arranged in a simple chart like this



Preliminaries � 23

(where a true positive is an observation correctly put into class 1, while a false positive is an
observation incorrectly put into class 1, while negative examples (both true and false) are
those put into class 2):

True False
Positives Positives
False True

Negatives Negatives

The entries on the leading diagonal of this chart are correct and those off the diagonal are
wrong, just as with the confusion matrix. Note, however, that this chart and the concepts
of false positives, etc., are based on binary classification.

Accuracy is then defined as the sum of the number of true positives and true negatives
divided by the total number of examples (where # means ‘number of’, and TP stands for
True Positive, etc.):

Accuracy = #TP + #FP
#TP + #FP + #TN + #FN . (2.2)

The problem with accuracy is that it doesn’t tell us everything about the results, since it
turns four numbers into just one. There are two complementary pairs of measurements that
can help us to interpret the performance of a classifier, namely sensitivity and specificity,
and precision and recall. Their definitions are shown next, followed by some explanation.

Sensitivity = #TP
#TP + #FN (2.3)

Specificity = #TN
#TN + #FP (2.4)

Precision = #TP
#TP + #FP (2.5)

Recall = #TP
#TP + #FN (2.6)

Sensitivity (also known as the true positive rate) is the ratio of the number of correct
positive examples to the number classified as positive, while specificity is the same ratio
for negative examples. Precision is the ratio of correct positive examples to the number of
actual positive examples, while recall is the ratio of the number of correct positive examples
out of those that were classified as positive, which is the same as sensitivity. If you look
at the chart again you can see that sensitivity and specificity sum the columns for the
denominator, while precision and recall sum the first column and the first row, and so miss
out some information about how well the learner does on the negative examples.

Together, either of these pairs of measures gives more information than just the accuracy.
If you consider precision and recall, then you can see that they are to some extent inversely
related, in that if the number of false positives increases (meaning that the algorithm is
using a broader definition of that class), then the number of false negatives often decreases,
and vice versa. They can be combined to give a single measure, the F1 measure, which can
be written in terms of precision and recall as:

F1 = 2precision× recall
precision + recall (2.7)



24 � Machine Learning: An Algorithmic Perspective

FIGURE 2.8 An example of an ROC curve. The diagonal line represents exactly chance, so
anything above the line is better than chance, and the further from the line, the better. Of
the two curves shown, the one that is further away from the diagonal line would represent
a more accurate method.

and in terms of the numbers of false positives, etc. (from which it can be seen that it
computes the mean of the false examples) as:

F1 = #TP
#TP + (#FN + #FP )/2 . (2.8)

2.2.5 The Receiver Operator Characteristic (ROC) Curve
Since we can use these measures to evaluate a particular classifier, we can also compare clas-
sifiers – either the same classifier with different learning parameters, or completely different
classifiers. In this case, the Receiver Operator Characteristic curve (almost always known just
as the ROC curve) is useful. This is a plot of the percentage of true positives on the y axis
against false positives on the x axis; an example is shown in Figure 2.8. A single run of a
classifier produces a single point on the ROC plot, and a perfect classifier would be a point
at (0, 1) (100% true positives, 0% false positives), while the anti-classifier that got everything
wrong would be at (1,0); so the closer to the top-left-hand corner the result of a classifier
is, the better the classifier has performed. Any classifier that sits on the diagonal line from
(0,0) to (1,1) behaves exactly at the chance level (assuming that the positive and negative
classes are equally common) and so presumably a lot of learning effort is wasted since a fair
coin would do just as well.

In order to compare classifiers, or choices of parameters settings for the same classifier,
you could just compute the point that is furthest from the ‘chance’ line along the diagonal.
However, it is normal to compute the area under the curve (AUC) instead. If you only have
one point for each classifier, the curve is the trapezoid that runs from (0,0) up to the point
and then from there to (1,1). If there are more points (based on more runs of the classifier,
such as trained and/or tested on different datasets), then they are just included in order
along the diagonal line.

The key to getting a curve rather than a point on the ROC curve is to use cross-
validation. If you use 10-fold cross-validation, then you have 10 classifiers, with 10 different



Preliminaries � 25

test sets, and you also have the ‘ground truth’ labels. The true labels can be used to produce
a ranked list of the different cross-validation-trained results, which can be used to specify
a curve through the 10 datapoints on the ROC curve that correspond to the results of this
classifier. By producing an ROC curve for each classifier it is possible to compare their
results.

2.2.6 Unbalanced Datasets
Note that for the accuracy we have implicitly assumed that there are the same number
of positive and negative examples in the dataset (which is known as a balanced dataset).
However, this is often not true (this can potentially cause problems for the learners as well,
as we shall see later in the book). In the case where it is not, we can compute the balanced
accuracy as the sum of sensitivity and specificity divided by 2. However, a more correct
measure is Matthew’s Correlation Coefficient, which is computed as:

MCC = #TP ×#TN −#FP ×#FN√
(#TP + #FP )(#TP + #FN)(#TN + #FP )(#TN + #FN)

(2.9)

If any of the brackets in the denominator are 0, then the whole of the denominator is
set to 1. This provides a balanced accuracy computation.

As a final note on these methods of evaluation, if there are more than two classes and
it is useful to distinguish the different types of error, then the calculations get a little more
complicated, since instead of one set of false positives and one set of false negatives, you
have some for each class. In this case, specificity and recall are not the same. However, it is
possible to create a set of results, where you use one class as the positives and everything
else as the negatives, and repeat this for each of the different classes.

2.2.7 Measurement Precision
There is a different way to evaluate the accuracy of a learning system, which unfortunately
also uses the word precision, although with a different meaning. The concept here is to treat
the machine learning algorithm as a measurement system. We feed in inputs and look at
the outputs that we get. Even before comparing them to the target values, we can measure
something about the algorithm: if we feed in a set of similar inputs, then we would expect to
get similar outputs for them. This measure of the variability of the algorithm is also known
as precision, and it tells us how repeatable the predictions that the algorithm makes are. It
might be useful to think of precision as being something like the variance of a probability
distribution: it tells you how much spread around the mean to expect.

The point is that just because an algorithm is precise it does not mean that it is ac-
curate – it can be precisely wrong if it always gives the wrong prediction. One measure
of how well the algorithm’s predictions match reality is known as trueness, and it can be
defined as the average distance between the correct output and the prediction. Trueness
doesn’t usually make much sense for classification problems unless there is some concept of
certain classes being similar to each other. Figure 2.9 illustrates the idea of trueness and
precision in the traditional way: as a darts game, with four examples with varying trueness
and precision for the three darts thrown by a player.

This section has considered the endpoint of machine learning, looking at the outputs,
and thinking about what we need to do with the input data in terms of having multiple
datasets, etc. In the next section we return to the starting point and consider how we can
start analysing a dataset by dealing with probabilities.



26 � Machine Learning: An Algorithmic Perspective

FIGURE 2.9 Assuming that the player was aiming for the highest-scoring triple 20 in darts
(the segments each score the number they are labelled with, the narrow band on the
outside of the circle scores double and the narrow band halfway in scores triple; the outer
and inner ‘bullseye’ at the centre score 25 and 50, respectively), these four pictures show
different outcomes. Top left: very accurate: high precision and trueness, top right: low
precision, but good trueness, bottom left: high precision, but low trueness, and bottom
right: reasonable trueness and precision, but the actual outputs are not very good. (Thanks
to Stefan Nowicki, whose dartboard was used for these pictures.)



Preliminaries � 27

FIGURE 2.10 A histogram of feature values (x) against their probability for two classes.

2.3 TURNING DATA INTO PROBABILITIES
Take a look at the plot in Figure 2.10. It shows the measurements of some feature x for
two classes, C1 and C2. Members of class C2 tend to have larger values of feature x than
members of class C1, but there is some overlap between the two classes. The correct class is
fairly easy to predict at the extremes of the range, but what to do in the middle is unclear.
Suppose that we are trying to classify writing of the letters ‘a’ and ‘b’ based on their height
(as shown in Figure 2.11). Most people write their ‘a’s smaller than their ‘b’s, but not
everybody. However, in this example, we have a secret weapon. We know that in English
text, the letter ‘a’ is much more common than the letter ‘b’ (we called this an unbalanced
dataset earlier). If we see a letter that is either an ‘a’ or a ‘b’ in normal writing, then there
is a 75% chance that it is an ‘a.’ We are using prior knowledge to estimate the probability
that the letter is an ‘a’: in this example, P (C1) = 0.75, P (C2) = 0.25. If we weren’t allowed
to see the letter at all, and just had to classify it, then if we picked ‘a’ every time, we’d be
right 75% of the time.

However, when we are asked to make a classification we are also given the value of x.
It would be pretty silly to just use the value of P (C1) and ignore the value of x if it might
help! In fact, we are given a training set of values of x and the class that each exemplar
belongs to. This lets us calculate the value of P (C1) (we just count how many times out of
the total the class was C1 and divide by the total number of examples), and also another
useful measurement: the conditional probability of C1 given that x has value X: P (C1|X) .
The conditional probability tells us how likely it is that the class is C1 given that the value
of x is X. So in Figure 2.10 the value of P (C1|X) will be much larger for small values of X
than for large values. Clearly, this is exactly what we want to calculate in order to perform
classification. The question is how to get to this conditional probability, since we can’t read
it directly from the histogram.

The first thing that we need to do to get these values is to quantise the measurement
x, which just means that we put it into one of a discrete set of values {X}, such as the
bins in a histogram. This is exactly what is plotted in Figure 2.10. Now, if we have lots of
examples of the two classes, and the histogram bins that their measurements fall into, we
can compute P (Ci, Xj), which is the joint probability, and tells us how often a measurement
of Ci fell into histogram bin Xj . We do this by looking in histogram bin Xj , counting the
number of examples of class Ci that are in it, and dividing by the total number of examples
(of any class).

We can also define P (Xj |Ci), which is a different conditional probability, and tells us



28 � Machine Learning: An Algorithmic Perspective

FIGURE 2.11 The letters ‘a’ and ‘b’ in pixel form.

how often (in the training set) there is a measurement of Xj given that the example is a
member of class Ci. Again, we can just get this information from the histogram by counting
the number of examples of class Ci in histogram bin Xj and dividing by the number of
examples of that class there are (in any bin). Hopefully, this has just been revision for
you from a statistics course at some stage; if not, and you don’t follow it, get hold of any
introductory probability book.

So we have now worked out two things from our training data: the joint probability
P (Ci, Xj) and the conditional probability P (Xj |Ci). Since we actually want to compute
P (Ci|Xj) we need to know how to link these things together. As some of you may already
know, the answer is Bayes’ rule, which is what we are now going to derive. There is a link
between the joint probability and the conditional probability. It is:

P (Ci, Xj) = P (Xj |Ci)P (Ci), (2.10)

or equivalently:

P (Ci, Xj) = P (Ci|Xj)P (Xj). (2.11)

Clearly, the right-hand side of these two equations must be equal to each other, since
they are both equal to P (Ci, Xj), and so with one division we can write:

P (Ci|Xj) = P (Xj |Ci)P (Ci)
P (Xj)

. (2.12)

This is Bayes’ rule. If you don’t already know it, learn it: it is the most important equation
in machine learning. It relates the posterior probability P (Ci|Xj) with the prior probability
P (Ci) and class-conditional probability P (Xj |Ci). The denominator (the term on the bottom
of the fraction) acts to normalise everything, so that all the probabilities sum to 1. It might
not be clear how to compute this term. However, if we notice that any observation Xk has
to belong to some class Ci, then we can marginalise over the classes to compute:

P (Xk) =
∑
i

P (Xk|Ci)P (Ci). (2.13)



Preliminaries � 29

FIGURE 2.12 The posterior probabilities of the two classes C1 and C2 for feature x.

The reason why Bayes’ rule is so important is that it lets us obtain the posterior
probability—which is what we actually want—by calculating things that are much eas-
ier to compute. We can estimate the prior probabilities by looking at how often each class
appears in our training set, and we can get the class-conditional probabilities from the his-
togram of the values of the feature for the training set. We can use the posterior probability
(Figure 2.12) to assign each new observation to one of the classes by picking the class Ci
where:

P (Ci|x) > P (Cj |x) ∀ i 6= j, (2.14)

where x is a vector of feature values instead of just one feature. This is known as the
maximum a posteriori or MAP hypothesis, and it gives us a way to choose which class to
choose as the output one. The question is whether this is the right thing to do. There has
been quite a lot of research in both the statistical and machine learning literatures into
what is the right question to ask about our data to perform classification, but we are going
to skate over it very lightly.

The MAP question is what is the most likely class given the training data? Suppose that
there are three possible output classes, and for a particular input the posterior probabilities
of the classes are P (C1|x) = 0.35, P (C2|x) = 0.45, P (C3|x) = 0.2. The MAP hypothesis
therefore tells us that this input is in class C2, because that is the class with the highest
posterior probability. Now suppose that, based on the class that the data is in, we want
to do something. If the class is C1 or C3 then we do action 1, and if the class is C2 then
we do action 2. As an example, suppose that the inputs are the results of a blood test,
the three classes are different possible diseases, and the output is whether or not to treat
with a particular antibiotic. The MAP method has told us that the output is C2, and so
we will not treat the disease. But what is the probability that it does not belong to class
C2, and so should have been treated with the antibiotic? It is 1 − P (C2) = 0.55. So the
MAP prediction seems to be wrong: we should treat with antibiotic, because overall it is
more likely. This method where we take into account the final outcomes of all of the classes
is called the Bayes’ Optimal Classification. It minimises the probability of misclassification,
rather than maximising the posterior probability.



30 � Machine Learning: An Algorithmic Perspective

2.3.1 Minimising Risk
In the medical example we just saw it made sense to classify based on minimising the
probability of misclassification. We can also consider the risk that is involved in the mis-
classification. The risk from misclassifying someone as unhealthy when they are healthy is
usually smaller than the other way around, but not necessarily always: there are plenty
of treatments that have nasty side effects, and you wouldn’t want to suffer from those if
you didn’t have the disease. In cases like this we can create a loss matrix that specifies the
risk involved in classifying an example of class Ci as class Cj . It looks like the confusion
matrix we saw in Section 2.2, except that a loss matrix always contains zeros on the leading
diagonal since there should never be a loss from getting the classification correct! Once we
have the loss matrix, we just extend our classifier to minimise risk by multiplying each case
by the relevant loss number.

2.3.2 The Naïve Bayes’ Classifier
We’re now going to return to performing classification, without worrying about the out-
comes, so that we are back to calculating the MAP outcome, Equation (2.14). We can
compute this exactly as described above, and it will work fine. However, suppose that
the vector of feature values had many elements, so that there were lots of different fea-
tures that were measured. How would this affect the classifier? We are trying to estimate
P (Xj |Ci) = P (X1

j , X
2
j , . . . X

n
j |Ci) (where the superscripts index the elements of the vector)

by looking at the histogram of all of our training data. As the dimensionality of X increases
(as n gets larger), the amount of data in each bin of the histogram shrinks. This is the curse
of dimensionality again (Section 2.1.2), and means that we need much more data as the
dimensionality increases.

There is one simplifying assumption that we can make. We can assume that the elements
of the feature vector are conditionally independent of each other, given the classification. So
given the class Ci, the values of the different features do not affect each other. This is the
naïveté in the name of the classifier, since it often doesn’t make much sense—it tells us that
the features are independent of each other. If we were to try to classify coins it would say
that the weight and the diameter of the coin are independent of each other, which clearly
isn’t true. However, it does mean that the probability of getting the string of feature values
P (X1

j = a1, X
2
j = a2, . . . , X

n
j = an|Ci) is just equal to the product of multiplying together

all of the individual probabilities:

P (X1
j = a1|Ci)× P (X2

j = a2|Ci)× . . .× P (Xn
j = an|Ci) =

∏
k

P (Xk
j = ak|Ci), (2.15)

which is much easier to compute, and reduces the severity of the curse of dimensionality.
So the classifier rule for the naïve Bayes’ classifier is to select the class Ci for which the
following computation is the maximum:

P (Ci)
∏
k

P (Xk
j = ak|Ci). (2.16)

This is clearly a great simplification over evaluating the full probability, so it might come
as a surprise that the naïve Bayes’ classifier has been shown to have comparable results to
other classification methods in certain domains. Where the simplification is true, so that
the features are conditionally independent of each other, the naïve Bayes’ classifier produces
exactly the MAP classification.



Preliminaries � 31

In Chapter 12 on learning with trees, particularly Section 12.4, there is an example
concerned with what to do in the evening based on whether you have an assignment deadline
and what is happening. The data, shown below, consists of a set of prior examples from the
last few days.

Deadline? Is there a party? Lazy? Activity
Urgent Yes Yes Party
Urgent No Yes Study
Near Yes Yes Party
None Yes No Party
None No Yes Pub
None Yes No Party
Near No No Study
Near No Yes TV
Near Yes Yes Party
Urgent No No Study

In Chapter 12 we will see the results of a decision tree learning about this data, but here
we will use the naïve Bayes’ classifier. We feed in the current values for the feature variables
(deadline, whether there is a party, etc.) and ask the classifier to compute the probabilities
of each of the four possible things that you might do in the evening based on the data in
the training set. Then we pick the most likely class. Note that the probabilities will be very
small. This is one of the problems with the Bayes’ classifier: since we are multiplying lots
of probabilities, which are all less than one, the numbers get very small.

Suppose that you have deadlines looming, but none of them are particularly urgent, that
there is no party on, and that you are currently lazy. Then the classifier needs to evaluate:

• P(Party) × P(Near | Party) × P(No Party | Party) × P(Lazy | Party)

• P(Study) × P(Near | Study) × P(No Party | Study) × P(Lazy | Study)

• P(Pub) × P(Near | Pub) × P(No Party | Pub) × P(Lazy | Pub)

• P(TV) × P(Near | TV) × P(No Party | TV) × P(Lazy | TV)

Using the data above these evaluate to:

P (Party|near (not urgent) deadline, no party, lazy) = 5
10 ×

2
5 ×

0
5 ×

3
5

= 0 (2.17)

P (Study|near (not urgent) deadline, no party, lazy) = 3
10 ×

1
3 ×

3
3 ×

1
3

= 1
30 (2.18)

P (Pub|near (not urgent) deadline, no party, lazy) = 1
10 ×

0
1 ×

1
1 ×

1
1

= 0 (2.19)

P (TV|near (not urgent) deadline, no party, lazy) = 1
10 ×

1
1 ×

1
1 ×

1
1

= 1
10 (2.20)

So based on this you will be watching TV tonight.



32 � Machine Learning: An Algorithmic Perspective

2.4 SOME BASIC STATISTICS
This section will provide a quick summary of a few important statistical concepts. You may
well already know about them, but just in case we’ll go over them, highlighting the points
that are important for machine learning. Any basic statistics book will give considerably
more detailed information.

2.4.1 Averages
We’ll start as basic as can be, with the two numbers that can be used to characterise a
dataset: the mean and the variance. The mean is easy, it is the most commonly used average
of a set of data, and is the value that is found by adding up all the points in the dataset and
dividing by the number of points. There are two other averages that are used: the median
and the mode. The median is the middle value, so the most common way to find it is to
sort the dataset according to size and then find the point that is in the middle (of course,
if there is an even number of datapoints then there is no exact middle, so people typically
take the value halfway between the two points that are closest to the middle). There is a
faster algorithm for computing the median based on a randomised algorithm that is described
in most textbooks on algorithms. The mode is the most common value, so it just requires
counting how many times each element appears and picking the most frequent one. We will
also need to develop the idea of variance within a dataset, and of probability distributions.

2.4.2 Variance and Covariance
If we are given a set of random numbers, then we already know how to compute the mean
of the set, together with the median. However, there are other useful statistics that can be
computed, one of which is the expectation. The name expectation shows the gambling roots
of most probability theory, since it describes the amount of money you can expect to win. It
consists of multiplying together the payoff for each possibility with the probability of that
thing happening, and then adding them all together. So if you are approached in the street
by somebody selling raffle tickets for $1 and they tell you that there is a prize of $100,000
and they are selling 200,000 tickets, then you can work out the expected value of your ticket
as:

E = −1× 199, 999
200, 000 + 99, 999× 1

200, 000 = −0.5, (2.21)

where the -1 is the price of your ticket, which does not win 199,999 times out of 200,000
and the 99,999 is the prize minus the cost of your ticket. Note that the expected value is
not a real value: you will never actually get 50 cents back, no matter what happens. If we
just compute the expected value of a set of numbers, then we end up with the mean value.

The variance of the set of numbers is a measure of how spread out the values are. It
is computed as the sum of the squared distances between each element in the set and the
expected value of the set (the mean, µ):

var({xi}) = σ2({xi}) = E(({xi} − µ)2) =
N∑
i=1

(xi − µ)2. (2.22)

The square root of the variance, σ, is known as the standard deviation. The variance looks
at the variation in one variable compared to its mean. We can generalise this to look at
how two variables vary together, which is known as the covariance. It is a measure of how
dependent the two variables are (in the statistical sense). It is computed by:



Preliminaries � 33

cov({xi}, {yi}) = E({xi} − µ)E({yi} − ν), (2.23)
where ν is the mean of set {yi}. If two variables are independent, then the covariance is
0 (the variables are then known as uncorrelated), while if they both increase and decrease
at the same time, then the covariance is positive, and if one goes up while the other goes
down, then the covariance is negative.

The covariance can be used to look at the correlation between all pairs of variables
within a set of data. We need to compute the covariance of each pair, and these are then
put together into what is imaginatively known as the covariance matrix. It can be written
as:

Σ =

 E[(x1 − µ1)(x1 − µ1)] E[(x1 − µ1)(x2 − µ2)] . . . E[(x1 − µ1)(xn − µn)]
E[(x2 − µ2)(x1 − µ1)] E[(x2 − µ2)(x2 − µ2)] . . . E[(x2 − µ2)(xn − µn)]

. . . . . . . . . . . .
E[(xn − µn)(x1 − µ1)] E[(xn − µn)(x2 − µ2)] . . . E[(xn − µn)(xn − µn)]


(2.24)

where xi is a column vector describing the elements of the ith variable, and µi is their mean.
Note that the matrix is square, that the elements on the leading diagonal of the matrix are
equal to the variances, and that it is symmetric since cov(xi,xj) = cov(xj ,xi). Equation
(2.24) can also be written in matrix form as Σ = E[(X−E[X])(X−E[X])T ], recalling that
the mean of a variable X is E(X).

We will see in Chapter 6 that the covariance matrix has other uses, but for now we will
think about what it tells us about a dataset. In essence, it says how the data varies along
each data dimension. This is useful if we want to think about distances again. Suppose I
gave you the two datasets shown in Figure 2.13 and the test point (labelled by the large ‘X’
in the figures) and asked you if the ‘X’ was part of the data. For the figure on the left you
would probably say yes, while for the figure on the right you would say no, even though the
two points are the same distance from the centre of the data. The reason for this is that
as well as looking at the mean, you’ve also looked at where the test point lies in relation
to the spread of the actual datapoints. If the data is tightly controlled then the test point
has to be close to the mean, while if the data is very spread out, then the distance of the
test point from the mean does not matter as much. We can use this to construct a distance
measure that takes this into account. It is called the Mahalanobis distance after the person
who described it in 1936, and is written as:

DM (x) =
√

(x− µ)TΣ−1(x− µ), (2.25)
where x is the data arranged as a column vector, µ is column vector representing the mean,
and Σ−1 is the inverse of the covariance matrix. If we set the covariance matrix to the
identity matrix, then the Mahalanobis distance reduces to the Euclidean distance.

Computing the Mahalanobis distance requires some fairly heavy computational machin-
ery in computing the covariance matrix and then its inverse. Fortunately these are very
easy to do in NumPy. There is a function that estimates the covariance matrix of a dataset
(np.cov(x) for data matrix x) and the inverse is called np.linalg.inv(x). The inverse
does not have to exist in all cases, of course.

We are now going to consider a probability distribution, which describes the probabilities
of something occurring over the range of possible feature values. There are lots of probability
distributions that are common enough to have names, but there is one that is much better
known than any other, because it occurs so often; therefore, that is the only one we will
worry about here.



34 � Machine Learning: An Algorithmic Perspective

FIGURE 2.13 Two different datasets and a test point.

FIGURE 2.14 Plot of the one-dimensional Gaussian curve.

2.4.3 The Gaussian
The probability distribution that is most well known (indeed, the only one that many people
know, or even need to know) is the Gaussian or normal distribution. In one dimension it has
the familiar ‘bell-shaped’ curve shown in Figure 2.14, and its equation in one dimension is:

p(x) = 1√
2πσ

exp
(
−(x− µ)2

2σ2

)
, (2.26)

where µ is the mean and σ the standard deviation. The Gaussian distribution turns up in
many problems because of the Central Limit Theorem, which says that lots of small random
numbers will add up to something Gaussian. In higher dimensions it looks like:

p(x) = 1
(2π)d/2|Σ|1/2

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
, (2.27)

where Σ is the n× n covariance matrix (with |Σ| being its determinant and Σ−1 being its
inverse). Figure 2.15 shows the appearance in two dimensions of three different cases: when
the covariance matrix is the identity; when there are only numbers on the leading diagonal
of the matrix; and the general case. The first case is known as a spherical covariance matrix,
and has only 1 parameter. The second and third cases define ellipses in two dimensions,
either aligned with the axes (with n parameters) or more generally, with n2 parameters.



Preliminaries � 35

FIGURE 2.15 The two-dimensional Gaussian when (left) the covariance matrix is the iden-
tity, (centre) the covariance matrix has elements on the leading diagonal only, and (right)
the general case.

2.5 THE BIAS-VARIANCE TRADEOFF
To round off this chapter, we use the statistical ideas of the previous section to look again at
the idea of how to evaluate the amount of learning that can be performed, from a theoretical
perspective.

Whenever we train any type of machine learning algorithm we are making some choices
about a model to use, and fitting the parameters of that model. The more degrees of freedom
the algorithm has, the more complicated the model that can be fitted. We have already seen
that more complicated models have inherent dangers such as overfitting, and requiring more
training data, and we have seen the need for validation data to ensure that the model does
not overfit. There is another way to understand this idea that more complex models do not
necessarily result in better results. Some people call it the bias-variance dilemma rather than
a tradeoff, but this seems to be over-dramatising things a little.

In fact, it is a very simple idea. A model can be bad for two different reasons. Either it
is not accurate and doesn’t match the data well, or it is not very precise and there is a lot
of variation in the results. The first of these is known as the bias, while the second is the
statistical variance. More complex classifiers will tend to improve the bias, but the cost of
this is higher variance, while making the model more specific by reducing the variance will
increase the bias. Just like the Heisenberg Uncertainty Principle in quantum physics, there
is a fundamental law at work behind the scenes that says that we can’t have everything at
once. As an example, consider the difference between a straight line fit to some data and
a high degree polynomial, which can go precisely though the datapoints. The straight line
has no variance at all, but high bias since it is a bad fit to the data in general. The spline
can fit the training data to arbitrary accuracy, but the variance will increase. Note that the
variance probably increases by rather less than the bias decreases, since we expect that the
spline will give a better fit. Some models are definitely better than others, but choosing the
complexity of the model is important for getting good results.

The most common way to compute the error between the targets and the predicted
outputs is to sum up the squares of the difference between the two (the reason for squaring
them is that if we don’t, and just add up the differences, and if we had one example where
the target was bigger than the prediction, and one where it was smaller by the same amount,
then they would sum to zero). When looking at this sum-of-squares error function we can split
it up into separate pieces that represent the bias and the variance. Suppose that the function
that we are trying to approximate is y = f(x) + ε, where ε is the noise, which is assumed
to be Gaussian with 0 mean and variance σ2. We use our machine learning algorithm to fit



36 � Machine Learning: An Algorithmic Perspective

a hypothesis h(x) = wTx + b (where w is the weight vector from Section 2.1) to the data
in order to minimise the sum-of-squares error

∑
i(yi − h(xi))2.

In order to decide whether or not our method is successful we need to consider it on
independent data, so we consider a new input x∗ and compute the expected value of the
sum-of squares error, which we will assume is a random variable. Remember that E[x] = x̄,
the mean value. We are now going to do some algebraic manipulation, mostly based on the
fact that (where Z is just some random variable):

E[(Z − Z̄)2] = E[Z2 − 2ZZ̄ + Z̄2]
= E[Z2]− 2E[Z]Z̄] + Z̄2

= E[Z2]− 2Z̄Z̄ + Z̄2

= E[Z2]− Z̄2. (2.28)

Using this, we can compute the expectation of the sum-of-squares error of a new data-
point:

E[(y∗ − h(x∗))2] = E[y∗2 − 2y∗h(x∗) + h(x∗)2]
= E[y∗2]− 2E[y∗h(x∗)] + E[h(x∗)2]
= E[(y∗2 − f(x∗))2] + f(x∗)2 + E[(h(x∗ − h̄(x∗))2]
+ h̄(x∗)2 − 2f(x∗)h̄(x∗)
= E[(y∗2 − f(x∗))2] + E[(h(x∗)− h̄(x∗))2] + (f(x∗) + h̄(x∗))2

= noise2 + variance + bias2. (2.29)

The first of the three terms on the right of the equation is beyond our control. It is the
irreducible error and is the variance of the test data. The second term is variance, and the
third is the square of the bias. The variance tells us how much x∗ changes depending on
the particular training set that was used, while the bias tells us about the average error of
h(x∗). It is possible to exchange bias and variance, so that you can have a model with low
bias (meaning that on average the outputs are current), but high variance (meaning that
the answers wibble around all over the place) or vice versa, but you can’t make them both
zero – for each model there is a tradeoff between them. However, for any particular model
and dataset there is some reasonable set of parameters that will give the best results for the
bias and variance together, and part of the challenge of model fitting is to find this point.

This tradeoff is a useful way to see what machine learning is doing in general, but it is
time now to go and see what we can actually do with some real machine learning algorithms,
starting with neural networks.

FURTHER READING
Any standard statistics textbook gives more detail about the basic probability and statistics
introduced here, but for an alternative take from the point of view of machine learning, see:

• Sections 1.2 and 1.4 of C.M. Bishop. Pattern Recognition and Machine Learning.
Springer, Berlin, Germany, 2006.

For more on the bias-variance tradeoff, see:

• Sections 7.2 and 7.3 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning, 2nd edition, Springer, Berlin, Germany, 2008.



Preliminaries � 37

There are two books on semi-supervised learning that can be used to get an overview of
the area:

• O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. MIT Press, Cam-
bridge, MA, USA, 2006.

• X. Zhu and A.B. Goldberg. Introduction to Semi-Supervised Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 2009.

PRACTICE QUESTIONS
Problem 2.1 Use Bayes’ rule to solve the following problem: At a party you meet a person

who claims to have been to the same school as you. You vaguely recognise them, but
can’t remember properly, so decide to work out how likely it is, given that:

• 1 in 2 of the people you vaguely recognise went to school with you
• 1 in 10 of the people at the party went to school with you
• 1 in 5 people at the party you vaguely recognise

Problem 2.2 Consider how using the risk calculation in Section 2.3.1 would change the
naïve Bayes classifier.





CHA PT E R 3

Neurons, Neural Networks,
and Linear Discriminants

We’ve spent enough time with the concepts of machine learning, now it is time to actually
see it in practice. To start the process, we will return to our demonstration that learning is
possible, which is the squishy thing that your skull protects.

3.1 THE BRAIN AND THE NEURON
In animals, learning occurs within the brain. If we can understand how the brain works, then
there might be things in there for us to copy and use for our machine learning systems.
While the brain is an impressively powerful and complicated system, the basic building
blocks that it is made up of are fairly simple and easy to understand. We’ll look at them
shortly, but it’s worth noting that in computational terms the brain does exactly what we
want. It deals with noisy and even inconsistent data, and produces answers that are usually
correct from very high dimensional data (such as images) very quickly. All amazing for
something that weighs about 1.5 kg and is losing parts of itself all the time (neurons die as
you age at impressive/depressing rates), but its performance does not degrade appreciably
(in the jargon, this means it is robust).

So how does it actually work? We aren’t actually that sure on most levels, but in this
book we are only going to worry about the most basic level, which is the processing units
of the brain. These are nerve cells called neurons. There are lots of them (100 billion = 1011

is the figure that is often given) and they come in lots of different types, depending upon
their particular task. However, their general operation is similar in all cases: transmitter
chemicals within the fluid of the brain raise or lower the electrical potential inside the body
of the neuron. If this membrane potential reaches some threshold, the neuron spikes or fires,
and a pulse of fixed strength and duration is sent down the axon. The axons divide (arborise)
into connections to many other neurons, connecting to each of these neurons in a synapse.
Each neuron is typically connected to thousands of other neurons, so that it is estimated
that there are about 100 trillion (= 1014) synapses within the brain. After firing, the neuron
must wait for some time to recover its energy (the refractory period) before it can fire again.

Each neuron can be viewed as a separate processor, performing a very simple computa-
tion: deciding whether or not to fire. This makes the brain a massively parallel computer
made up of 1011 processing elements. If that is all there is to the brain, then we should be
able to model it inside a computer and end up with animal or human intelligence inside a
computer. This is the view of strong AI. We aren’t aiming at anything that grand in this

39



40 � Machine Learning: An Algorithmic Perspective

book, but we do want to make programs that learn. So how does learning occur in the
brain? The principal concept is plasticity: modifying the strength of synaptic connections
between neurons, and creating new connections. We don’t know all of the mechanisms by
which the strength of these synapses gets adapted, but one method that does seem to be
used was first postulated by Donald Hebb in 1949, and that is what is discussed now.

3.1.1 Hebb’s Rule
Hebb’s rule says that the changes in the strength of synaptic connections are proportional
to the correlation in the firing of the two connecting neurons. So if two neurons consistently
fire simultaneously, then any connection between them will change in strength, becoming
stronger. However, if the two neurons never fire simultaneously, the connection between
them will die away. The idea is that if two neurons both respond to something, then they
should be connected. Let’s see a trivial example: suppose that you have a neuron somewhere
that recognises your grandmother (this will probably get input from lots of visual processing
neurons, but don’t worry about that). Now if your grandmother always gives you a chocolate
bar when she comes to visit, then some neurons, which are happy because you like the taste
of chocolate, will also be stimulated. Since these neurons fire at the same time, they will
be connected together, and the connection will get stronger over time. So eventually, the
sight of your grandmother, even in a photo, will be enough to make you think of chocolate.
Sound familiar? Pavlov used this idea, called classical conditioning, to train his dogs so that
when food was shown to the dogs and the bell was rung at the same time, the neurons for
salivating over the food and hearing the bell fired simultaneously, and so became strongly
connected. Over time, the strength of the synapse between the neurons that responded to
hearing the bell and those that caused the salivation reflex was enough that just hearing
the bell caused the salivation neurons to fire in sympathy.

There are other names for this idea that synaptic connections between neurons and
assemblies of neurons can be formed when they fire together and can become stronger. It
is also known as long-term potentiation and neural plasticity, and it does appear to have
correlates in real brains.

3.1.2 McCulloch and Pitts Neurons
Studying neurons isn’t actually that easy. You need to be able to extract the neuron from the
brain, and then keep it alive so that you can see how it reacts in controlled circumstances.
Doing this takes a lot of care. One of the problems is that neurons are generally quite
small (they must be if you’ve got 1011 of them in your head!) so getting electrodes into
the synapses is difficult. It has been done, though, using neurons from the giant squid,
which has some neurons that are large enough to see. Hodgkin and Huxley did this in 1952,
measuring and writing down differential equations that compute the membrane potential
based on various chemical concentrations, something that earned them a Nobel prize. We
aren’t going to worry about that, instead, we’re going to look at a mathematical model
of a neuron that was introduced in 1943. The purpose of a mathematical model is that it
extracts only the bare essentials required to accurately represent the entity being studied,
removing all of the extraneous details. McCulloch and Pitts produced a perfect example of
this when they modelled a neuron as:



Neurons, Neural Networks, and Linear Discriminants � 41

FIGURE 3.1 A picture of McCulloch and Pitts’ mathematical model of a neuron. The
inputs xi are multiplied by the weights wi, and the neurons sum their values. If this sum
is greater than the threshold θ then the neuron fires; otherwise it does not.

(1) a set of weighted inputs wi that correspond to the synapses

(2) an adder that sums the input signals (equivalent to the membrane of the cell that
collects electrical charge)

(3) an activation function (initially a threshold function) that decides
whether the neuron fires (‘spikes’) for the current inputs

A picture of their model is given in Figure 3.1, and we’ll use the picture to write down
a mathematical description. On the left of the picture are a set of input nodes (labelled
x1, x2, . . . xm). These are given some values, and as an example we’ll assume that there are
three inputs, with x1 = 1, x2 = 0, x3 = 0.5. In real neurons those inputs come from the
outputs of other neurons. So the 0 means that a neuron didn’t fire, the 1 means it did,
and the 0.5 has no biological meaning, but never mind. (Actually, this isn’t quite fair, but
it’s a long story and not very relevant.) Each of these other neuronal firings flowed along
a synapse to arrive at our neuron, and those synapses have strengths, called weights. The
strength of the synapse affects the strength of the signal, so we multiply the input by the
weight of the synapse (so we get x1 × w1 and x2 × w2, etc.). Now when all of these signals
arrive into our neuron, it adds them up to see if there is enough strength to make it fire.
We’ll write that as

h =
m∑
i=1

wixi, (3.1)

which just means sum (add up) all the inputs multiplied by their synaptic weights. I’ve
assumed that there are m of them, where m = 3 in the example. If the synaptic weights
are w1 = 1, w2 = −0.5, w3 = −1, then the inputs to our model neuron are h = 1× 1 + 0×
−0.5 + 0.5 × −1 = 1 + 0 + −0.5 = 0.5. Now the neuron needs to decide if it is going to
fire. For a real neuron, this is a question of whether the membrane potential is above some
threshold. We’ll pick a threshold value (labelled θ), say θ = 0 as an example. Now, does
our neuron fire? Well, h = 0.5 in the example, and 0.5 > 0, so the neuron does fire, and
produces output 1. If the neuron did not fire, it would produce output 0.



42 � Machine Learning: An Algorithmic Perspective

The McCulloch and Pitts neuron is a binary threshold device. It sums up the inputs
(multiplied by the synaptic strengths or weights) and either fires (produces output 1) or
does not fire (produces output 0) depending on whether the input is above some threshold.
We can write the second half of the work of the neuron, the decision about whether or not
to fire (which is known as an activation function), as:

o = g(h) =
{

1 if h > θ
0 if h ≤ θ. (3.2)

This is a very simple model, but we are going to use these neurons, or very simple
variations on them using slightly different activation functions (that is, we’ll replace the
threshold function with something else) for most of our study of neural networks. In fact,
these neurons might look simple, but as we shall see, a network of such neurons can perform
any computation that a normal computer can, provided that the weights wi are chosen
correctly. So one of the main things we are going to talk about for the next few chapters is
methods of setting these weights.

3.1.3 Limitations of the McCulloch and Pitts Neuronal Model
One question that is worth considering is how realistic is this model of a neuron? The
answer is: not very. Real neurons are much more complicated. The inputs to a real neuron
are not necessarily summed linearly: there may be non-linear summations. However, the
most noticeable difference is that real neurons do not output a single output response,
but a spike train, that is, a sequence of pulses, and it is this spike train that encodes
information. This means that neurons don’t actually respond as threshold devices, but
produce a graded output in a continuous way. They do still have the transition between
firing and not firing, though, but the threshold at which they fire changes over time. Because
neurons are biochemical devices, the amount of neurotransmitter (which affects how much
charge they required to spike, amongst other things) can vary according to the current
state of the organism. Furthermore, the neurons are not updated sequentially according to
a computer clock, but update themselves randomly (asynchronously), whereas in many of
our models we will update the neurons according to the clock. There are neural network
models that are asynchronous, but for our purposes we will stick to algorithms that are
updated by the clock.

Note that the weights wi can be positive or negative. This corresponds to excitatory
and inhibitory connections that make neurons more likely to fire and less likely to fire,
respectively.

Both of these types of synapses do exist within the brain, but with the McCulloch and
Pitts neurons, the weights can change from positive to negative or vice versa, which has not
been seen biologically—synaptic connections are either excitatory or inhibitory, and never
change from one to the other. Additionally, real neurons can have synapses that link back
to themselves in a feedback loop, but we do not usually allow that possibility when we make
networks of neurons. Again, there are exceptions, but we won’t get into them.

It is possible to improve the model to include many of these features, but the picture is
complicated enough already, and McCulloch and Pitts neurons already provide a great deal
of interesting behaviour that resembles the action of the brain, such as the fact that networks
of McCulloch and Pitts neurons can memorise pictures and learn to represent functions and
classify data, as we shall see in the next couple of chapters. In the last chapter we saw a
simple model of a neuron that simulated what seems to be the most important function
of a neuron—deciding whether or not to fire—and ignored the nasty biological things like



Neurons, Neural Networks, and Linear Discriminants � 43

chemical concentrations, refractory periods, etc. Having this model is only useful if we can
use it to understand what is happening when we learn, or use the model in order to solve
some kind of problem. We are going to try to do both in this chapter, although the learning
that we try to understand will be machine learning rather than animal learning.

3.2 NEURAL NETWORKS
One thing that is probably fairly obvious is that one neuron isn’t that interesting. It doesn’t
do very much, except fire or not fire when we give it inputs. In fact, it doesn’t even learn.
If we feed in the same set of inputs over and over again, the output of the neuron never
varies—it either fires or does not. So to make the neuron a little more interesting we need
to work out how to make it learn, and then we need to put sets of neurons together into
neural networks so that they can do something useful.

The question we need to think about first is how our neurons can learn. We are going to
look at supervised learning for the next few chapters, which means that the algorithms will
learn by example: the dataset that we learn from has the correct output values associated
with each datapoint. At first sight this might seem pointless, since if you already know the
correct answer, why bother learning at all? The key is in the concept of generalisation that
we saw in Section 1.2. Assuming that there is some pattern in the data, then by showing
the neural network a few examples we hope that it will find the pattern and predict the
other examples correctly. This is sometimes known as pattern recognition.

Before we worry too much about this, let’s think about what learning is. In the Intro-
duction it was suggested that you learn if you get better at doing something. So if you
can’t program in the first semester and you can in the second, you have learnt to program.
Something has changed (adapted), presumably in your brain, so that you can do a task that
you were not able to do previously. Have a look again at the McCulloch and Pitts neuron
(e.g., in Figure 3.1) and try to work out what can change in that model. The only things
that make up the neuron are the inputs, the weights, and the threshold (and there is only
one threshold for each neuron, but lots of inputs). The inputs can’t change, since they are
external, so we can only change the weights and the threshold, which is interesting since it
tells us that most of the learning is in the weights, which aren’t part of the neuron at all;
they are the model of the synapse! Getting excited about neurons turns out to be missing
something important, which is that the learning happens between the neurons, in the way
that they are connected together.

So in order to make a neuron learn, the question that we need to ask is:
How should we change the weights and thresholds of the neurons so that the network gets

the right answer more often?
Now that we know the right question to ask we’ll have a look at our very first neural

network, the space-age sounding Perceptron, and see how we can use it to solve the problem
(it really was space-age, too: created in 1958). Once we’ve worked out the algorithm and
how it works, we’ll look at what it can and cannot do, and then see how statistics can give
us insights into learning as well.

3.3 THE PERCEPTRON
The Perceptron is nothing more than a collection of McCulloch and Pitts neurons together
with a set of inputs and some weights to fasten the inputs to the neurons. The network
is shown in Figure 3.2. On the left of the figure, shaded in light grey, are the input nodes.
These are not neurons, they are just a nice schematic way of showing how values are fed



44 � Machine Learning: An Algorithmic Perspective

FIGURE 3.2 The Perceptron network, consisting of a set of input nodes (left) connected
to McCulloch and Pitts neurons using weighted connections.

into the network, and how many of these input values there are (which is the dimension
(number of elements) in the input vector). They are almost always drawn as circles, just
like neurons, which is rather confusing, so I’ve shaded them a different colour. The neurons
are shown on the right, and you can see both the additive part (shown as a circle) and the
thresholder. In practice nobody bothers to draw the thresholder separately, you just need
to remember that it is part of the neuron.

Notice that the neurons in the Perceptron are completely independent of each other:
it doesn’t matter to any neuron what the others are doing, it works out whether or not
to fire by multiplying together its own weights and the input, adding them together, and
comparing the result to its own threshold, regardless of what the other neurons are doing.
Even the weights that go into each neuron are separate for each one, so the only thing they
share is the inputs, since every neuron sees all of the inputs to the network.

In Figure 3.2 the number of inputs is the same as the number of neurons, but this does
not have to be the case — in general there will be m inputs and n neurons. The number of
inputs is determined for us by the data, and so is the number of outputs, since we are doing
supervised learning, so we want the Perceptron to learn to reproduce a particular target,
that is, a pattern of firing and non-firing neurons for the given input.

When we looked at the McCulloch and Pitts neuron, the weights were labelled as wi,
with the i index running over the number of inputs. Here, we also need to work out which
neuron the weight feeds into, so we label them as wij , where the j index runs over the
number of neurons. So w32 is the weight that connects input node 3 to neuron 2. When we
make an implementation of the neural network, we can use a two-dimensional array to hold
these weights.

Now, working out whether or not a neuron should fire is easy: we set the values of the
input nodes to match the elements of an input vector and then use Equations (3.1) and
(3.2) for each neuron. We can do this for all of the neurons, and the result is a pattern



Neurons, Neural Networks, and Linear Discriminants � 45

of firing and non-firing neurons, which looks like a vector of 0s and 1s, so if there are 5
neurons, as in Figure 3.2, then a typical output pattern could be (0, 1, 0, 0, 1), which means
that the second and fifth neurons fired and the others did not. We compare that pattern to
the target, which is our known correct answer for this input, to identify which neurons got
the answer right, and which did not.

For a neuron that is correct, we are happy, but any neuron that fired when it shouldn’t
have done, or failed to fire when it should, needs to have its weights changed. The trouble
is that we don’t know what the weights should be—that’s the point of the neural network,
after all, so we want to change the weights so that the neuron gets it right next time. We
are going to talk about this in a lot more detail in Chapter 4, but for now we’re going to
do something fairly simple to see that it is possible to find a solution.

Suppose that we present an input vector to the network and one of the neurons gets
the wrong answer (its output does not match the target). There are m weights that are
connected to that neuron, one for each of the input nodes. If we label the neuron that is
wrong as k, then the weights that we are interested in are wik, where i runs from 1 to m. So
we know which weights to change, but we still need to work out how to change the values
of those weights. The first thing we need to know is whether each weight is too big or too
small. This seems obvious at first: some of the weights will be too big if the neuron fired
when it shouldn’t have, and too small if it didn’t fire when it should. So we compute yk− tk
(the difference between the output yk, which is what the neuron did, and the target for that
neuron, tk, which is what the neuron should have done. This is a possible error function). If
it is negative then the neuron should have fired and didn’t, so we make the weights bigger,
and vice versa if it is positive, which we can do by subtracting the error value. Hold on,
though. That element of the input could be negative, which would switch the values over; so
if we wanted the neuron to fire we’d need to make the value of the weight negative as well.
To get around this we’ll multiply those two things together to see how we should change
the weight: ∆wik = −(yk − tk)× xi, and the new value of the weight is the old value plus
this value.

Note that we haven’t said anything about changing the threshold value of the neuron. To
see how important this is, suppose that a particular input is 0. In that case, even if a neuron
is wrong, changing the relevant weight doesn’t do anything (since anything times 0 is 0):
we need to change the threshold. We will deal with this in an elegant way in Section 3.3.2.
However, before we get to that, the learning rule needs to be finished—we need to decide how
much to change the weight by. This is done by multiplying the value above by a parameter
called the learning rate, usually labelled as η. The value of the learning rate decides how fast
the network learns. It’s quite important, so it gets a little subsection of its own (next), but
first let’s write down the final rule for updating a weight wij :

wij ← wij − η(yj − tj) · xi. (3.3)

The other thing that we need to realise now is that the network needs to be shown
every training example several times. The first time the network might get some of the
answers correct and some wrong; the next time it will hopefully improve, and eventually its
performance will stop improving. Working out how long to train the network for is not easy
(we will see more methods in Section 4.3.3), but for now we will predefine the maximum
number of iterations, T . Of course, if the network got all of the inputs correct, then this
would also be a good time to stop.



46 � Machine Learning: An Algorithmic Perspective

FIGURE 3.3 The Perceptron network again, showing the bias input.

3.3.1 The Learning Rate η
Equation (3.3) above tells us how to change the weights, with the parameter η controlling
how much to change the weights by. We could miss it out, which would be the same as
setting it to 1. If we do that, then the weights change a lot whenever there is a wrong
answer, which tends to make the network unstable, so that it never settles down. The cost
of having a small learning rate is that the weights need to see the inputs more often before
they change significantly, so that the network takes longer to learn. However, it will be
more stable and resistant to noise (errors) and inaccuracies in the data. We therefore use
a moderate learning rate, typically 0.1 < η < 0.4, depending upon how much error we
expect in the inputs. It doesn’t matter for the Perceptron algorithm, but for many of the
algorithms that we will see in the book, the learning rate is a crucial parameter.

3.3.2 The Bias Input
When we discussed the McCulloch and Pitts neuron, we gave each neuron a firing threshold
θ that determined what value it needed before it should fire. This threshold should be
adjustable, so that we can change the value that the neuron fires at. Suppose that all of the
inputs to a neuron are zero. Now it doesn’t matter what the weights are (since zero times
anything equals zero), the only way that we can control whether the neuron fires or not is
through the threshold. If it wasn’t adjustable and we wanted one neuron to fire when all
the inputs to the network were zero, and another not to fire, then we would have a problem.
No matter what values of the weights were set, the two neurons would do the same thing
since they had the same threshold and the inputs were all zero.

The trouble is that changing the threshold requires an extra parameter that we need to
write code for, and it isn’t clear how we can do that in terms of the weight update that we



Neurons, Neural Networks, and Linear Discriminants � 47

worked out earlier. Fortunately, there is a neat way around this problem. Suppose that we
fix the value of the threshold for the neuron at zero. Now, we add an extra input weight to
the neuron, with the value of the input to that weight always being fixed (usually the value
of -± is chosen; in this book I’m going to use -1 to make it stand out, but any non-zero
value will do). We include that weight in our update algorithm (like all the other weights),
so we don’t need to think of anything new. And the value of the weight will change to make
the neuron fire—or not fire, whichever is correct—when an input of all zeros is given, since
the input on that weight is always -1, even when all the other inputs are zero. This input
is called a bias node, and its weights are usually given a 0 subscript, so that the weight
connecting it to the jth neuron is w0j .

3.3.3 The Perceptron Learning Algorithm
We are now ready to write our first learning algorithm. It might be useful to keep Figure 3.3
in mind as you read the algorithm, and we’ll work through an example of using it afterwards.
The algorithm is separated into two parts: a training phase, and a recall phase. The recall
phase is used after training, and it is the one that should be fast to use, since it will be
used far more often than the training phase. You can see that the training phase uses the
recall equation, since it has to work out the activations of the neurons before the error can
be calculated and the weights trained.

The Perceptron Algorithm

• Initialisation

– set all of the weights wij to small (positive and negative) random numbers

• Training

– for T iterations or until all the outputs are correct:
∗ for each input vector:

· compute the activation of each neuron j using activation function g:

yj = g

(
m∑
i=0

wijxi

)
=
{

1 if
∑m
i=0 wijxi > 0

0 if
∑m
i=0 wijxi ≤ 0 (3.4)

· update each of the weights individually using:

wij ← wij − η(yj − tj) · xi (3.5)

• Recall

– compute the activation of each neuron j using:

yj = g

(
m∑
i=0

wijxi

)
=
{

1 if wijxi > 0
0 if wijxi ≤ 0 (3.6)

Note that the code on the website for the Perceptron has a different form, as will be
discussed in Section 3.3.5.

Computing the computational complexity of this algorithm is very easy. The recall phase



48 � Machine Learning: An Algorithmic Perspective

In1 In2 t
0 0 0
0 1 1
1 0 1
1 1 1

FIGURE 3.4 Data for the OR logic function and a plot of the four datapoints.

FIGURE 3.5 The Perceptron network for the example in Section 3.3.4.

loops over the neurons, and within that loops over the inputs, so its complexity is O(mn).
The training part does this same thing, but does it for T iterations, so costs O(Tmn).

It might be the first time that you have seen an algorithm written out like this, and it
could be hard to see how it can be turned into code. Equally, it might be difficult to believe
that something as simple as this algorithm can learn something. The only way to fix these
things is to work through the algorithm by hand on an example or two, and to try to write
the code and then see if it does what is expected. We will do both of those things next, first
working through a simple example by hand.

3.3.4 An Example of Perceptron Learning: Logic Functions
The example we are going to use is something very simple that you already know about,
the logical OR. This obviously isn’t something that you actually need a neural network to
learn about, but it does make a nice simple example. So what will our neural network look
like? There are two input nodes (plus the bias input) and there will be one output. The
inputs and the target are given in the table on the left of Figure 3.4; the right of the figure
shows a plot of the function with the circles as the true outputs, and a cross as the false
one. The corresponding neural network is shown in Figure 3.5.

As you can see from Figure 3.5, there are three weights. The algorithm tells us to initialise
the weights to small random numbers, so we’ll pick w0 = −0.05, w1 = −0.02, w2 = 0.02.
Now we feed in the first input, where both inputs are 0: (0, 0). Remember that the input
to the bias weight is always −1, so the value that reaches the neuron is −0.05 × −1 +



Neurons, Neural Networks, and Linear Discriminants � 49

−0.02× 0 + 0.02× 0 = 0.05. This value is above 0, so the neuron fires and the output is 1,
which is incorrect according to the target. The update rule tells us that we need to apply
Equation (3.3) to each of the weights separately (we’ll pick a value of η = 0.25 for the
example):

w0 : −0.05− 0.25× (1− 0)×−1 = 0.2, (3.7)
w1 : −0.02− 0.25× (1− 0)× 0 = −0.02, (3.8)
w2 : 0.02− 0.25× (1− 0)× 0 = 0.02. (3.9)

Now we feed in the next input (0, 1) and compute the output (check that you agree that
the neuron does not fire, but that it should) and then apply the learning rule again:

w0 : 0.2− 0.25× (0− 1)×−1 = −0.05, (3.10)
w1 : −0.02− 0.25× (0− 1)× 0 = −0.02, (3.11)
w2 : 0.02− 0.25× (0− 1)× 1 = 0.27. (3.12)

For the (1, 0) input the answer is already correct (you should check that you agree with
this), so we don’t have to update the weights at all, and the same is true for the (1, 1)
input. So now we’ve been through all of the inputs once. Unfortunately, that doesn’t mean
we’ve finished—not all the answers are correct yet. We now need to start going through the
inputs again, until the weights settle down and stop changing, which is what tells us that
the algorithm has finished. For real-world applications the weights may never stop changing,
which is why you run the algorithm for some pre-set number of iterations, T .

So now we carry on running the algorithm, which you should check for yourself either by
hand or using computer code (which we’ll discuss next), eventually getting to weight values
that settle and stop changing. At this point the weights stop changing, and the Perceptron
has correctly learnt all of the examples. Note that there are lots of different values that we
can assign to the weights that will give the correct outputs; the ones that the algorithm finds
depend on the learning rate, the inputs, and the initial starting values. We are interested
in finding a set that works; we don’t necessarily care what the actual values are, providing
that the network generalises to other inputs.

3.3.5 Implementation
Turning the algorithm into code is fairly simple: we need to design some data structures to
hold the variables, then write and test the program. Data structures are usually very basic
for machine learning algorithms; here we need an array to hold the inputs, another to hold
the weights, and then two more for the outputs and the targets. When we talked about the
presentation of data to the neural network we used the term input vectors. The vector is a
list of values that are presented to the Perceptron, with one value for each of the nodes in
the network. When we turn this into computer code it makes sense to put these values into
an array. However, the neural network isn’t very exciting if we only show it one datapoint:
we will need to show it lots of them. Therefore it is normal to arrange the data into a
two-dimensional array, with each row of the array being a datapoint. In a language like C
or Java, you then write a loop that runs over each row of the array to present the input,
and a loop within it that runs over the number of input nodes (which does the computation
on the current input vector).

Written this way in Python syntax (Appendix A provides a brief introduction to



50 � Machine Learning: An Algorithmic Perspective

Python), the recall code that is used after training for a set of nData datapoints arranged
in the array inputs looks like (this code can be found on the book website):

for data in range(nData): # loop over the input vectors
for n in range(N): # loop over the neurons

# Compute sum of weights times inputs for each neuron
# Set the activation to 0 to start
activation[data][n] = 0
# Loop over the input nodes (+1 for the bias node)
for m in range(M+1):

activation[data][n] += weight[m][n] * inputs[data][m]

# Now decide whether the neuron fires or not
if activation[data][n] > 0:

activation[data][n] = 1
else

activation[data][n] = 0

However, Python’s numerical library NumPy provides an alternative method, because it
can easily multiply arrays and matrices together (MATLAB® and R have the same facility).
This means that we can write the code with fewer loops, making it rather easier to read,
and also means that we write less code. It can be a little confusing at first, though. To
understand it, we need a little bit more mathematics, which is the concept of a matrix. In
computer terms, matrices are just two-dimensional arrays. We can write the set of weights
for the network in a matrix by making an np.array that has m + 1 rows (the number of
input nodes + 1 for the bias) and n columns (the number of neurons). Now, the element
of the matrix at location (i, j) contains the weight connecting input i to neuron j, which is
what we had in the code above.

The benefit that we get from thinking about it in this way is that multiplying matrices
and vectors together is well defined. You’ve probably seen this in high school or somewhere
but, just in case, to be able to multiply matrices together we need the inner dimensions to
be the same. This just means that if we have matrices A and B where A is size m × n,
then the size of B needs to be n× p, where p can be any number. The n is called the inner
dimension since when we write out the size of the matrices in the multiplication we get
(m× n)× (n× p).

Now we can compute AB (but not necessarily BA, since for that we’d need m = p,
since the computation above would then be (n × p) × (m × n)). The computation of the
multiplication proceeds by picking up the first column of B, rotating it by 90◦ anti-clockwise
so that it is a row not a column, multiplying each element of it by the matching element in
the first row of A and then adding them together. This is the first element of the answer
matrix. The second element in the first row is made by picking up the second column of B,
rotating it to match the direction, and multiplying it by the first row of A, and so on. As
an example:



Neurons, Neural Networks, and Linear Discriminants � 51

(
3 4 5
2 3 4

)
×

 1 3
2 4
3 5

 (3.13)

=
(

3× 1 + 4× 2 + 5× 3 3× 3 + 4× 4 + 5× 5
2× 1 + 3× 2 + 4× 3 2× 3 + 3× 4 + 4× 5

)
(3.14)

=
(

26 50
20 38

)
(3.15)

NumPy can do this multiplication for us, using the np.dot() function (which is a rather
strange name mathematically, but never mind). So to reproduce the calculation above, we
use (where >>> denotes the Python command line, and so this is code to be typed in, with
the answers provided by the Python interpreter shown afterwards):

>>> import numpy as np
>>> a = np.array([[3,4,5],[2,3,4]])
>>> b = np.array([[1,3],[2,4],[3,5]])
>>> np.dot(a,b)
array([[26, 50],

[20, 38]])

The np.array() function makes the NumPy array, which is actually a matrix here,
made up of an array of arrays: each row is a separate array, as you can see from the square
brackets within square brackets. Note that we can enter the 2D array in one line of code by
using commas between the different rows, but when it prints them out, NumPy puts each
row of the matrix on a different line, which makes things easier to see.

This probably seems like a very long way from the Perceptron, but we are getting there,
I promise! We can put the input vectors into a two-dimensional array of size N ×m, where
N is the number of input vectors we have and m is the number of inputs. The weights array
is of size m×n, and so we can multiply them together. If we do, then the output will be an
N ×n matrix that holds the values of the sum that each neuron computes for each of the N
input vectors. Now we just need to compute the activations based on these sums. NumPy
has another useful function for us here, which is np.where(condition,x,y), (condition
is a logical condition and x and y are values) that returns a matrix that has value x where
condition is true and value y everywhere else. So using the matrix a that was used above,

>>> np.where(a>3,1,0)
array([[0, 1, 1],

[0, 0, 1]])

The upshot of this is that the entire section of code for the recall function of the Per-
ceptron can be rewritten in two lines of code as:



52 � Machine Learning: An Algorithmic Perspective

# Compute activations
activations = np.dot(inputs,self.weights)

# Threshold the activations
return np.where(activations>0,1,0)

The training section isn’t that much harder really. You should notice that the first part
of the training algorithm is the same as the recall computation, so we can put them into a
function (I’ve called it pcnfwd in the code because it consists of running forwards through
the network to get the outputs). Then we just need to compute the weight updates. The
weights are in an m× n matrix, the activations are in an N × n matrix (as are the targets)
and the inputs are in an N×m matrix. So to do the multiplication np.dot(inputs,targets
- activations) we need to turn the inputs matrix around so that it is m × N . This is
done using the np.transpose() function, which swaps the rows and columns over (so using
matrix a above again) we get:

>>> np.transpose(a)
array([[3, 2],

[4, 3],
[5, 4]])

Once we have that, the weight update for the entire network can be done in one line
(where eta is the learning rate, η):

self.weights -= eta*np.dot(np.transpose(inputs),self.activations-targets)

Assuming that you make sure in advance that all your input matrices are the correct
size (the np.shape() function, which tells you the number of elements in each dimension
of the array, is helpful here), the only things that are needed are to add those extra −1’s
onto the input vectors for the bias node, and to decide what values we should put into the
weights to start with. The first of these can be done using the np.concatenate() function,
making a one-dimensional array that contains -1 as all of its elements, and adding it on to
the inputs array (note that nData in the code is equivalent to N in the text):

inputs = np.concatenate((inputs,-np.ones((self.nData,1))),axis=1)

The last thing we need to do is to give initial values to the weights. It is possible to
set them all to be zero, and the algorithm will get to the right answer. However, instead
we will assign small random numbers to the weights, for reasons that will be discussed in
Section 4.2.2. Again, NumPy has a nice way to do this, using the built-in random number
generator (with nin corresponding to m and nout to n):



Neurons, Neural Networks, and Linear Discriminants � 53

weights = np.random.rand(nIn+1,nOut)*0.1-0.05

At this point we have seen all the snippets of code that are required, and putting them
together should not be a problem. The entire program is available from the book website as
pcn.py. Note that this is a different version of the algorithm because it is a batch version:
all of the inputs go forward through the algorithm, and then the error is computed and the
weights are changed. This is different to the sequential version that was written down in the
first algorithm. The batch version is simpler to write in Python and often works better.

We now move on to seeing the code working, starting with the OR example that was
used in the hand-worked demonstration.

Making the OR data is easy, and then running the code requires importing it using
its filename (pcn) and then calling the pcntrain function. The print-out below shows the
instructions to set up the arrays and call the function, and the output of the weights for 5
iterations of a particular run of the program, starting from random initial points (note that
the weights stop changing after the 1st iteration in this case, and that different runs will
produce different values).

>>> import numpy as np
>>> inputs = np.array([[0,0],[0,1],[1,0],[1,1]])
>>> targets = np.array([[0],[1],[1],[1]])
>>> import pcn_logic_eg
>>>
>>> p = pcn_logic_eg.pcn(inputs,targets)
>>> p.pcntrain(inputs,targets,0.25,6)
Iteration: 0
[[-0.03755646]
[ 0.01484562]
[ 0.21173977]]
Final outputs are:
[[0]
[0]
[0]
[0]]
Iteration: 1
[[ 0.46244354]
[ 0.51484562]
[-0.53826023]]
Final outputs are:
[[1]
[1]
[1]
[1]]
Iteration: 2
[[ 0.46244354]
[ 0.51484562]
[-0.28826023]]



54 � Machine Learning: An Algorithmic Perspective

Final outputs are:
[[1]
[1]
[1]
[1]]
Iteration: 3
[[ 0.46244354]
[ 0.51484562]
[-0.03826023]]
Final outputs are:
[[1]
[1]
[1]
[1]]
Iteration: 4
[[ 0.46244354]
[ 0.51484562]
[ 0.21173977]]
Final outputs are:
[[0]
[1]
[1]
[1]]
Iteration: 5
[[ 0.46244354]
[ 0.51484562]
[ 0.21173977]]
Final outputs are:
[[0]
[1]
[1]
[1]]

We have trained the Perceptron on the four datapoints (0, 0), (1, 0), (0, 1), and (1, 1).
However, we could put in an input like (0.8, 0.8) and expect to get an output from the
neural network. Obviously, it wouldn’t make any sense from the logic function point-of-
view, but most of the things that we do with neural networks will be more interesting than
that, anyway. Figure 3.6 shows the decision boundary, which shows when the decision about
which class to categorise the input as changes from crosses to circles. We will see why this
is a straight line in Section 3.4.

Before returning the weights, the Perceptron algorithm above prints out the outputs for
the trained inputs. You can also use the network to predict the outputs for other values
by using the pcnfwd function. However, you need to manually add the −1s on in this case,
using:



Neurons, Neural Networks, and Linear Discriminants � 55

FIGURE 3.6 The decision boundary computed by a Perceptron for the OR function.

>>> # Add the inputs that match the bias node
>>> inputs_bias = np.concatenate((inputs,-np.ones((np.shape(inputs)[0],1))),'
axis=1)
>>> pcn.pcnfwd(inputs_bias,weights)

The results on this test data are what you can use in order to compute the accuracy of
the training algorithm using the methods that were described in Section 2.2.

In terms of learning about a set of data we have now reached the stage that neural
networks were up to in 1969. Then, two researchers, Minsky and Papert, published a book
called “Perceptrons.” The purpose of the book was to stimulate neural network research
by discussing the learning capabilities of the Perceptron, and showing what the network
could and could not learn. Unfortunately, the book had another effect: it effectively killed
neural network research for about 20 years. To see why, we need to think about how the
Perceptron learns in a different way.

3.4 LINEAR SEPARABILITY
What does the Perceptron actually compute? For our one output neuron example of the
OR data it tries to separate out the cases where the neuron should fire from those where it
shouldn’t. Looking at the graph on the right side of Figure 3.4, you should be able to draw
a straight line that separates out the crosses from the circles without difficulty (it is done
in Figure 3.6). In fact, that is exactly what the Perceptron does: it tries to find a straight
line (in 2D, a plane in 3D, and a hyperplane in higher dimensions) where the neuron fires
on one side of the line, and doesn’t on the other. This line is called the decision boundary or
discriminant function, and an example of one is given in Figure 3.7.

To see this, think about the matrix notation we used in the implementation, but consider
just one input vector x. The neuron fires if x·wT ≥ 0 (where w is the row of W that connects
the inputs to one particular neuron; they are the same for the OR example, since there is
only one neuron, and wT denotes the transpose of w and is used to make both of the vectors
into column vectors). The a · b notation describes the inner or scalar product between two



56 � Machine Learning: An Algorithmic Perspective

FIGURE 3.7 A decision boundary separating two classes of data.

vectors. It is computed by multiplying each element of the first vector by the matching
element of the second and adding them all together. As you might remember from high
school, a · b = ‖a‖‖b‖ cos θ, where θ is the angle between a and b and ‖a‖ is the length of
the vector a. So the inner product computes a function of the angle between the two vectors,
scaled by their lengths. It can be computed in NumPy using the np.inner() function.

Getting back to the Perceptron, the boundary case is where we find an input vector
x1 that has x1 ·wT = 0. Now suppose that we find another input vector x2 that satisfies
x2 ·wT = 0. Putting these two equations together we get:

x1 ·wT = x2 ·wT (3.16)
⇒ (x1 − x2) ·wT = 0. (3.17)

What does this last equation mean? In order for the inner product to be 0, either ‖a‖
or ‖b‖ or cos θ needs to be zero. There is no reason to believe that ‖a‖ or ‖b‖ should be 0,
so cos θ = 0. This means that θ = π/2 (or −π/2), which means that the two vectors are
at right angles to each other. Now x1 − x2 is a straight line between two points that lie
on the decision boundary, and the weight vector wT must be perpendicular to that, as in
Figure 3.7.

So given some data, and the associated target outputs, the Perceptron simply tries to
find a straight line that divides the examples where each neuron fires from those where it
does not. This is great if that straight line exists, but is a bit of a problem otherwise. The
cases where there is a straight line are called linearly separable cases. What happens if the
classes that we want to learn about are not linearly separable? It turns out that making
such a function is very easy: there is even one that matches a logic function. Before we
have a look at it, it is worth thinking about what happens when we have more than one
output neuron. The weights for each neuron separately describe a straight line, so by putting
together several neurons we get several straight lines that each try to separate different parts
of the space. Figure 3.8 shows an example of decision boundaries computed by a Perceptron
with four neurons; by putting them together we can get good separation of the classes.



Neurons, Neural Networks, and Linear Discriminants � 57

FIGURE 3.8 Different decision boundaries computed by a Perceptron with four neurons.

3.4.1 The Perceptron Convergence Theorem
Actually, it is not quite true that we have reached 1969. There is one more important
fact that was known: Rosenblatt’s 1962 proof that, given a linearly separable dataset, the
Perceptron will converge to a solution that separates the classes, and that it will do it after
a finite number of iterations. In fact, the number of iterations is bounded by 1/γ2, where γ
is the distance between the separating hyperplane and the closest datapoint to it. The proof
of this theorem only requires some algebra, and so we will work through it here. We will
assume that the length of every input vector ‖x‖ ≤ 1, although it isn’t strictly necessary
provided that they are bounded by some constant R.

First, we know that there is some weight vector w∗ that separates the data, since we
have assumed that it is linearly separable. The Perceptron learning algorithm aims to find
some vector w that is parallel to w∗, or as close as possible. To see whether two vectors
are parallel we use the inner product w∗ ·w. When the two vectors are parallel, the angle
between them is θ = 0 and so cos θ = 1, and so the size of the inner product is a maximum.
If we therefore show that at each weight update w∗ · w increases, then we have nearly
shown that the algorithm will converge. However, we do need a little bit more, because
w∗ · w = ‖w∗‖‖w‖ cos θ, and so we also need to check that the length of w does not
increase too much as well.

Hence, when we consider a weight update, there are two checks that we need to make:
the value of w∗ ·w and the length of w.

Suppose that at the tth iteration of the algorithm, the network sees a particular input
x that should have output y, and that it gets this input wrong, so yw(t−1) · x < 0, where
the (t− 1) index means the weights at the (t− 1)st step. This means that the weights need
to be updated. This weight update will be w(t) = w(t−1) + yx (where we have set η = 1 for
simplicity, and because it is fine for the Perceptron.

To see how this changes the two values we are interested in, we need to do some com-
putation:

w∗ ·w(t) = w∗ ·
(
w(t−1) + yx

)
= w∗ ·w(t−1) + yw∗ · x
≥ w∗ ·w(t−1) + γ (3.18)



58 � Machine Learning: An Algorithmic Perspective

In1 In2 t
0 0 0
0 1 1
1 0 1
1 1 0

FIGURE 3.9 Data for the XOR logic function and a plot of the four datapoints.

where γ is that smallest distance between the optimal hyperplane defined by w∗ and any
datapoint.

This means that at each update of the weights, this inner product increases by at least
γ, and so after t updates of the weights, w∗ · w(t) ≥ tγ. We can use this to put a lower
bound on the length of ‖w(t)‖ by using the Cauchy–Schwartz inequality, which tells us that
w∗ ·w(t) ≤ ‖w∗‖‖w(t)‖ and so ‖w(t)‖ ≥ tγ.

The length of the weight vector after t steps is:

‖w(t)‖2 = ‖w(t−1) + yx‖2

= ‖w(t−1)‖2 + y2‖x‖2 + 2yw(t−1) · x
≤ ‖w(t−1)‖2 + 1 (3.19)

where the last line follows because y2 = 1, ‖x‖ ≤ 1, and the network made an error, so the
w(t−1) and x are perpendicular to each other. This tells us that after t steps, ‖w(t)‖2 ≤ k.

We can put these two inequalities together to get that:

tγ ≤ ‖w(t−1)‖ ≤
√
t, (3.20)

and so t ≤ 1/γ2. Hence after we have made that many updates the algorithm must have
converged.

We have shown that if the weights are linearly separable then the algorithm will converge,
and that the time that this takes is a function of the distance between the separating
hyperplane and the nearest datapoint. This is called the margin, and in Chapter 8 we will
see an algorithm that uses this explicitly. Note that the Perceptron stops learning as soon
as it gets all of the training data correct, and so there is no guarantee that it will find the
largest margin, just that if there is a linear separator, it will find it. Further, we still don’t
know what happens if the data are not linearly separable. To see that, we will move on to
just such an example.

3.4.2 The Exclusive Or (XOR) Function
The XOR has the same four input points as the OR function, but looking at Figure 3.9, you
should be able to convince yourself that you can’t draw a straight line on the graph that
separates true from false (crosses from circles). In our new language, the XOR function is
not linearly separable. If the analysis above is correct, then the Perceptron will fail to get
the correct answer, and using the Perceptron code above we find:



Neurons, Neural Networks, and Linear Discriminants � 59

>>> targets = np.array([[0],[1],[1],[0]])
>>> pcn.pcntrain(inputs,targets,0.25,15)

which gives the following output (the early iterations have been missed out):

Iteration: 11
[[ 0.45946905]
[-0.27886266]
[-0.25662428]]
Iteration: 12
[[-0.04053095]
[-0.02886266]
[-0.00662428]]
Iteration: 13
[[ 0.45946905]
[-0.27886266]
[-0.25662428]]
Iteration: 14
[[-0.04053095]
[-0.02886266]
[-0.00662428]]
Final outputs are:
[[0]
[0]
[0]
[0]]

You can see that the algorithm does not converge, but keeps on cycling through two
different wrong solutions. Running it for longer does not change this behaviour. So even
for a simple logical function, the Perceptron can fail to learn the correct answer. This is
what was demonstrated by Minsky and Papert in “Perceptrons,” and the discovery that
the Perceptron was not capable of solving even these problems, let alone more interesting
ones, is what halted neural network development for so long. There is an obvious solution to
the problem, which is to make the network more complicated—add in more neurons, with
more complicated connections between them, and see if that helps. The trouble is that this
makes the problem of training the network much more difficult. In fact, working out how
to do that is the topic of the next chapter.

3.4.3 A Useful Insight
From the discussion in Section 3.4.2 you might think that the XOR function is impossible
to solve using a linear function. In fact, this is not true. If we rewrite the problem in three
dimensions instead of two, then it is perfectly possible to find a plane (the 2D analogue of
a straight line) that can separate the two classes. There is a picture of this in Figure 3.10.
Writing the problem in 3D means including a third input dimension that does not change
the data when it is looked at in the (x, y) plane, but moves the point at (0, 0) along a third



60 � Machine Learning: An Algorithmic Perspective

In1 In2 In3 Output
0 0 1 1
0 1 0 0
1 0 0 0
1 1 0 1

FIGURE 3.10 A decision boundary (the shaded plane) solving the XOR problem in 3D with
the crosses below the surface and the circles above it.

dimension. So the truth table for the function is the one shown on the left side of Figure 3.10
(where ‘In3’ has been added, and only affects the point at (0, 0)).

To demonstrate this, the following listing uses the same Perceptron code:

>>> inputs = np.array([[0,0,1],[0,1,0],[1,0,0],[1,1,0]])
>>> pcn.pcntrain(inputs,targets,0.25,15)
Iteration: 14
[[-0.27757663]
[-0.21083089]
[-0.23124407]
[-0.53808657]]
Final outputs are:
[[0]
[1]
[1]
[0]]

In fact, it is always possible to separate out two classes with a linear function, provided
that you project the data into the correct set of dimensions. There is a whole class of methods
for doing this reasonably efficiently, called kernel classifiers, which are the basis of Support
Vector Machines, which are the subject of Chapter 8.

For now, it is sufficient to point out that if you want to make your linear Perceptron do
non-linear things, then there is nothing to stop you making non-linear variables. For exam-
ple, Figure 3.11 shows two versions of the same dataset. On the left side, the coordinates
are x1 and x2, while on the right side the coordinates are x1, x2 and x1× x2. It is now easy
to fit a plane (the 2D equivalent of a straight line) that separates the data.

Statistics has been dealing with problems of classification and regression for a long
time, before we had computers in order to do difficult arithmetic for us, and so straight



Neurons, Neural Networks, and Linear Discriminants � 61

FIGURE 3.11 Left: Non-separable 2D dataset. Right: The same dataset with third coordi-
nate x1 × x2, which makes it separable.

line methods have been around in statistics for many years. They provide a different (and
useful) way to understand what is happening in learning, and by using both statistical and
computer science methods we can get a good understanding of the whole area. We will
see the statistical method of linear regression in Section 3.5, but first we will work through
another example of using the Perceptron. This is meant to be a tutorial example, so I will
give some of the relevant code and results, but leave places for you to fill in the gaps.

3.4.4 Another Example: The Pima Indian Dataset
The UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/) holds lots of
datasets that are used to demonstrate and test machine learning algorithms. For the pur-
poses of testing out the Perceptron and Linear Regressor, we are going to use one that is
very well known. It provides eight measurements of a group of American Pima Indians living
in Arizona in the USA, and the classification is whether or not each person had diabetes.
The dataset is available from the UCI repository (called Pima) and there is a file inside the
folder giving details of what the different variables mean.

Once you have downloaded it, import the relevant modules (NumPy to use the array
methods, PyLab to plot the data, and the Perceptron from the book website) and then
load the data into Python. This requires something like the following (where not all of the
import lines are used immediately, but will be required as more code is developed):

>>> import os
>>> import pylab as pl
>>> import numpy as np
>>> import pcn

>>> os.chdir(’/Users/srmarsla/Book/Datasets/pima’)
>>> pima = np.loadtxt(’pima-indians-diabetes.data’,delimiter=’,’)
>>> np.shape(pima)
(768, 9)

where the path in the os.chdir line will obviously need to be changed to wherever you have
saved the dataset. In the np.loadtxt() command the delimiter specifies which character
is used to separate out the datapoints. The np.shape() method tells that there are 768



62 � Machine Learning: An Algorithmic Perspective

FIGURE 3.12 Plot of the first two dimensions of the Pima Indians dataset showing the
two classes as ‘x’ and ‘◦’.

datapoints, arranged as rows of the file, with each row containing nine numbers. These are
the eight dimensions of data, with the class being the ninth element of each line (indexed
as 8 since Python is zero-indexed). This arrangement, with each line of a file (or row of an
array) being a datapoint is the one that will be used throughout the book.

You should have a look at the dataset. Obviously, you can’t plot the whole thing at
once, since that would require being able to visualise eight dimensions. But you can plot
any two-dimensional subset of the data. Have a look at a few of them. In order to see the two
different classes in the data in your plot, you will have to work out how to use the np.where
command. Once you have worked that out, you will be able to plot them with different
shapes and colours. The pl.plot command is in Matplotlib, so you’ll need to import that
(using import pylab as pl) beforehand. Assuming that you have worked out some way
to store the indices of one class in indices0 and the other in indices1 you can use:

pl.ion()
pl.plot(pima[indices0,0],pima[indices0,1],’go’)
pl.plot(pima[indices1,0],pima[indices1,1],’rx’)
pl.show()

to plot the first two dimensions as green circles and red crosses, which (up to colour, of
course) should look like Figure 3.12. The pl.ion() command ensures that the data is
actually plotted, and might not be needed depending upon your precise software setup;
this is also true of the pl.show() command, which ensures that the graph does not vanish
when the program terminates. Clearly, there is no way that you can find a linear separation
between these two classes with these features. However, you should have a look at some of
the other combinations of features and see if you can find any that are better.

The next thing to do is to try using the Perceptron on the full dataset. You will need to
try out different values for the learning rate and the number of iterations for the Perceptron,
but you should find that you can get around 50-70% correct (use the confusion matrix



Neurons, Neural Networks, and Linear Discriminants � 63

method confmat() to get the results). This isn’t too bad, but it isn’t that good, either. The
results are quite unstable, too; sometimes the results have only 30% accuracy—worse than
chance—which is rather depressing.

p = pcn.pcn(pima[:,:8],pima[:,8:9])
p.pcntrain(pima[:,:8],pima[:,8:9],0.25,100)
p.confmat(pima[:,:8],pima[:,8:9])

This is, of course, unfair testing, since we are testing the network on the same data we
were training it on, and we have already seen that this is unfair in Section 2.2, but we will
do something quick now, which is to use even-numbered datapoints for training, and odd-
numbered datapoints for testing. This is very easy using the : operator, where we specify
the start point, the end point, and the step size. NumPy will fill in any that we leave blank
with the beginning or end of the array as appropriate.

trainin = pima[::2,:8]
testin = pima[1::2,:8]
traintgt = pima[::2,8:9]
testtgt = pima[1::2,8:9]

For now, rather than worrying about training and testing data, we are more interested
in working out how to improve the results. And we can do better by preparing the data a
little, or preprocessing it.

3.4.5 Preprocessing: Data Preparation
Machine learning algorithms tend to learn much more effectively if the inputs and targets
are prepared for analysis before the network is trained. As the most basic example, the
neurons that we are using give outputs of 0 and 1, and so if the target values are not 0
and 1, then they should be transformed so that they are. In fact, it is normal to scale the
targets to lie between 0 and 1 no matter what kind of activation function is used for the
output layer neurons. This helps to stop the weights from getting too large unnecessarily.
Scaling the inputs also helps to avoid this problem.

The most common approach to scaling the input data is to treat each data dimension
independently, and then to either make each dimension have zero mean and unit variance
in each dimension, or simply to scale them so that maximum value is 1 and the minimum
-1. Both of these scalings have similar effects, but the first is a little bit better as it does
not allow outliers to dominate as much. These scalings are commonly referred to as data
normalisation, or sometimes standardisation. While normalisation is not essential for every
algorithm, but it is usually beneficial, and for some of the other algorithms that we will see,
the normalisation will be essential.

In NumPy it is very easy to perform the normalisation by using the built-in np.mean()
and np.var() functions; the only place where care is needed is along which axis the mean
and variance are computed: axis=0 sums down the columns and axis=1 sums across the
rows. Note that only the input variables are normalised in this code. This is not always
true, but here the target variable already has values 0 and 1, which are the possible outputs
for the Perceptron, and we don’t want to change that.



64 � Machine Learning: An Algorithmic Perspective

data = (data - data.mean(axis=0))/data.var(axis=0)
targets = (targets - targets.mean(axis=0))/targets.var(axis=0)

There is one thing to be careful of, which is that if you normalise the training and testing
sets separately in this way then a datapoint that is in both sets will end up being different
in the two, since the mean and variance are probably different in the two sets. For this
reason it is a good idea to normalise the dataset before splitting it into training and testing.

Normalisation can be done without knowing anything about the dataset in advance.
However, there is often useful preprocessing that can be done by looking at the data. For
example, in the Pima dataset, column 0 is the number of times that the person has been
pregnant (did I mention that all the subjects were female?) and column 7 is the age of
the person. Taking the pregnancy variable first, there are relatively few subjects that were
pregnant 8 or more times, so rather than having the number there, maybe they should be
replaced by an 8 for any of these values. Equally, the age would be better quantised into
a set of ranges such as 21–30, 31–40, etc. (the minimum age is 21 in the dataset). This
can be done using the np.where function again, as in this code snippet. If you make these
changes and similar ones for the other values, then you should be able to get massively
better results.

pima[np.where(pima[:,0]>8),0] = 8

pima[np.where(pima[:,7]<=30),7] = 1
pima[np.where((pima[:,7]>30) & (pima[:,7]<=40)),7] = 2
#You need to finish this data processing step

The last thing that we can do for now is to perform a basic form of feature selection and
to try training the classifier with a subset of the inputs by missing out different features
one at a time and seeing if they make the results better. If missing out one feature does
improve the results, then leave it out completely and try missing out others as well. This is
a simplistic way of testing for correlation between the output and each of the features. We
will see better methods when we look at covariance in Section 2.4.2. We can also consider
methods of dimensionality reduction, which produce lower dimensionsal representations of
the data that still include the relevant information; see Chapter 6 for more details.

Now that we have seen how to use the Perceptron on a better example than the logic
functions, we will look at another linear method, but coming from statistics, rather than
neural networks.

3.5 LINEAR REGRESSION
As is common in statistics, we need to separate out regression problems, where we fit a line
to data, from classification problems, where we find a line that separates out the classes,
so that they can be distinguished. However, it is common to turn classification problems
into regression problems. This can be done in two ways, first by introducing an indicator
variable, which simply says which class each datapoint belongs to. The problem is now to
use the data to predict the indicator variable, which is a regression problem. The second
approach is to do repeated regression, once for each class, with the indicator value being 1



Neurons, Neural Networks, and Linear Discriminants � 65

FIGURE 3.13 Linear regression in two and three dimensions.

for examples in the class and 0 for all of the others. Since classification can be replaced by
regression using these methods, we’ll think about regression here.

The only real difference between the Perceptron and more statistical approaches is in
the way that the problem is set up. For regression we are making a prediction about an
unknown value y (such as the indicator variable for classes or a future value of some data)
by computing some function of known values xi. We are thinking about straight lines, so
the output y is going to be a sum of the xi values, each multiplied by a constant parameter:
y =

∑M
i=0 βixi. The βi define a straight line (plane in 3D, hyperplane in higher dimensions)

that goes through (or at least near) the datapoints. Figure 3.13 shows this in two and three
dimensions.

The question is how we define the line (plane or hyperplane in higher dimensions) that
best fits the data. The most common solution is to try to minimise the distance between
each datapoint and the line that we fit. We can measure the distance between a point and a
line by defining another line that goes through the point and hits the line. School geometry
tells us that this second line will be shortest when it hits the line at right angles, and then
we can use Pythagoras’ theorem to know the distance. Now, we can try to minimise an error
function that measures the sum of all these distances. If we ignore the square roots, and
just minimise the sum-of-squares of the errors, then we get the most common minimisation,
which is known as least-squares optimisation. What we are doing is choosing the parameters
in order to minimise the squared difference between the prediction and the actual data
value, summed over all of the datapoints. That is, we have:

N∑
j=0

(
tj −

M∑
i=0

βixij

)2

. (3.21)

This can be written in matrix form as:

(t−Xβ)T (t−Xβ), (3.22)

where t is a column vector containing the targets and X is the matrix of input values (even
including the bias inputs), just as for the Perceptron. Computing the smallest value of this
means differentiating it with respect to the (column) parameter vector β and setting the
derivative to 0, which means that XT (t −Xβ) = 0 (to see this, expand out the brackets,
remembering that ABT = BTA and note that the term βTXtt = tTXβ since they are



66 � Machine Learning: An Algorithmic Perspective

both a scalar term), which has the solution β = (XTX)−1XT t (assuming that the matrix
XTX can be inverted). Now, for a given input vector z, the prediction is zβ. The inverse of
a matrix X is the matrix that satisfies XX−1 = I, where I is the identity matrix, the matrix
that has 1s on the leading diagonal and 0s everywhere else. The inverse of a matrix only
exists if the matrix is square (has the same number of rows as columns) and its determinant
is non-zero.

Computing this is very simple in Python, using the np.linalg.inv() function in
NumPy. In fact, the entire function can be written as (where the 'symbol denotes a
linebreak in the text, so that the command continues on the next line):

def linreg(inputs,targets):
inputs = np.concatenate((inputs,-np.ones((np.shape(inputs)[0],1))),'
axis=1)
beta = np.dot(np.dot(np.linalg.inv(np.dot(np.transpose(inputs),'
inputs)),np.transpose(inputs)),targets)

outputs = np.dot(inputs,beta)

3.5.1 Linear Regression Examples
Using the linear regressor on the logical OR function seems a rather strange thing to do,
since we are performing classification using a method designed explicitly for regression,
trying to fit a surface to a set of 0 and 1 points. Worse, we will view it as an error if we
get say 1.25 and the output should be 1, so points that are in some sense too correct will
receive a penalty! However, we can do it, and it gives the following outputs:

[[ 0.25]
[ 0.75]
[ 0.75]
[ 1.25]]

It might not be clear what this means, but if we threshold the outputs by setting every value
less than 0.5 to 0 and every value above 0.5 to 1, then we get the correct answer. Using it
on the XOR function shows that this is still a linear method:

[[ 0.5]
[ 0.5]
[ 0.5]
[ 0.5]]

A better test of linear regression is to find a real regression dataset. The UCI database
is useful here, as well. We will look at the auto-mpg dataset. This consists of a collection of
a number of datapoints about certain cars (weight, horsepower, etc.), with the aim being to
predict the fuel efficiency in miles per gallon (mpg). This dataset has one problem. There are



Neurons, Neural Networks, and Linear Discriminants � 67

missing values in it (labelled with question marks ‘?’). The np.loadtxt() method doesn’t
like these, and we don’t know what to do with them, anyway, so after downloading the
dataset, manually edit the file and delete all lines where there is a ? in that line. The linear
regressor can’t do much with the names of the cars either, but since they appear in quotes
(") we will tell np.loadtxt that they are comments, using:

auto = np.loadtxt(’/Users/srmarsla/Book/Datasets/auto-mpg/auto-mpg.data.txt’,'
comments=’"’)

You should now separate the data into training and testing sets, and then use the training
set to recover the β vector. Then you use that to get the predicted values on the test set.
However, the confusion matrix isn’t much use now, since there are no classes to enable
us to analyse the results. Instead, we will use the sum-of-squares error, which consists of
computing the difference between the prediction and the true value, squaring them so that
they are all positive, and then adding them up, as is used in the definition of the linear
regressor. Obviously, small values of this measure are good. It can be computed using:

beta = linreg.linreg(trainin,traintgt)

testin = np.concatenate((testin,-np.ones((np.shape(testin)[0],1))),axis=1)
testout = np.dot(testin,beta)
error = np.sum((testout - testtgt)**2)

Now you can test out whether normalising the data helps, and perform feature selection
as we did for the Perceptron. There are other more advanced linear statistical methods.
One of them, Linear Discriminant Analysis, will be considered in Section 6.1 once we have
built up the understanding we need.

FURTHER READING
If you are interested in real brains and want to know more about them, then there are
plenty of popular science books that should interest you, including:

• Susan Greenfield. The Human Brain: A Guided Tour. Orion, London, UK, 2001.

• S. Aamodt and S. Wang. Welcome to Your Brain: Why You Lose Your Car Keys but
Never Forget How to Drive and Other Puzzles of Everyday Life. Bloomsbury, London,
UK, 2008.

If you are looking for something a bit more formal, then the following is a good place to
start (particularly the ‘Roadmaps’ at the beginning):

• Michael A. Arbib, editor. The Handbook of Brain Theory and Neural Networks, 2nd
edition, MIT Press, Cambridge, MA, USA, 2002.

The original paper by McCulloch and Pitts is:

• W.S. McCulloch and W. Pitts. A logical calculus of ideas imminent in nervous activity.
Bulletin of Mathematics Biophysics, 5:115–133, 1943.



68 � Machine Learning: An Algorithmic Perspective

There is a very nice motivation for neural network-based learning in:

• V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, Cam-
bridge, MA, USA, 1984.

If you want to know more about the history of neural networks, then the original paper
on the Perceptron and the book that showed the requirement of linear separability (and
that some people blame for putting the field back 20 years) still make interesting reads.
Another paper that might be of interest is the review article written by Widrow and Lehr,
which summarises some of the seminal work:

• F. Rosenblatt. The Perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

• M.L. Minsky and S.A. Papert. Perceptrons: An Introduction to Computational Ge-
ometry. MIT Press, Cambridge MA, 1969.

• B. Widrow and M.A. Lehr. 30 years of adaptive neural networks: Perceptron, mada-
line, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

Textbooks that cover the same material, although from different viewpoints, include:

• Chapter 5 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

• Sections 3.1–3.3 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Sta-
tistical Learning, 2nd edition, Springer, Berlin, Germany, 2008.

PRACTICE QUESTIONS
Problem 3.1 Consider a neuron with 2 inputs, 1 output, and a threshold activation func-

tion. If the two weights are w1 = 1 and w2 = 1, and the bias is b = −1.5, then what
is the output for input (0, 0)? What about for inputs (1, 0), (0, 1), and (1, 1)?
Draw the discriminant function for this function, and write down its equation. Does
it correspond to any particular logic gate?

Problem 3.2 Work out the Perceptrons that construct logical NOT, NAND, and NOR of
their inputs.

Problem 3.3 The parity problem returns 1 if the number of inputs that are 1 is even, and
0 otherwise. Can a Perceptron learn this problem for 3 inputs? Design the network
and try it.

Problem 3.4 Test out both the Perceptron and linear regressor code from the website on
the parity problem.

Problem 3.5 The Perceptron code on the website is a batch update algorithm, where the
whole of the dataset is fed in to find the errors, and then the weights are updated
afterwards, as is discussed in Section 3.3.5. Convert the code to run as sequential
updates and then compare the results of using the two versions.

Problem 3.6 Try to think of some interesting image processing tasks that cannot be per-
formed by a Perceptron. (Hint: You need to think of tasks where looking at individual
pixels isn’t enough to allow classification.)



Neurons, Neural Networks, and Linear Discriminants � 69

Problem 3.7 The decision boundary hyperplane found by the Perceptron has equation
y(x) = wTx + b = 0. For a point x′, minimise ‖x − x′‖2 to show that the shortest
distance from the point to the hyperplane is |y(x′)|/‖w‖.

Problem 3.8 There is a link to a very large dataset of handwritten figures on the book
website (the MNIST dataset). Download it and use a Perceptron to learn about the
dataset.

Problem 3.9 For the prostate data available via the website, use both the Perceptron and
logistic regressor and compare the results.

Problem 3.10 In the Perceptron Convergence Theorem proof we assumed that ‖x‖ ≤ 1.
Modify the proof so that it only assumes that ‖x‖ ≤ R for some constant R.





CHA PT E R 4

The Multi-layer Perceptron

In the last chapter we saw that while linear models are easy to understand and use, they
come with the inherent cost that is implied by the word ‘linear’; that is, they can only
identify straight lines, planes, or hyperplanes. And this is not usually enough, because the
majority of interesting problems are not linearly separable. In Section 3.4 we saw that
problems can be made linearly separable if we can work out how to transform the features
suitably. We will come back to this idea in Chapter 8, but in this chapter we will instead
consider making more complicated networks.

We have pretty much decided that the learning in the neural network happens in the
weights. So, to perform more computation it seems sensible to add more weights. There are
two things that we can do: add some backwards connections, so that the output neurons
connect to the inputs again, or add more neurons. The first approach leads into recurrent
networks. These have been studied, but are not that commonly used. We will instead consider
the second approach. We can add neurons between the input nodes and the outputs, and
this will make more complex neural networks, such as the one shown in Figure 4.1.

We will think about why adding extra layers of nodes makes a neural network more
powerful in Section 4.3.2, but for now, to persuade ourselves that it is true, we can check
that a prepared network can solve the two-dimensional XOR problem, something that we
have seen is not possible for a linear model like the Perceptron. A suitable network is
shown in Figure 4.2. To check that it gives the correct answers, all that is required is to
put in each input and work through the network, treating it as two different Perceptrons,
first computing the activations of the neurons in the middle layer (labelled as C and D
in Figure 4.2) and then using those activations as the inputs to the single neuron at the
output. As an example, I’ll work out what happens when you put in (1, 0) as an input; the
job of checking the rest is up to you.

Input (1, 0) corresponds to node A being 1 and B being 0. The input to neuron C is
therefore −1× 0.5 + 1× 1 + 0× 1 = −0.5 + 1 = 0.5. This is above the threshold of 0, and
so neuron C fires, giving output 1. For neuron D the input is −1 × 1 + 1 × 1 + 0 × 1 =
−1 + 1 = 0, and so it does not fire, giving output 0. Therefore the input to neuron E is
−1× 0.5 + 1× 1 + 0×−1 = 0.5, so neuron E fires. Checking the result of the inputs should
persuade you that neuron E fires when inputs A and B are different to each other, but does
not fire when they are the same, which is exactly the XOR function (it doesn’t matter that
the fire and not fire have been reversed).

So far, so good. Since this network can solve a problem that the Perceptron cannot, it
seems worth looking into further. However, now we’ve got a much more interesting problem
to solve, namely how can we train this network so that the weights are adapted to generate
the correct (target) answers? If we try the method that we used for the Perceptron we need

71



72 � Machine Learning: An Algorithmic Perspective

FIGURE 4.1 The Multi-layer Perceptron network, consisting of multiple layers of connected
neurons.

FIGURE 4.2 A Multi-layer Perceptron network showing a set of weights that solve the
XOR problem.



The Multi-layer Perceptron � 73

to compute the error at the output. That’s fine, since we know the targets there, so we can
compute the difference between the targets and the outputs. But now we don’t know which
weights were wrong: those in the first layer, or the second? Worse, we don’t know what the
correct activations are for the neurons in the middle of the network. This fact gives the
neurons in the middle of the network their name; they are called the hidden layer (or layers),
because it isn’t possible to examine and correct their values directly.

It took a long time for people who studied neural networks to work out how to solve this
problem. In fact, it wasn’t until 1986 that Rumelhart, Hinton, and McClelland managed it.
However, a solution to the problem was already known by statisticians and engineers—they
just didn’t know that it was a problem in neural networks! In this chapter we are going
to look at the neural network solution proposed by Rumelhart, Hinton, and McClelland,
the Multi-layer Perceptron (MLP), which is still one of the most commonly used machine
learning methods around. The MLP is one of the most common neural networks in use. It
is often treated as a ‘black box’, in that people use it without understanding how it works,
which often results in fairly poor results. Getting to the stage where we understand how it
works and what we can do with it is going to take us into lots of different areas of statistics,
mathematics, and computer science, so we’d better get started.

4.1 GOING FORWARDS
Just as it did for the Perceptron, training the MLP consists of two parts: working out what
the outputs are for the given inputs and the current weights, and then updating the weights
according to the error, which is a function of the difference between the outputs and the
targets. These are generally known as going forwards and backwards through the network.
We’ve already seen how to go forwards for the MLP when we saw the XOR example above,
which was effectively the recall phase of the algorithm. It is pretty much just the same as
the Perceptron, except that we have to do it twice, once for each set of neurons, and we need
to do it layer by layer, because otherwise the input values to the second layer don’t exist.
In fact, having made an MLP with two layers of nodes, there is no reason why we can’t
make one with 3, or 4, or 20 layers of nodes (we’ll discuss whether or not you might want
to in Section 4.3.2). This won’t even change our recall (forward) algorithm much, since we
just work forwards through the network computing the activations of one layer of neurons
and using those as the inputs for the next layer.

So looking at Figure 4.1, we start at the left by filling in the values for the inputs.
We then use these inputs and the first level of weights to calculate the activations of the
hidden layer, and then we use those activations and the next set of weights to calculate
the activations of the output layer. Now that we’ve got the outputs of the network, we can
compare them to the targets and compute the error.

4.1.1 Biases
We need to include a bias input to each neuron. We do this in the same way as we did
for the Perceptron in Section 3.3.2, by having an extra input that is permanently set to -1,
and adjusting the weights to each neuron as part of the training. Thus, each neuron in the
network (whether it is a hidden layer or the output) has 1 extra input, with fixed value.



74 � Machine Learning: An Algorithmic Perspective

4.2 GOING BACKWARDS: BACK-PROPAGATION OF ERROR
It is in the backwards part of the algorithm that things get tricky. Computing the errors
at the output is no more difficult than it was for the Perceptron, but working out what to
do with those errors is more difficult. The method that we are going to look at is called
back-propagation of error, which makes it clear that the errors are sent backwards through
the network. It is a form of gradient descent (which is described briefly below, and also given
its own section in Chapter 9; in that chapter, in Section 9.3.2, we will see how to use the
general gradient descent algorithms for the MLP).

The best way to describe back-propagation properly is mathematically, but this can be
intimidating and difficult to get a handle on at first. I’ve therefore tried to compromise
by using words and pictures in the main text, but putting all of the mathematical details
into Section 4.6. While you should look at that section and try to understand it, it can be
skipped if you really don’t have the background. Although it looks complicated, there are
actually just three things that you need to know, all of which are from differential calculus:
the derivative of 1

2x
2, the fact that if you differentiate a function of x with respect to some

other variable t, then the answer is 0, and the chain rule, which tells you how to differentiate
composite functions.

When we talked about the Perceptron, we changed the weights so that the neurons fired
when the targets said they should, and didn’t fire when the targets said they shouldn’t.
What we did was to choose an error function for each neuron k: Ek = yk − tk, and tried to
make it as small as possible. Since there was only one set of weights in the network, this
was sufficient to train the network.

We still want to do the same thing—minimise the error, so that neurons fire only when
they should—but, with the addition of extra layers of weights, this is harder to arrange.
The problem is that when we try to adapt the weights of the Multi-layer Perceptron, we
have to work out which weights caused the error. This could be the weights connecting the
inputs to the hidden layer, or the weights connecting the hidden layer to the output layer.
(For more complex networks, there could be extra weights between nodes in hidden layers.
This isn’t a problem—the same method works—but it is more confusing to talk about, so
I’m only going to worry about one hidden layer here.)

The error function that we used for the Perceptron was
∑N
k=1Ek =

∑N
k=1 yk− tk, where

N is the number of output nodes. However, suppose that we make two errors. In the first,
the target is bigger than the output, while in the second the output is bigger than the
target. If these two errors are the same size, then if we add them up we could get 0, which
means that the error value suggests that no error was made. To get around this we need to
make all errors have the same sign. We can do this in a few different ways, but the one that
will turn out to be best is the sum-of-squares error function, which calculates the difference
between y and t for each node, squares them, and adds them all together:

E(t,y) = 1
2

N∑
k=1

(yk − tk)2. (4.1)

You might have noticed the 1
2 at the front of that equation. It doesn’t matter that much,

but it makes it easier when we differentiate the function, and that is the name of the game
here: if we differentiate a function, then it tells us the gradient of that function, which is
the direction along which it increases and decreases the most. So if we differentiate an error
function, we get the gradient of the error. Since the purpose of learning is to minimise the
error, following the error function downhill (in other words, in the direction of the negative
gradient) will give us what we want. Imagine a ball rolling around on a surface that looks



The Multi-layer Perceptron � 75

FIGURE 4.3 The weights of the network are trained so that the error goes downhill until
it reaches a local minimum, just like a ball rolling under gravity.

FIGURE 4.4 The threshold function
that we used for the Perceptron.
Note the discontinuity where the
value changes from 0 to 1.

FIGURE 4.5 The sigmoid function,
which looks qualitatively fairly sim-
ilar, but varies smoothly and differ-
entiably.

like the line in Figure 4.3. Gravity will make the ball roll downhill (follow the downhill
gradient) until it ends up in the bottom of one of the hollows. These are places where the
error is small, so that is exactly what we want. This is why the algorithm is called gradient
descent. So what should we differentiate with respect to? There are only three things in the
network that change: the inputs, the activation function that decides whether or not the
node fires, and the weights. The first and second are out of our control when the algorithm
is running, so only the weights matter, and therefore they are what we differentiate with
respect to.

Having mentioned the activation function, this is a good time to point out a little problem
with the threshold function that we have been using for our neurons so far, which is that it
is discontinuous (see Figure 4.4; it has a sudden jump in the middle) and so differentiating
it at that point isn’t possible. The problem is that we need that jump between firing and
not firing to make it act like a neuron. We can solve the problem if we can find an activation
function that looks like a threshold function, but is differentiable so that we can compute the
gradient. If you squint at a graph of the threshold function (for example, Figure 4.4) then it
looks kind of S-shaped. There is a mathematical form of S-shaped functions, called sigmoid
functions (see Figure 4.5). They have another nice property, which is that their derivative
also has a nice form, as is shown in Section 4.6.3 for those who know some mathematics.
The most commonly used form of this function (where β is some positive parameter) is:



76 � Machine Learning: An Algorithmic Perspective

a = g(h) = 1
1 + exp(−βh) . (4.2)

In some texts you will see the activation function given a different form, as:

a = g(h) = tanh(h) = exp(h)− exp(−h)
exp(h) + exp(−h)

, (4.3)

which is the hyperbolic tangent function. This is a different but similar function; it is still a
sigmoid function, but it saturates (reaches its constant values) at±1 instead of 0 and 1, which
is sometimes useful. It also has a relatively simple derivative: d

dx tanh x = (1 − tanh2(x)).
We can convert between the two easily, because if the saturation points are (±1), then we
can convert to (0, 1) by using 0.5× (x+ 1).

So now we’ve got a new form of error computation and a new activation function that
decides whether or not a neuron should fire. We can differentiate it, so that when we change
the weights, we do it in the direction that is downhill for the error, which means that we
know we are improving the error function of the network. As far as an algorithm goes,
we’ve fed our inputs forward through the network and worked out which nodes are firing.
Now, at the output, we’ve computed the errors as the sum-squared difference between the
outputs and the targets (Equation (4.1) above). What we want to do next is to compute
the gradient of these errors and use them to decide how much to update each weight in the
network. We will do that first for the nodes connected to the output layer, and after we
have updated those, we will work backwards through the network until we get back to the
inputs again. There are just two problems:

• for the output neurons, we don’t know the inputs.

• for the hidden neurons, we don’t know the targets; for extra hidden layers, we know
neither the inputs nor the targets, but even this won’t matter for the algorithm we
derive.

So we can compute the error at the output, but since we don’t know what the inputs
were that caused it, we can’t update those second layer weights the way we did for the
Perceptron. If we use the chain rule of differentiation that you all (possibly) remember from
high school then we can get around this problem. Here, the chain rule tells us that if we
want to know how the error changes as we vary the weights, we can think about how the
error changes as we vary the inputs to the weights, and multiply this by how those input
values change as we vary the weights. This is useful because it lets us calculate all of the
derivatives that we want to: we can write the activations of the output nodes in terms of
the activations of the hidden nodes and the output weights, and then we can send the error
calculations back through the network to the hidden layer to decide what the target outputs
were for those neurons. Note that we can do exactly the same computations if the network
has extra hidden layers between the inputs and the outputs. It gets harder to keep track of
which functions we should be differentiating, but there are no new tricks needed.

All of the relevant equations are derived in Section 4.6, and you should read that section
carefully, since it is quite difficult to describe exactly what is going on here in words. The
important thing to understand is that we compute the gradients of the errors with respect
to the weights, so that we change the weights so that we go downhill, which makes the errors
get smaller. We do this by differentiating the error function with respect to the weights, but
we can’t do this directly, so we have to apply the chain rule and differentiate with respect
to things that we know. This leads to two different update functions, one for each of the



The Multi-layer Perceptron � 77

FIGURE 4.6 The forward direction in a Multi-layer Perceptron.

sets of weights, and we just apply these backwards through the network, starting at the
outputs and ending up back at the inputs.

4.2.1 The Multi-layer Perceptron Algorithm
We’ll get into the details of the basic algorithm here, and then, in the next section, have a
look at some practical issues, such as how much training data is needed, how much training
time is needed, and how to choose the correct size of network. We will assume that there
are L input nodes, plus the bias, M hidden nodes, also plus a bias, and N output nodes, so
that there are (L+1)×M weights between the input and the hidden layer and (M+1)×N
between the hidden layer and the output. The sums that we write will start from 0 if they
include the bias nodes and 1 otherwise, and run up to L,M , or N , so that x0 = −1 is the
bias input, and a0 = −1 is the bias hidden node. The algorithm that is described could
have any number of hidden layers, in which case there might be several values for M , and
extra sets of weights between the hidden layers. We will also use i, j, k to index the nodes
in each layer in the sums, and the corresponding Greek letters (ι, ζ, κ) for fixed indices.

Here is a quick summary of how the algorithm works, and then the full MLP training
algorithm using back-propagation of error is described.

1. an input vector is put into the input nodes

2. the inputs are fed forward through the network (Figure 4.6)

• the inputs and the first-layer weights (here labelled as v) are used to decide
whether the hidden nodes fire or not. The activation function g(·) is the sigmoid
function given in Equation (4.2) above

• the outputs of these neurons and the second-layer weights (labelled as w) are
used to decide if the output neurons fire or not

3. the error is computed as the sum-of-squares difference between the network outputs
and the targets

4. this error is fed backwards through the network in order to

• first update the second-layer weights
• and then afterwards, the first-layer weights



78 � Machine Learning: An Algorithmic Perspective

The Multi-layer Perceptron Algorithm

• Initialisation

– initialise all weights to small (positive and negative) random values

• Training
– repeat:

∗ for each input vector:
Forwards phase:
· compute the activation of each neuron j in the hidden layer(s) using:

hζ =
L∑
i=0

xiviζ (4.4)

aζ = g(hζ) = 1
1 + exp(−βhζ)

(4.5)

· work through the network until you get to the output layer neurons,
which have activations (although see also Section 4.2.3):

hκ =
∑
j

ajwjκ (4.6)

yκ = g(hκ) = 1
1 + exp(−βhκ) (4.7)

Backwards phase:
· compute the error at the output using:

δo(κ) = (yκ − tκ) yκ(1− yκ) (4.8)
· compute the error in the hidden layer(s) using:

δh(ζ) = aζ(1− aζ)
N∑
k=1

wζδo(k) (4.9)

· update the output layer weights using:

wζκ ← wζκ − ηδo(κ)ahidden
ζ (4.10)

· update the hidden layer weights using:
vι ← vι − ηδh(κ)xι (4.11)

∗ (if using sequential updating) randomise the order of the input vectors so
that you don’t train in exactly the same order each iteration

– until learning stops (see Section 4.3.3)
• Recall

– use the Forwards phase in the training section above

This provides a description of the basic algorithm. As with the Perceptron, a NumPy
implementation can take advantage of various matrix multiplications, which makes things
easy to read and faster to compute. The implementation on the website is a batch version
of the algorithm, so that weight updates are made after all of the input vectors have been
presented (as is described in Section 4.2.4). The central weight update computations for the
algorithm can be implemented as:



The Multi-layer Perceptron � 79

deltao = (targets-self.outputs)*self.outputs*(1.0-self.outputs)
deltah = self.hidden*(1.0-self.hidden)*(np.dot(deltao,np.transpose(self.'
weights2)))

updatew1 = np.zeros((np.shape(self.weights1)))
updatew2 = np.zeros((np.shape(self.weights2)))

updatew1 = eta*(np.dot(np.transpose(inputs),deltah[:,:-1]))
updatew2 = eta*(np.dot(np.transpose(self.hidden),deltao))
self.weights1 += updatew1
self.weights2 += updatew2

There are a few improvements that can be made to the algorithm, and there are some
important things that need to be considered, such as how many training datapoints are
needed, how many hidden nodes should be used, and how much training the network needs.
We will look at the improvements first, and then move on to practical considerations in
Section 4.3. There are lots of details that are given in this section because it is one of the
early examples in the book; later on things will be skipped over more quickly.

The first thing that we can do is check that this MLP can indeed learn the logic functions,
especially the XOR. We can do that with this code (which is function logic on the website):

import numpy as np
import mlp

anddata = np.array([[0,0,0],[0,1,0],[1,0,0],[1,1,1]])
xordata = np.array([[0,0,0],[0,1,1],[1,0,1],[1,1,0]])

p = mlp.mlp(anddata[:,0:2],anddata[:,2:3],2)
p.mlptrain(anddata[:,0:2],anddata[:,2:3],0.25,1001)
p.confmat(anddata[:,0:2],anddata[:,2:3])

q = mlp.mlp(xordata[:,0:2],xordata[:,2:3],2)
q.mlptrain(xordata[:,0:2],xordata[:,2:3],0.25,5001)
q.confmat(xordata[:,0:2],xordata[:,2:3])

The outputs that this produces is something like:

Iteration: 0 Error: 0.367917569871
Iteration: 1000 Error: 0.0204860723612
Confusion matrix is:
[[ 3. 0.]
[ 0. 1.]]
Percentage Correct: 100.0
Iteration: 0 Error: 0.515798627074
Iteration: 1000 Error: 0.499568173798



80 � Machine Learning: An Algorithmic Perspective

Iteration: 2000 Error: 0.498271692284
Iteration: 3000 Error: 0.480839047738
Iteration: 4000 Error: 0.382706753191
Iteration: 5000 Error: 0.0537169253359
Confusion matrix is:
[[ 2. 0.]
[ 0. 2.]]
Percentage Correct: 100.0

There are a few things to notice about this. One is that it does work, producing the
correct answers, but the other is that even for the AND we need significantly more iterations
than we did for the Perceptron. So the benefits of a more complex network come at a cost,
because it takes substantially more computational time to fit those weights to solve the
problem, even for linear examples. Sometimes, even 5000 iterations are not enough for the
XOR function, and more have to be added.

4.2.2 Initialising the Weights
The MLP algorithm suggests that the weights are initialised to small random numbers,
both positive and negative. The question is how small is small, and does it matter? One
way to get a feeling for this would be to experiment with the code, setting all of the weights
to 0, and seeing how well the network learns, then setting them all to large numbers and
comparing the results. However, to understand why they should be small we can look at
the shape of the sigmoid. If the initial weight values are close to 1 or -1 (which is what we
mean by large here) then the inputs to the sigmoid are also likely to be close to ±1 and so
the output of the neuron is either 0 or 1 (the sigmoid has saturated, reached its maximum
or minimum value). If the weights are very small (close to zero) then the input is still close
to 0 and so the output of the neuron is just linear, so we get a linear model. Both of these
things can be useful for the final network, but if we start off with values that are inbetween
it can decide for itself.

Choosing the size of the initial values needs a little more thought, then. Each neuron
is getting input from n different places (either input nodes if the neuron is in the hidden
layer, or hidden neurons if it is in the output layer). If we view the values of these inputs
as having uniform variance, then the typical input to the neuron will be w

√
n, where w

is the initialisation value of the weights. So a common trick is to set the weights in the
range −1/

√
n < w < 1/

√
n, where n is the number of nodes in the input layer to those

weights. This makes the total input to a neuron have a maximum size of about 1. Further,
if the weights are large, then the activation of a neuron is likely to be at, or close to, 0 or 1
already, which means that the gradients are small, and so the learning is very slow. There is
an interplay here with the value of β in the logistic function, which means that small values
of β (say β = 3.0 or less) are more effective. We use random values for the initialisation so
that the learning starts off from different places for each run, and we keep them all about
the same size because we want all of the weights to reach their final values at about the
same time. This is known as uniform learning and it is important because otherwise the
network will do better on some inputs than others.



The Multi-layer Perceptron � 81

4.2.3 Different Output Activation Functions
In the algorithm described above, we used sigmoid neurons in the hidden layer and the
output layer. This is fine for classification problems, since there we can make the classes be
0 and 1. However, we might also want to perform regression problems, where the output
needs to be from a continuous range, not just 0 or 1. The sigmoid neurons at the output are
not very useful in that case. We can replace the output neurons with linear nodes that just
sum the inputs and give that as their activation (so g(h) = h in the notation of Equation
(4.2)). This does not mean that we change the hidden layer neurons; they stay exactly the
same, and we only modify the output nodes. They are not models of neurons anymore, since
they don’t have the characteristic fire/don’t fire pattern. Even so, they enable us to solve
regression problems, where we want a real number out, not just a 0/1 decision.

There is a third type of output neuron that is also used, which is the soft-max activation
function. This is most commonly used for classification problems where the 1-of-N output
encoding is used, as is described in Section 4.4.2. The soft-max function rescales the outputs
by calculating the exponential of the inputs to that neuron, and dividing by the total sum
of the inputs to all of the neurons, so that the activations sum to 1 and all lie between 0
and 1. As an activation function it can be written as:

yκ = g(hκ) = exp(hκ)∑N
k=1 exp(hk)

. (4.12)

Of course, if we change the activation function, then the derivative of the activation
function will also change, and so the learning rule will be different. The changes that need
to be made to the algorithm are in Equations (4.7) and (4.8), and are derived in Section 4.6.5.
For the linear activation function the first is replaced by:

yκ = g(hκ) = hκ, (4.13)

while the second is replaced by:

δo(κ) = (yκ − tκ) . (4.14)

For the soft-max activation, the update equation that replaces (4.8) is

δo(κ) = (yκ − tκ)yκ(δκK − yK), (4.15)

where δκK = 1 if κ = K and 0 otherwise; see Section 4.6.5 for further details. However, if
we modify the error function as well, to have the cross-entropy form (where ln is the natural
logarithm):

Ece = −
N∑
k=1

tk ln(yk), (4.16)

then the delta term is Equation (4.14), just as for the linear output; for more details, see
Section 4.6.6. Computing these update equations requires computing the error function that
is being optimised, and then differentiating it. These additions can be added into the code
by allowing the user to specify the type of output activation, which has to be done twice,
once in the mlpfwd function, and once in the mlptrain function. In the former, the new
piece of code can be written as:



82 � Machine Learning: An Algorithmic Perspective

# Different types of output neurons
if self.outtype == ’linear’:

return outputs
elif self.outtype == ’logistic’:

return 1.0/(1.0+np.exp(-self.beta*outputs))
elif self.outtype == ’softmax’:

normalisers = np.sum(np.exp(outputs),axis=1)*np.ones((1,np.shape(outputs)'
[0]))
return np.transpose(np.transpose(np.exp(outputs))/normalisers)

else:
print "error"

4.2.4 Sequential and Batch Training
The MLP is designed to be a batch algorithm. All of the training examples are presented
to the neural network, the average sum-of-squares error is then computed, and this is used
to update the weights. Thus there is only one set of weight updates for each epoch (pass
through all the training examples). This means that we only update the weights once for
each iteration of the algorithm, which means that the weights are moved in the direction
that most of the inputs want them to move, rather than being pulled around by each input
individually. The batch method performs a more accurate estimate of the error gradient,
and will thus converge to the local minimum more quickly.

The algorithm that was described earlier was the sequential version, where the errors
are computed and the weights updated after each input. This is not guaranteed to be as
efficient in learning, but it is simpler to program when using loops, and it is therefore
much more common. Since it does not converge as well, it can also sometimes avoid local
minima, thus potentially reaching better solutions. While the description of the algorithm is
sequential, the NumPy implementation on the book website is a batch version, because the
matrix manipulation methods of NumPy make that easy. It is, however, relatively simple
to modify it to use sequential update (making this change to the code is suggested as an
exercise at the end of the chapter). In a sequential version, the order of the weight updates
can matter, which is why the pseudocode version of the algorithm include a suggestion about
randomising the order of the input vectors at each iteration. This can significantly improve
the speed with which the algorithm learns. NumPy has a useful function that assists with
this, np.random.shuffle(), which takes a list of numbers and reorders them. It can be
used like this:

np.random.shuffle(change)
inputs = inputs[change,:]
targets = targets[change,:]

4.2.5 Local Minima
The driving force behind the learning rule is the minimisation of the network error by
gradient descent (using the derivative of the error function to make the error smaller). This



The Multi-layer Perceptron � 83

FIGURE 4.7 In 2D, downhill means at right angles to the lines of constant contour. Imagine
walking down a hill with your eyes closed. If you find a direction that stays flat, then it is
quite likely that perpendicular to that the ground goes uphill or downhill. However, this
is not the direction that takes you directly towards the local minimum.

means that we are performing an optimisation: we are adapting the values of the weights in
order to minimise the error function. As should be clear by now, the way that we are doing
this is by approximating the gradient of the error and following it downhill so that we end
up at the bottom of the slope. However, following the slope downhill only guarantees that
we end up at a local minimum, a point that is lower than those close to it. If we imagine a
ball rolling down a hill, it will settle at the bottom of a dip. However, there is no guarantee
that it will have stopped at the lowest point—only the lowest point locally. There may be a
much lower point over the next hill, but the ball can’t see that, and it doesn’t have enough
energy to climb over the hill and find the global minimum (have another look at Figure 4.3
to see a picture of this).

Gradient descent works in the same way in two or more dimensions, and has similar
(and worse) problems. The problem is that efficient downhill directions in two dimensions
and higher are harder to compute locally. Standard contour maps provide beautiful images
of gradients in our three-dimensional world, and if you imagine that you are walking in a
hilly area aiming to get to the bottom of the nearest valley then you can get some idea of
what is going on. Now suppose that you close your eyes, so that you can only feel which
direction to go by moving one step and checking if you are higher up or lower down than
you were. There will be places where going downwards as steeply as possible at the current
point will not take you much closer to the valley bottom. There can be two reasons for this.
The first is that you find a nearby local minimum, while the second is that sometimes the
steepest direction is effectively across the valley, not towards the global minimum. This is
shown in Figure 4.7.

All of these things are true for most of our optimisation problems, including the MLP. We
don’t know where the global minimum is because we don’t know what the error landscape
looks like; we can only compute local features of it for the place we are in at the moment.
Which minimum we end up in depends on where we start. If we begin near the global
minimum, then we are very likely to end up in it, but if we start near a local minimum we
will probably end up there. In addition, how long it will take to get to the minimum that
we do find depends upon the exact appearance of the landscape at the current point.

We can make it more likely that we find the global minimum by trying out several
different starting points by training several different networks, and this is commonly done.
However, we can also try to make it less likely that the algorithm will get stuck in local
minima. There is a moderately effective way of doing this, which is discussed next.



84 � Machine Learning: An Algorithmic Perspective

FIGURE 4.8 Adding momentum can help to avoid local minima, and also makes the dy-
namics of the optimisation more stable, improving convergence.

4.2.6 Picking Up Momentum
Let’s go back to the analogy of the ball rolling down the hill. The reason that the ball stops
rolling is because it runs out of energy at the bottom of the dip. If we give the ball some
weight, then it will generate momentum as it rolls, and so it is more likely to overcome
a small hill on the other side of the local minimum, and so more likely to find the global
minimum. We can implement this idea in our neural network learning by adding in some
contribution from the previous weight change that we made to the current one. In two
dimensions it will mean that the ball rolls more directly towards the valley bottom, since on
average that will be the correct direction, rather than being controlled by the local changes.
This is shown in Figure 4.8.

There is another benefit to momentum. It makes it possible to use a smaller learning
rate, which means that the learning is more stable. The only change that we need to make
to the MLP algorithm is in Equations (4.10) and (4.11), where we need to add a second
term to the weight updates so that they have the form:

wtζκ ← wt−1
ζκ + ηδo(κ)ahiddenζ + α∆wt−1

ζκ , (4.17)

where t is used to indicate the current update and t− 1 is the previous one. ∆wt−1
ζκ is the

previous update that we made to the weights (so ∆wtζκ = ηδo(κ)ahiddenζ + α∆wt−1
ζκ ) and

0 < α < 1 is the momentum constant. Typically a value of α = 0.9 is used. This is a very
easy addition to the code, and can improve the speed of learning a lot.

updatew1 = eta*(np.dot(np.transpose(inputs),deltah[:,:-1])) + '
momentum*updatew1
updatew2 = eta*(np.dot(np.transpose(hidden),deltao)) + momentum*updatew2

Another thing that can be added is known as weight decay. This reduces the size of the
weights as the number of iterations increases. The argument goes that small weights are
better since they lead to a network that is closer to linear (since they are close to zero, they
are in the region where the sigmoid is increasing linearly), and only those weights that are
essential to the non-linear learning should be large. After each learning iteration through
all of the input patterns, every weight is multiplied by some constant 0 < ε < 1. This
makes the network simpler and can often produce improved results, but unfortunately, it



The Multi-layer Perceptron � 85

isn’t fail-safe: occasionally it can make the learning significantly worse, so it should be used
with care. Setting the value of ε is typically done experimentally.

4.2.7 Minibatches and Stochastic Gradient Descent
In Section 4.2.4 it was stated that the batch algorithm converges to a local minimum faster
than the sequential algorithm, which computes the error for each input individually and
then does a weight update, but that the latter is sometimes less likely to get stuck in local
minima. The reason for both of these observations is that the batch algorithm makes a
better estimate of the steepest descent direction, so that the direction it chooses to go is a
good one, but this just leads to a local minimum.

The idea of a minibatch method is to find some happy middle ground between the two,
by splitting the training set into random batches, estimating the gradient based on one of
the subsets of the training set, performing a weight update, and then using the next subset
to estimate a new gradient and using that for the weight update, until all of the training
set have been used. The training set are then randomly shuffled into new batches and the
next iteration takes place. If the batches are small, then there is often a reasonable degree
of error in the gradient estimate, and so the optimisation has the chance to escape from
local minima, albeit at the cost of heading in the wrong direction.

A more extreme version of the minibatch idea is to use just one piece of data to estimate
the gradient at each iteration of the algorithm, and to pick that piece of data uniformly at
random from the training set. So a single input vector is chosen from the training set, and
the output and hence the error for that one vector computed, and this is used to estimate the
gradient and so update the weights. A new random input vector (which could be the same
as the previous one) is then chosen and the process repeated. This is known as stochastic
gradient descent, and can be used for any gradient descent problem, not just the MLP. It is
often used if the training set is very large, since it would be very expensive to use the whole
dataset to estimate the gradient in that case.

4.2.8 Other Improvements
There are a few other things that can be done to improve the convergence and behaviour
of the back-propagation algorithm. One is to reduce the learning rate as the algorithm
progresses. The reasoning behind this is that the network should only be making large-scale
changes to the weights at the beginning, when the weights are random; if it is still making
large weight changes later on, then something is wrong.

Something that results in much larger performance gains is to include information about
the second derivatives of the error with respect to the weights. In the back-propagation
algorithm we use the first derivatives to drive the learning. However, if we have knowledge
of the second derivatives as well, we can use them as well to improve the network. This will
be described in more detail in Section 9.1.

4.3 THE MULTI-LAYER PERCEPTRON IN PRACTICE
The previous section looked at the design and implementation of the MLP network itself.
In this section, we are going to look more at choices that can be made about the network in
order to use it for solving real problems. We will then apply these ideas to using the MLP
to find solutions to four different types of problem: regression, classification, time-series
prediction, and data compression.



86 � Machine Learning: An Algorithmic Perspective

4.3.1 Amount of Training Data
For the MLP with one hidden layer there are (L + 1) ×M + (M + 1) ×N weights, where
L,M,N are the number of nodes in the input, hidden, and output layers, respectively.
The extra +1s come from the bias nodes, which also have adjustable weights. This is a
potentially huge number of adjustable parameters that we need to set during the training
phase. Setting the values of these weights is the job of the back-propagation algorithm,
which is driven by the errors coming from the training data. Clearly, the more training
data there is, the better for learning, although the time that the algorithm takes to learn
increases. Unfortunately, there is no way to compute what the minimum amount of data
required is, since it depends on the problem. A rule of thumb that has been around for
almost as long as the MLP itself is that you should use a number of training examples that
is at least 10 times the number of weights. This is probably going to be a very large number
of examples, so neural network training is a fairly computationally expensive operation,
because we need to show the network all of these inputs lots of times.

4.3.2 Number of Hidden Layers
There are two other considerations concerning the number of weights that are inherent in
the calculation above, which is the choice of the number of hidden nodes, and the number of
hidden layers. Making these choices is obviously fundamental to the successful application
of the algorithm. We will shortly see a pictorial demonstration of the fact that two hidden
layers is the most that you ever need for normal MLP learning. In fact, this result can
be strengthened: it is possible to show mathematically that one hidden layer with lots of
hidden nodes is sufficient. This is known as the Universal Approximation Theorem; see the
Further Reading section for more details. However, the bad news is that there is no theory
to guide the choice of the number of hidden nodes. You just have to experiment by training
networks with different numbers of hidden nodes and then choosing the one that gives the
best results, as we will see in Section 4.4.

We can use the back-propagation algorithm for a network with as many layers as we like,
although it gets progressively harder to keep track of which weights are being updated at any
given time. Fortunately, as was mentioned above, we will never normally need more than two
layers (that is, one hidden layer and the output layer). This is because we can approximate
any smooth functional mapping using a linear combination of localised sigmoidal functions.
There is a sketchy demonstration that two hidden layers are sufficient using pictures in
Figure 4.9. The basic idea is that by combining sigmoid functions we can generate ridge-like
functions, and by combining ridge-like functions we can generate functions with a unique
maximum. By combining these and transforming them using another layer of neurons,
we obtain a localised response (a ‘bump’ function), and any functional mapping can be
approximated to arbitrary accuracy using a linear combination of such bumps. The way
that the MLP does this is shown in Figure 4.10. We will use this idea again when we look
at approximating functions, for example using radial basis functions in Chapter 5. Note that
Figure 4.9 shows that two hidden layers are sufficient. In fact, they aren’t necessary: one
hidden layer will do, although it may require an arbitrarily large number of hidden nodes.
This is known as the Universal Approximation Theorem, and the (mathematical) paper that
shows this is provided in the references at the end of the chapter.

Two hidden layers are sufficient to compute these bump functions for different inputs,
and so if the function that we want to learn (approximate) is continuous, the network can
compute it. It can therefore approximate any decision boundary, not just the linear one
that the Perceptron computed.



The Multi-layer Perceptron � 87

FIGURE 4.9 The learning of the MLP can be shown as the output of a single sigmoidal
neuron (a), which can be added to others, including reversed ones, to get a hill shape (b).
Adding another hill at 90◦ produces a bump (c) , which can be sharpened to any extent
we want (d), with the bumps added together in the output layer. Thus the MLP learns a
local representation of individual inputs.

FIGURE 4.10 Schematic of the effective learning shape at each stage of the MLP.



88 � Machine Learning: An Algorithmic Perspective

FIGURE 4.11 The effect of overfitting on the training and validation error curves, with the
point at which early stopping will stop the learning marked.

4.3.3 When to Stop Learning
The training of the MLP requires that the algorithm runs over the entire dataset many times,
with the weights changing as the network makes errors in each iteration. The question is
how to decide when to stop learning, and this is a question that we are now ready to answer.
It is unfortunate that the most obvious options are not sufficient: setting some predefined
number N of iterations, and running until that is reached runs the risk that the network
has overfitted by then, or not learnt sufficiently, and only stopping when some predefined
minimum error is reached might mean the algorithm never terminates, or that it overfits.
Using both of these options together can help, as can terminating the learning once the
error stops decreasing.

However, the validation set gives us something rather more useful, since we can use it
to monitor the generalisation ability of the network at its current stage of learning. If we
plot the sum-of-squares error during training, it typically reduces fairly quickly during the
first few training iterations, and then the reduction slows down as the learning algorithm
performs small changes to find the exact local minimum. We don’t want to stop training
until the local minimum has been found, but, as we’ve just discussed, keeping on training
too long leads to overfitting of the network. This is where the validation set comes in useful.
We train the network for some predetermined amount of time, and then use the validation
set to estimate how well the network is generalising. We then carry on training for a few
more iterations, and repeat the whole process. At some stage the error on the validation
set will start increasing again, because the network has stopped learning about the function
that generated the data, and started to learn about the noise that is in the data itself (shown
in Figure 4.11). At this stage we stop the training. This technique is called early stopping.



The Multi-layer Perceptron � 89

4.4 EXAMPLES OF USING THE MLP
This section is intended to be practical, so you should follow the examples at a computer,
and add to them as you wish. The MLP is rather too complicated to enable us to work
through the weight changes as we did with the Perceptron.

Instead, we shall look at some demonstrations of how to make the network learn about
some data. As was mentioned above, we shall look at the four types of problems that are
generally solved using an MLP: regression, classification, time-series prediction, and data
compression/data denoising.

4.4.1 A Regression Problem
The regression problem we will look at is a very simple one. We will take a set of samples
generated by a simple mathematical function, and try to learn the generating function (that
describes how the data was made) so that we can find the values of any inputs, not just the
ones we have training data for.

The function that we will use is a very simple one, just a bit of a sine wave. We’ll make
the data in the following way (make sure that you have NumPy imported as np first):

x = np.ones((1,40))*np.linspace(0,1,40)
t = np.sin(2*np.pi*x) + np.cos(4*np.pi*x) + np.random.randn(40)*0.2
x = x.T
t = t.T

The reason why we have to use the reshape() method is that NumPy defaults to lists
for arrays that are N × 1; compare the results of the np.shape() calls below, and the effect
of the transpose operator .T on the array:

>>> x = np.linspace(0,1,40)
>>> np.shape(x)
(40,)
>>> np.shape(x.T)
(40,)
>>>
>>> x = np.linspace(0,1,40).reshape((1,40))
>>> np.shape(x)
(1, 40)
>>> np.shape(x.T)
(40, 1)

You can plot this data to see what it looks like (the results of which are shown in
Figure 4.12) using:

>>> import pylab as pl
>>> pl.plot(x,t,’.’)



90 � Machine Learning: An Algorithmic Perspective

We can now train an MLP on the data. There is one input value, x and one output
value t, so the neural network will have one input and one output. Also, because we want
the output to be the value of the function, rather than 0 or 1, we will use linear neurons
at the output. We don’t know how many hidden neurons we will need yet, so we’ll have to
experiment to see what works.

Before getting started, we need to normalise the data using the method shown in Sec-
tion 3.4.5, and then separate the data into training, testing, and validation sets. For this
example there are only 40 datapoints, and we’ll use half of them as the training set, although
that isn’t very many and might not be enough for the algorithm to learn effectively. We can
split the data in the ratio 50:25:25 by using the odd-numbered elements as training data,
the even-numbered ones that do not divide by 4 for testing, and the rest for validation:

train = x[0::2,:]
test = x[1::4,:]
valid = x[3::4,:]
traintarget = t[0::2,:]
testtarget = t[1::4,:]
validtarget = t[3::4,:]

With that done, it is just a case of making and training the MLP. To start with, we will
construct a network with three nodes in the hidden layer, and run it for 101 iterations with
a learning rate of 0.25, just to see that it works:

>>> import mlp
>>> net = mlp.mlp(train,traintarget,3,outtype=’linear’)
>>> net.mlptrain(train,traintarget,0.25,101)

The output from this will look something like:

Iteration: 0 Error: 12.3704163654
Iteration: 100 Error: 8.2075961385

so we can see that the network is learning, since the error is decreasing. We now need to
do two things: work out how many hidden nodes we need, and decide how long to train the
network for. In order to solve the first problem, we need to test out different networks and
see which get lower errors, but to do that properly we need to know when to stop training.
So we’ll solve the second problem first, which is to implement early stopping.

We train the network for a few iterations (let’s make it 10 for now), then evaluate the
validation set error by running the network forward (i.e., the recall phase). Learning should
stop when the validation set error starts to increase. We’ll write a Python program that
does all the work for us. The important point is that we keep track of the validation error
and stop when it starts to increase. The following code is a function within the MLP on the
book website. It keeps track of the last two changes in validation error to ensure that small
fluctuations in the learning don’t change it from early stopping to premature stopping:



The Multi-layer Perceptron � 91

FIGURE 4.12 The data that we
will learn using an MLP, con-
sisting of some samples from a
sine wave with Gaussian noise
added.

FIGURE 4.13 Plot of the error as the MLP learns
(top line is total error on the training set; bottom
line is on the validation set; it is larger on the
training set because there are more datapoints in
this set). Early-stopping halts the learning at the
point where there is no line, where the crosses
become triangles. The learning was continued to
show that the error got slightly worse afterwards.

old_val_error1 = 100002
old_val_error2 = 100001
new_val_error = 100000

count = 0
while (((old_val_error1 - new_val_error) > 0.001) or ((old_val_error2 - '
old_val_error1)>0.001)):

count+=1
self.mlptrain(inputs,targets,0.25,100)
old_val_error2 = old_val_error1
old_val_error1 = new_val_error
validout = self.mlpfwd(valid)
new_val_error = 0.5*np.sum((validtargets-validout)**2)

print "Stopped", new_val_error,old_val_error1, old_val_error2

Figure 4.13 gives an example of the output of running the function. It plots the training
and validation errors. The point at which early stopping makes the learning finish is the
point where there is a missing validation datapoint. I ran it on after that so you could see
that the validation error did not improve after that, and so early stopping found the correct
point.

We can now return to the problem of finding the right size of network. There is one
important thing to remember, which is that the weights are initialised randomly, and so



92 � Machine Learning: An Algorithmic Perspective

the fact that a particular size of network gets a good solution once does not mean it is the
right size, it could have been a lucky starting point. So each network size is run 10 times,
and the average is monitored. The following table shows the results of doing this, reporting
the sum-of-squares validation error, for a few different sizes of network:

No. of hidden nodes 1 2 3 5 10 25 50
Mean error 2.21 0.52 0.52 0.52 0.55 1.35 2.56
Standard deviation 0.17 0.00 0.00 0.02 0.00 1.20 1.27
Max error 2.31 0.53 0.54 0.54 0.60 3.230 3.66
Min error 2.10 0.51 0.50 0.50 0.47 0.42 0.52

Based on these numbers, we would select a network with a small number of hidden nodes,
certainly between 2 and 10 (and the smaller the better, in general), since their maximum
error is much smaller than a network with just 1 hidden node. Note also that the error
increases once too many hidden nodes are used, since the network has too much variation
for the problem. You can also do the same kind of experimentation with more hidden layers.

4.4.2 Classification with the MLP
Using the MLP for classification problems is not radically different once the output en-
coding has been worked out. The inputs are easy: they are just the values of the feature
measurements (suitably normalised). There are a couple of choices for the outputs. The first
is to use a single linear node for the output, y, and put some thresholds on the activation
value of that node. For example, for a four-class problem, we could use:

Class is:


C1 if y ≤ −0.5
C2 if − 0.5 < y ≤ 0
C3 if 0 < y ≤ 0.5
C4 if y > 0.5

(4.18)

However, this gets impractical as the number of classes gets large, and the boundaries
are artificial; what about an example that is very close to a boundary, say y = 0.5? We
arbitrarily guess that it belongs to class C3, but the neural network doesn’t give us any
information about how close it was to the boundary in the output, so we don’t know that
this was a difficult example to classify. A more suitable output encoding is called 1-of-N
encoding. A separate node is used to represent each possible class, and the target vectors
consist of zeros everywhere except for in the one element that corresponds to the correct
class, e.g., (0, 0, 0, 1, 0, 0) means that the correct result is the 4th class out of 6. We are
therefore using binary output values (we want each output to be either 0 or 1).

Once the network has been trained, performing the classification is easy: simply choose
the element yk of the output vector that is the largest element of y (in mathematical
notation, pick the yk for which yk > yj∀j 6= k; ∀ means for all, so this statement says pick
the yk that is bigger than all other possible values yj). This generates an unambiguous
decision, since it is very unlikely that two output neurons will have identical largest output
values. This is known as the hard-max activation function (since the neuron with the highest
activation is chosen to fire and the rest are ignored). An alternative is the soft-max function,
which we saw in Section 4.2.3, and which has the effect of scaling the output of each neuron
according to how large it is in comparison to the others, and making the total output sum
to 1. So if there is one clear winner, it will have a value near 1, while if there are several



The Multi-layer Perceptron � 93

values that are close to each other, they will each have a value of about 1
p , where p is the

number of output neurons that have similar values.
There is one other thing that we need to be aware of when performing classification,

which is true for all classifiers. Suppose that we are doing two-class classification, and 90%
of our data belongs to class 1. (This can happen: for example in medical data, most tests
are negative in general.) In that case, the algorithm can learn to always return the negative
class, since it will be right 90% of the time, but still a completely useless classifier! So you
should generally make sure that you have approximately the same number of each class
in your training set. This can mean discarding a lot of data from the over-represented
class, which may seem rather wasteful. There is an alternative solution, known as novelty
detection, which is to train the data on the data in the negative class only, and to assume
that anything that looks different to that is a positive example. There is a reference about
novelty detection in the readings at the end of the chapter.

4.4.3 A Classification Example: The Iris Dataset
As an example we are going to look at another example from the UCI Machine Learning
repository. This one is concerned with classifying examples of three types of iris (flower) by
the length and width of the sepals and petals and is called iris. It was originally worked
on by R.A. Fisher, a famous statistician and biologist, who analysed it in the 1930s.

Unfortunately we can’t currently load this into NumPy using loadtxt() because the
class (which is the last column) is text rather than a number, and the txt in the function
name doesn’t mean that it reads text, only numbers in plaintext format. There are two
alternatives. One is to edit the data in a text editor using search and replace, and the other
is to use some Python code, such as this function:

def preprocessIris(infile,outfile):

stext1 = ’Iris-setosa’
stext2 = ’Iris-versicolor’
stext3 = ’Iris-virginica’
rtext1 = ’0’
rtext2 = ’1’
rtext3 = ’2’

fid = open(infile,"r")
oid = open(outfile,"w")

for s in fid:
if s.find(stext1)>-1:

oid.write(s.replace(stext1, rtext1))
elif s.find(stext2)>-1:

oid.write(s.replace(stext2, rtext2))
elif s.find(stext3)>-1:

oid.write(s.replace(stext3, rtext3))
fid.close()
oid.close()



94 � Machine Learning: An Algorithmic Perspective

You can then load it from the new file using loadtxt(). In the dataset, the last column
is the class ID, and the others are the four measurements. We’ll start by normalising the
inputs, which we’ll do in the same way as in Section 3.4.5, but using the maximum rather
than the variance, and leaving the class IDs alone for now:

iris = np.loadtxt(’iris_proc.data’,delimiter=’,’)
iris[:,:4] = iris[:,:4]-iris[:,:4].mean(axis=0)
imax = np.concatenate((iris.max(axis=0)*np.ones((1,5)),np.abs(iris.min('
axis=0))*np.ones((1,5))),axis=0).max(axis=0)
iris[:,:4] = iris[:,:4]/imax[:4]

The first few datapoints will then look like:

>>> print iris[0:5,:]
[[-0.36142626 0.33135215 -0.7508489 -0.76741803 0. ]
[-0.45867099 -0.04011887 -0.7508489 -0.76741803 0. ]
[-0.55591572 0.10846954 -0.78268251 -0.76741803 0. ]
[-0.60453809 0.03417533 -0.71901528 -0.76741803 0. ]
[-0.41004862 0.40564636 -0.7508489 -0.76741803 0. ]]

We now need to convert the targets into 1-of-N encoding, from their current encoding
as class 1, 2, or 3. This is pretty easy if we make a new matrix that is initially all zeroes,
and simply set one of the entries to be 1:

# Split into training, validation, and test sets
target = np.zeros((np.shape(iris)[0],3));
indices = np.where(iris[:,4]==0)
target[indices,0] = 1
indices = np.where(iris[:,4]==1)
target[indices,1] = 1
indices = np.where(iris[:,4]==2)
target[indices,2] = 1

We now need to separate the data into training, testing, and validation sets. There are
150 examples in the dataset, and they are split evenly amongst the three classes, so the
three classes are the same size and we don’t need to worry about discarding any datapoints.
We’ll split them into half training, and one quarter each testing and validation. If you look
at the file, you will notice that the first 50 are class 1, the second 50 class 2, etc. We therefore
need to randomise the order before we split them into sets, to ensure that there are not too
many of one class in one of the sets:

# Randomly order the data
order = range(np.shape(iris)[0])



The Multi-layer Perceptron � 95

np.random.shuffle(order)
iris = iris[order,:]
target = target[order,:]

train = iris[::2,0:4]
traint = target[::2]
valid = iris[1::4,0:4]
validt = target[1::4]
test = iris[3::4,0:4]
testt = target[3::4]

We’re now finally ready to set up and train the network. The commands should all be
familiar from earlier:

>>> import mlp
>>> net = mlp.mlp(train,traint,5,outtype=’softmax’)
>>> net.earlystopping(train,traint,valid,validt,0.1)
>>> net.confmat(test,testt)
Confusion matrix is:
[[ 16. 0. 0.]
[ 0. 12. 2.]
[ 0. 1. 6.]]
Percentage Correct: 91.8918918919

This tells us that the algorithm got nearly all of the test data correct, misclassifying just
two examples of class 2 and one of class 3.

4.4.4 Time-Series Prediction
There is a common data analysis task known as time-series prediction, where we have a set
of data that show how something varies over time, and we want to predict how the data
will vary in the future. It is quite a difficult task, but a fairly important one. It is useful
in any field where there is data that appears over time, which is to say almost any field.
Most notable (if often unsuccessful) uses have been in trying to predict stock markets and
disease patterns. The problem is that even if there is some regularity in the time-series, it
can appear over many different scales. For example, there is often seasonal variation—if we
plotted average temperature over several years, we would notice that it got hotter in the
summer and colder in the winter, but we might not notice if there was a overall upward or
downward trend to the summer temperatures, because the summer peaks are spread too
far apart in the data.

The other problems with the data are practical. How many datapoints should we look
at to make the prediction (i.e., how many inputs should there be to the neural network)
and how far apart in time should we space those inputs (i.e., should we use every second
datapoint, every 10th, or all of them)? We can write this as an equation, where we are
predicting y using a neural network that is written as a function f(·):



96 � Machine Learning: An Algorithmic Perspective

FIGURE 4.14 Part of a time-series plot, showing the datapoints and the meanings of τ
and k.

y = x(t+ τ) = f(x(t), x(t− τ), . . . , x(t− kτ)), (4.19)

where the two questions about how many datapoints and how far apart they should be
come down to choices about τ and k.

The target data for training the neural network is simple, because it comes from further
up the time-series, and so training is easy. Suppose that τ = 2 and k = 3. Then the first
input data are elements 1, 3, 5 of the dataset, and the target is element 7. The next input
vector is elements 2, 4, 6, with target 8, and then 3, 5, 7 with target 9. You train the network
by passing through the time-series (remembering to save some data for testing), and then
press on into the future making predictions. Figure 4.14 shows an example of a time-series
with τ = 3 and k = 4, with a set of datapoints that make up an input vector marked as
white circles, and the target coloured black.

The dataset I am going to use is available on the book website. It provides the daily
measurement of the thickness of the ozone layer above Palmerston North in New Zealand
(where I live) between 1996 and 2004. Ozone thickness is measured in Dobson Units, which
are 0.01mm thickness at 0 degrees Celsius and 1 atmosphere of pressure. I’m sure that I
don’t need to tell you that the reduction in stratospheric ozone is partly responsible for
global warming and the increased incidence of skin cancer, and that in New Zealand we are
fairly close to the large hole over Antarctica. What you might not know is that the thickness
of the ozone layer varies naturally over the year. This should be obvious in the plot shown
in Figure 4.15. A typical time-series problem is to predict the ozone levels into the future
and see if you can detect an overall drop in the mean ozone level.

You can load the data using PNoz = loadtxt(’PNOz.dat’) (once you’ve downloaded
it from the website), which will load the data and stick it into an array called PNoz. There
are 4 elements to each vector: the year, the day of the year, and the ozone level and sulphur
dioxide level, and there are 2855 readings. To just plot the ozone data so that you can see
what it looks like, use plot(arange(shape(PNoz)[0]),PNoz[:,2],’.’).

The difficult bit is assembling the input vector from the time-series data. The first thing



The Multi-layer Perceptron � 97

FIGURE 4.15 Plot of the ozone layer thickness above Palmerston North in New Zealand
between 1996 and 2004.

is to choose values of τ and k. Then it is just a question of picking k values out of the array
with spacing τ , which is a good use for the slice operator, as in this code:

test = inputs[-800:,:]
testtargets = targets[-800,:]
train = inputs[:-800:2,:]
traintargets = targets[:-800:2]
valid = inputs[1:-800:2,:]
validtargets = targets[1:-800:2]

You then need to assemble training, testing, and validation sets. However, some care
is needed here since you need to ensure that they are not picked systematically into each
group, (for example, if the inputs are the even-indexed datapoints, but some feature is
only seen at odd datapoint times, then it will be completely missed). This can be averted
by randomising the order of the datapoints first. However, it is also common to use the
datapoints near the end as part of the test set; some possible results from using the MLP
in this way are shown in Figure 4.16.

From here you can treat time-series as regression problems: the output nodes need to
have linear activations, and you aim to minimise the sum-of-squares error. Since there are
no classes, the confusion matrix is not useful. The only extra work is that in addition to
testing MLPs with different numbers of input nodes and hidden nodes, you also need to
consider different values of τ and k.

4.4.5 Data Compression: The Auto-Associative Network
We are now going to consider an interesting variation of the MLP. Suppose that we train
the network to reproduce the inputs at the output layer (called auto-associative learning;
sometimes the network is known as an autoencoder). The network is trained so that whatever



98 � Machine Learning: An Algorithmic Perspective

FIGURE 4.16 Plot of 400 predicted and actual output values of the ozone data using the
MLP as a time-series predictor with k = 3 and τ = 2.

you show it at the input is reproduced at the output, which doesn’t seem very useful at
first, but suppose that we use a hidden layer that has fewer neurons than the input layer
(see Figure 4.17). This bottleneck hidden layer has to represent all of the information in the
input, so that it can be reproduced at the output. It therefore performs some compression of
the data, representing it using fewer dimensions than were used in the input. This gives us
some idea of what the hidden layers of the MLP are doing: they are finding a different (often
lower dimensional) representation of the input data that extracts important components of
the data, and ignores the noise.

This auto-associative network can be used to compress images and other data. A
schematic of this is shown in Figure 4.18: the 2D image is turned into a 1D vector of
inputs by cutting the image into strips and sticking the strips into a long line. The values
of this vector are the intensity (colour) values of the image, and these are the input values.
The network learns to reproduce the same image at the output, and the activations of the
hidden nodes are recorded for each image. After training, we can throw away the input
nodes and first set of weights of the network. If we insert some values in the hidden nodes
(their activations for a particular image; see Figure 4.19), then by feeding these activations
forward through the second set of weights, the correct image will be reproduced on the
output. So all we need to store are the set of second-layer weights and the activations of
the hidden nodes for each image, which is the compressed version.

Auto-associative networks can also be used to denoise images, since, after training, the
network will reproduce the trained image that best matches the current (noisy) input. We
don’t throw away the first set of weights this time, but if we feed a noisy version of the
image into the inputs, then the network will produce the image that is closest to the noisy
version at the outputs, which will be the version it learnt on, which is uncorrupted by noise.



The Multi-layer Perceptron � 99

FIGURE 4.17 The auto-associative network. The network is trained to reproduce the inputs
at the outputs, passing them through the bottleneck hidden layer that compresses the
data.

FIGURE 4.18 Schematic showing how images are fed into the auto-associative network for
compression.



100 � Machine Learning: An Algorithmic Perspective

FIGURE 4.19 Schematic showing how the hidden nodes and second layer of weights can
be used to regain the compressed images after the network has been trained.

You might be wondering what this representation in the hidden nodes looks like. In
fact, if the nodes all have linear activation, then what the network learns to compute are
the Principal Components of the input data. Principal Components Analysis (PCA) is a useful
dimensionality reduction technique, and is described in Section 6.2.

4.5 A RECIPE FOR USING THE MLP
We have covered a lot in this chapter, so I’m going to give you a ‘recipe’ for how to use the
Multi-layer Perceptron when presented with a dataset. This is, by necessity, a simplification
of the problem, but it should serve to remind you of many of the important features.

Select inputs and outputs for your problem Before anything else, you need to think
about the problem you are trying to solve, and make sure that you have data for
the problem, both input vectors and target outputs. At this stage you need to choose
what features are suitable for the problem (something we’ll talk about more in other
chapters) and decide on the output encoding that you will use — standard neurons, or
linear nodes. These things are often decided for you by the input features and targets
that you have available to solve the problem. Later on in the learning it can also be
useful to re-evaluate the choice by training networks with some input feature missing
to see if it improves the results at all.

Normalise inputs Rescale the data by subtracting the mean value from each element of
the input vector, and divide by the variance (or alternatively, either the maximum or
minus the minimum, whichever is greater).

Split the data into training, testing, and validation sets You cannot test the learn-
ing ability of the network on the same data that you trained it on, since it will generally
fit that data very well (often too well, overfitting and modelling the noise in the data
as well as the generating function). We generally split the data into three sets, one
for training, one for testing, and then a third set for validation, which is testing how



The Multi-layer Perceptron � 101

well the network is learning during training. The ratio between the sizes of the three
groups depends on how much data you have, but is often around 50:25:25. If you do
not have enough data for this, use cross-validation instead.

Select a network architecture You already know how many input nodes there will be,
and how many output neurons. You need to consider whether you will need a hidden
layer at all, and if so how many neurons it should have in it. You might want to
consider more than one hidden layer. The more complex the network, the more data
it will need to be trained on, and the longer it will take. It might also be more subject
to overfitting. The usual method of selecting a network architecture is to try several
with different numbers of hidden nodes and see which works best.

Train a network The training of the neural network consists of applying the Multi-layer
Perceptron algorithm to the training data. This is usually run in conjunction with
early stopping, where after a few iterations of the algorithm through all of the training
data, the generalisation ability of the network is tested by using the validation set.
The neural network is very likely to have far too many degrees of freedom for the
problem, and so after some amount of learning it will stop modelling the generating
function of the data, and start to fit the noise and inaccuracies inherent in the training
data. At this stage the error on the validation set will start to increase, and learning
should be stopped.

Test the network Once you have a trained network that you are happy with, it is time to
use the test data for the first (and only) time. This will enable you to see how well the
network performs on some data that it has not seen before, and will tell you whether
this network is likely to be usable for other data, for which you do not have targets.

4.6 DERIVING BACK-PROPAGATION
This section derives the back-propagation algorithm. This is important to understand how
and why the algorithm works. There isn’t actually that much mathematics involved except
some slightly messy algebra. In fact, there are only three things that you really need to
know. One is the derivative (with respect to x) of 1

2x
2, which is x, and another is the chain

rule, which says that dy
dx = dy

dt
dt
dx . The third thing is very simple: dydx = 0 if y is not a function

of x. With those three things clear in your mind, just follow through the algebra, and you’ll
be fine. We’ll work in simple steps.

4.6.1 The Network Output and the Error
The output of the neural network (the end of the forward phase of the algorithm) is a
function of three things:

• the current input (x)

• the activation function g(·) of the nodes of the network

• the weights of the network (v for the first layer and w for the second)

We can’t change the inputs, since they are what we are learning about, nor can we change
the activation function as the algorithm learns. So the weights are the only things that we
can vary to improve the performance of the network, i.e., to make it learn. However, we do
need to think about the activation function, since the threshold function that we used for



102 � Machine Learning: An Algorithmic Perspective

the Perceptron is not differentiable (it has a discontinuity at 0). We’ll think about a better
one in Section 4.6.3, but first we’ll think about the error of the network. Remember that we
have run the algorithm forwards, so that we have fed the inputs (x) into the algorithm, used
the first set of weights (v) to compute the activations of the hidden neurons, then those
activations and the second set of weights (w) to compute the activations of the output
neurons, which are the outputs of the network (y). Note that I’m going to use i to be an
index over the input nodes, j to be an index over the hidden layer neurons, and k to be an
index over the output neurons.

4.6.2 The Error of the Network
When we discussed the Perceptron learning rule in the previous chapter we motivated it
by minimising the error function E =

∑N
k=1 yk − tk. We then invented a learning rule that

made this error smaller. We are going to do much better this time, because everything is
computed from the principles of gradient descent.

To begin with, let’s think about the error of the network. This is obviously going to
have something to do with the difference between the outputs y and the targets t, but I’m
going to write it as E(v,w) to remind us that the only things that we can change are the
weights v and w, and that changing the weights changes the output, which in turn changes
the error.

For the Perceptron we computed the error as E =
∑N
k=1 yk − tk, but there are some

problems with this: if tk > yk, then the sign of the error is different to when yk > tk, so if
we have lots of output nodes that are all wrong, but some have positive sign and some have
negative sign, then they might cancel out. Instead, we’ll choose the sum-of-squares error
function, which calculates the difference between yk and tk for each node k, squares them,
and adds them together (I’ve missed out the v in E(w) because we don’t use them here):

E(w) = 1
2

N∑
k=1

(yk − tk)2 (4.20)

= 1
2

N∑
k=1

g
 M∑
j=0

wjkaj

− tk
2

(4.21)

The second line adds in the input from the hidden layer neurons and the second-layer
weights to decide on the activations of the output neurons. For now we’re going to think
about the Perceptron and index the input nodes by i and the output nodes by k, so Equation
(4.21) will be replaced by:

1
2

N∑
k=1

[
g

(
L∑
i=0

wikxi

)
− tk

]2

. (4.22)

Now we can’t differentiate the threshold function, which is what the Perceptron used
for g(·), because it has a discontinuity (sudden jump) at the threshold value. So I’m going
to miss it out completely for the moment. Also, for the Perceptron there are no hidden
neurons, and so the activation of an output neuron is just yκ =

∑L
i=0 wiκxi where xi is the

value of an input node, and the sum runs over the number of input nodes, including the
bias node.

We are going to use a gradient descent algorithm that adjusts each weight wικ for fixed



The Multi-layer Perceptron � 103

values of ι and κ, in the direction of the negative gradient of E(w). In what follows, the no-
tation ∂ means the partial derivative, and is used because there are lots of different functions
that we can differentiate E with respect to: all of the different weights. If you don’t know
what a partial derivative is, think of it as being the same as a normal derivative, but taking
care that you differentiate in the correct direction. The gradient that we want to know is
how the error function changes with respect to the different weights:

∂E

∂wικ
= ∂

∂wικ

(
1
2

N∑
k=1

(yk − tk)2

)

= 1
2

N∑
k=1

2(yk − tk) ∂

∂wικ

(
yk −

L∑
i=0

wiκxi

)
(4.23)

(4.24)

Now tk is not a function of any of the weights, since it is a value given to the algorithm,
so ∂tk

∂wικ
= 0 for all values of k, ι, κ, and the only part of

∑L
i=0 wiκxi that is a function of

wικ is when i = ι, that is wικ itself, which has derivative 1. Hence:

∂E

∂wικ
=

N∑
k=1

(tk − yk)(−xι). (4.25)

Now the idea of the weight update rule is that we follow the gradient downhill, that is,
in the direction − ∂E

∂wικ
. So the weight update rule (when we include the learning rate η) is:

wικ ← wικ + η(tκ − yκ)xι, (4.26)
which hopefully looks familiar (see Equation (3.3)). Note that we are computing yκ differ-
ently: for the Perceptron we used the threshold activation function, whereas in the work
above we ignored the threshold function. This isn’t very useful if we want units that act
like neurons, because neurons either fire or do not fire, rather than varying continuously.
However, if we want to be able to differentiate the output in order to use gradient descent,
then we need a differentiable activation function, so that’s what we’ll talk about now.

4.6.3 Requirements of an Activation Function
In order to model a neuron we want an activation function that has the following properties:

• it must be differentiable so that we can compute the gradient

• it should saturate (become constant) at both ends of the range, so that the neuron
either fires or does not fire

• it should change between the saturation values fairly quickly in the middle

There is a family of functions called sigmoid functions because they are S-shaped (see
Figure 4.5) that satisfy all those criteria perfectly. The form in which it is generally used is:

a = g(h) = 1
1 + exp(−βh) , (4.27)

where β is some positive parameter. One happy feature of this function is that its derivative
has an especially nice form:



104 � Machine Learning: An Algorithmic Perspective

g′(h) = dg

dh
= d

dh
(1 + e−βh)−1 (4.28)

= −1(1 + e−βh)−2 de
−βh

dh
(4.29)

= −1(1 + e−βh)−2(−βe−βh) (4.30)

= βe−βh

(1 + e−βh)2 (4.31)

= βg(h)(1− g(h)) (4.32)
= βa(1− a) (4.33)

We’ll be using this derivative later. So we’ve now got an error function and an activation
function that we can compute derivatives of. We will consider some other possible activa-
tion functions for the output neurons in Section 4.6.5 and an alternative error function in
Section 4.6.6. The next thing to do is work out how to use them in order to adjust the
weights of the network.

4.6.4 Back-Propagation of Error
It is now that we’ll need the chain rule that I reminded you of earlier. In the form that we
want, it looks like this:

∂E

∂wζκ
= ∂E

∂hκ

∂hκ
∂wζκ

, (4.34)

where hκ =
∑M
j=0 wjκaζ is the input to output-layer neuron κ; that is, the sum of the

activations of the hidden-layer neurons multiplied by the relevant (second-layer) weights.
So what does Equation (4.34) say? It tells us that if we want to know how the error at
the output changes as we vary the second-layer weights, we can think about how the error
changes as we vary the input to the output neurons, and also about how those input values
change as we vary the weights.

Let’s think about the second term first (in the third line we use the fact that ∂wjκ
∂wζκ

= 0
for all values of j except j = ζ, when it is 1):

∂hκ
∂wζκ

=
∂
∑M
j=0 wjκaj

∂wζκ
(4.35)

=
M∑
j=0

∂wjκaj
∂wζκ

(4.36)

= aζ . (4.37)

Now we can worry about the ∂E
∂hκ

term. This term is important enough to get its own
term, which is the error or delta term:

δo(κ) = ∂E

∂hκ
. (4.38)

Let’s start off by trying to compute this error for the output. We can’t actually compute



The Multi-layer Perceptron � 105

it directly, since we don’t know much about the inputs to a neuron, we just know about its
output. That’s fine, because we can use the chain rule again:

δo(κ) = ∂E

∂hκ
= ∂E

∂yκ

∂yκ
∂hκ

. (4.39)

Now the output of output layer neuron κ is

yκ = g(houtput
κ ) = g

 M∑
j=0

wjκa
hidden
j

 , (4.40)

where g(·) is the activation function. There are different possible choices for g(·) includ-
ing the sigmoid function given in Equation (4.27), so for now I’m going to leave it as a
function. I’ve also started labelling whether h refers to an output or hidden layer neuron,
just to avoid any possible confusion. We don’t need to worry about this for the activations,
because we use y for the activations of output neurons and a for hidden neurons. In Equa-
tion (4.43) I’ve substituted in the expression for the error at the output, which we computed
in Equation (4.21):

δo(κ) = ∂E

∂g
(
h

output
κ

) ∂g
(
h

output
κ

)
∂h

output
κ

(4.41)

= ∂E

∂g
(
h

output
κ

)g′ (houtput
κ

)
(4.42)

= ∂

∂g
(
h

output
κ

) [1
2

N∑
k=1

(
g(houtput

k )− tk
)2
]
g′
(
houtput
κ

)
(4.43)

=
(
g(houtput

κ )− tκ
)
g′(houtput

κ ) (4.44)

= (yκ − tκ)g′(houtput
κ ), (4.45)

where g′(hκ) denotes the derivative of g with respect to hκ. This will change depending
upon which activation function we use for the output neurons, so for now we will write the
update equation for the output layer weights in a slightly general form and pick it up again
at the end of the section:

wζκ ← wζκ − η
∂E

∂wζκ

= wζκ − ηδo(κ)aζ . (4.46)

where we are using the minus sign because we want to go downhill to minimise the error.
We don’t actually need to do too much more work to get to the first layer weights, vι,

which connects input ι to hidden node ζ. We need the chain rule (Equation (4.34)) one
more time to get to these weights, remembering that we are working backwards through the
network so that k runs over the output nodes. The way to think about this is that each
hidden node contributes to the activation of all of the output nodes, and so we need to
consider all of these contributions (with the relevant weights).



106 � Machine Learning: An Algorithmic Perspective

δh(ζ) =
N∑
k=1

∂E

∂h
output
k

∂h
output
k

∂hhidden
ζ

(4.47)

=
N∑
k=1

δo(k)
∂h

output
k

∂hhidden
ζ

, (4.48)

where we obtain the second line by using Equation (4.38). We now need a nicer expression
for that derivative. The important thing that we need to remember is that inputs to the
output layer neurons come from the activations of the hidden layer neurons multiplied by
the second layer weights:

houtput
κ =

M∑
j=0

wjκg
(
hhidden
j

)
, (4.49)

which means that:

∂h
output
κ

∂hhidden
ζ

=
∂g
(∑M

j=0 wjκh
hidden
j

)
∂hhidden

j

. (4.50)

We can now use a fact that we’ve used before, which is that ∂hζ
∂hj

= 0 unless j = ζ, when
it is 1. So:

∂h
output
κ

∂hhidden
ζ

= wζκg
′(aζ). (4.51)

The hidden nodes always have sigmoidal activation functions, so that we can use the
derivative that we computed in Equation (4.33) to get that g′(aζ) = βaζ(1− aζ),
which allows us to compute:

δh(ζ) = βaζ(1− aζ)
N∑
k=1

δo(k)wζ . (4.52)

This means that the update rule for vι is:

vι ← vι − η
∂E

∂vι

= vι − ηaζ(1− aζ)
(

N∑
k=1

δo(k)wζ

)
xι. (4.53)

Note that we can do exactly the same computations if the network has extra hidden
layers between the inputs and the outputs. It gets harder to keep track of which functions
we should be differentiating, but there are no new tricks needed.



The Multi-layer Perceptron � 107

4.6.5 The Output Activation Functions
The sigmoidal activation function that we have created is aimed at making the nodes act
a bit like neurons, either firing or not firing. This is very important in the hidden layer,
but earlier in the chapter we have observed two cases where it is not suitable for the
output neurons. One was regression, where we want the output to be continuous, and one
was multi-class classification, where we want only one of the output neurons to fire. We
identified possible activation functions for these cases, and here we will derive the delta
term δo for them. As a reminder, the three functions are:

Linear yκ = g(hκ) = hκ

Sigmoidal yκ = g(hκ) = 1/(1 + exp(−βhκ)

Soft-max yκ = g(hκ) = exp(hκ)/
∑N
k=1 exp(hk)

For each of these we need the derivative with respect to each of the output weights so
that we can use Equation (4.45).

This is easy for the first two cases, and tells us that for linear outputs δo(κ) = (yκ −
t(κ))yκ, while for sigmoidal outputs it is δo(κ) = β(yκ − t(κ))yκ(1− yκ).

However, we have to do some more work for the soft-max case, since we haven’t differ-
entiated it yet. If we write it as:

∂

∂hK
yκ = ∂

∂hK

exp(hκ)
(

N∑
k=1

exp(hk)
)−1 (4.54)

then the problem becomes clear: we have a product of two things to differentiate, and three
different indices to worry about. Further, the k index runs over all the output nodes, and
so includes K and κ within it. There are two cases: either K = κ, or it does not. If they
are the same, then we can write that ∂ exp(hκ)

∂hkappa
= exp(hκ) to get (where the last term in the

first line comes from the use of the chain rule):

∂

∂hκ

exp(hκ)
(

N∑
k=1

exp(hk)
)−1

= exp(hκ)
(

N∑
k=1

exp(hk)
)−1

− exp(hκ)
(

N∑
k=1

exp(hk)
)−2

exp(hκ)

= yκ(1− yκ). (4.55)

For the case where K 6= κ things are a little easier, and we get:

∂

∂hK
exp(hκ)

(
N∑
k=1

exp(hk)
)−1

= − exp(hκ) exp(hK)
(

N∑
k=1

exp(hk)
)−2

= −yκyK . (4.56)

Using the Kronecker delta function δij , which is 1 if i = j and 0 otherwise, we can write
the two cases in one equation to get the delta term:



108 � Machine Learning: An Algorithmic Perspective

δo(κ) = (yκ − tκ)yκ(δκK − yK). (4.57)

The very last thing to think about is whether or not the sum-of-squares error function
is always the best one to use.

4.6.6 An Alternative Error Function
We have been using the sum-of-squares error function throughout this chapter. It is easy to
compute and works well in general; we will see another benefit of it in Section 9.2. However,
for classification tasks we are assuming that the outputs represent different, independent
classes, and this means that we can think of the activations of the nodes as giving us a
probability that each class is the correct one.

In this probabilistic interpretation of the outputs, we can ask how likely we are to see
each target given the set of weights that we are using. This is known as the likelihood and
the aim is to maximise it, so that we predict the targets as well as possible. If we have a 1
output node, taking values 0 or 1, then the likelihood is:

p(t|w) = ytkk (1− yk)1−tk . (4.58)

In order to turn this into a minimisation function we put a minus sign in front, and it
will turn out to be useful to take the logarithm of it as well, which produces the cross-entropy
error function, which is (for N output nodes):

Ece = −
N∑
k=1

tk ln(yk), (4.59)

where ln is the natural logarithm. This error function has the nice property that when
we use the soft-max function the derivatives are very easy because the exponential and
logarithm are inverse functions, and so the delta term is simply δo(κ) = yκ − tκ.

FURTHER READING
The original papers describing the back-propagation algorithm are listed here, along with
a well-known introduction to neural networks:

• D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations
by back-propagating errors. Nature, 323(99):533–536, 1986a.

• D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, editors. Parallel
Distributed Processing. MIT Press, Cambridge, MA, 1986b.

• R. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine,
pages 4–22, 1987.

For more on the Universal Approximation Theorem, which shows that one hidden layer
is sufficient, some references (which are not for the mathematically faint-hearted) are:

• G. Cybenko. Approximations by superpositions of sigmoidal functions. Mathematics
of Control, Signals, and Systems, 2(4):303–314, 1989.

• Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.



The Multi-layer Perceptron � 109

If you are interested in novelty detection, then a review article is:

• S. Marsland. Novelty detection in learning systems. Neural Computing Surveys, 3:
157–195, 2003.

The topics in this chapter are covered in any book on machine learning and neural
networks. Different treatments are given by:

• Sections 5.1–5.3 of C.M. Bishop. Pattern Recognition and Machine Learning. Springer,
Berlin, Germany, 2006.

• Section 5.4 of J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of
Neural Computation. Addison-Wesley, Redwood City, CA, USA, 1991.

• Sections 4.4–4.7 of T. Mitchell. Machine Learning. McGraw-Hill, New York, USA,
1997.

PRACTICE QUESTIONS
Problem 4.1 Work through the MLP shown in Figure 4.2 to ensure that it does solve the

XOR problem.

Problem 4.2 Suppose that the local power company wants to predict electricity demand
for the next 5 days. They have the data about daily demand for the last 5 years.
Typically, the demand will be a number between 80 and 400.

1. Describe how you could use an MLP to make the prediction. What parameters
would you have to choose, and what do you think would be sensible values for
them?

2. If the weather forecast for the next day, being the estimated temperatures for
daytime and nighttime, was available, how would you add that into your system?

3. Do you think that this system would work well for predicting power consumption?
Are there demands that it would not be able to predict?

Problem 4.3 Design an MLP that would learn to hyphenate words correctly. You would
have a dictionary that shows correct hyphenation examples for lots of words, and
you need to choose methods of encoding the inputs and outputs that say whether
a hyphen is allowed between each pair of letters. You should also describe how you
would perform training and testing.

Problem 4.4 Would the previous system be better than just using the dictionary?

Problem 4.5 Modify the code on the book website to work sequentially rather than in
batch mode. Compare the results on the iris dataset.

Problem 4.6 Modify the code so that it performs minibatch optimisation and then
stochastic gradient descent (both described in Section 4.2.7) and compare the results
with using the standard algorithm on the Pima Indian dataset that was described in
Section 3.4.4. Experiment with different sizes for the minibatches.

Problem 4.7 Modify the code to allow another hidden layer to be used. You will have to
work out the gradient as well in order to compute the weight updates for the extra
layer of weights. Test this new network on the Pima Indian dataset that was described
in Section 3.4.4.



110 � Machine Learning: An Algorithmic Perspective

Problem 4.8 Modify the code to use the alternative error term in Section 4.6.6 and see
what difference it makes for classification problems.

Problem 4.9 A hospital manager wants to predict how many beds will be needed in the
geriatric ward. He asks you to design a neural network method for making this pre-
diction. He has data for the last 5 years that cover:

• The number of people in the geriatric ward each week.
• The weather (average day and night temperatures).
• The season of the year (spring, summer, autumn, winter).
• Whether or not there was an epidemic on (use a binary variable: yes or no).

Design a suitable MLP for this problem, considering how you would choose the number
of hidden neurons, the inputs (and whether there are any other inputs you need) and
the preprocessing, and whether or not you would expect the system to work.

Problem 4.10 Look into the MNIST dataset that is available via the book website. Im-
plement an MLP to learn about them and test different numbers of hidden nodes.

Problem 4.11 A recurrent network has some of its outputs connected to its own inputs, so
that the outputs at time t are fed back into the network at time t+ 1. This can be a
different way to deal with time-series data. Modify the MLP code so that it acts as a
recurrent network, and test it out on the Palmerston North ozone data on the book
website.

Problem 4.12 The alternative activation function that can be used in tanh(h). Show that
tanh(h) = 2g(2h)− 1, where g is given by Equation (4.2). Use this to show that there
is an exactly equivalent MLP using the tanh activation function. Modify the code to
implement it.



CHA PT E R 5

Radial Basis Functions and
Splines

In the Multi-layer Perceptron, the activations of the hidden nodes were decided by whether
the inputs times the weights were above a threshold that made the neuron fire. While we
had to sacrifice some of this ideal to the requirement for differentiability, it was still the case
that the product of the inputs and the weights was summed, and if it was well above the
threshold then the neuron fired, if it was well below the threshold it did not, and between
those values it acted linearly. For any input vector several of the neurons could fire, and
the outputs of these neurons times their weights were then summed in the second layer to
decide which neurons should fire there. This has the result that the activity in the hidden
layer is distributed over the neurons there, and it is this pattern of activation that was used
as the inputs to the next layer.

In this chapter we are going to consider a different approach, which is to use local
neurons, where each neuron only responds to inputs in one particular part of the input
space. The argument is that if inputs are similar, then the responses to those inputs should
also be similar, and so the same neuron should respond. Extending this a little, if an input is
between two others, then the neurons that respond to each of the inputs should both fire to
some extent. We can justify this by thinking about a typical classification task, since if two
input vectors are similar, then they should presumably belong to the same class. In order
to understand this better we are going to need two concepts, one from machine learning,
weight space, and one from neuroscience, receptive fields.

5.1 RECEPTIVE FIELDS
In Section 2.1.1 we argued that one way to compute the activations of neurons was to use
the concept of weight space to abstractly plot them in the same set of dimensions as the
inputs, and to have neurons that were ‘closer’ to the input being more highly activated. To
see why this might be a good idea, we need to look at the idea of receptive fields.

Suppose that we have a set of ‘nodes’ (since they are no longer models of neurons in
any sense, the terminology changes to call the components of the network ‘nodes’). As in
Section 2.1.1, these nodes are imagined to be sitting in weight space, and we can change
their locations by adjusting the weights. We want to decide how strongly a node matches the
current input, so just like in Section 2.1.1 we pretend that input space and weight space are
the same, and measure the distance between the input vector position and the position of

111



112 � Machine Learning: An Algorithmic Perspective

each node. The activation of these nodes can then be computed according to their distance
to the current input, in ways that we’ll get to later.

To put this idea of nodes firing when they are ‘close’ to the input into some sort of
context, we are going to have a quick digression into the idea of receptive fields. Imagine the
back of your eye. Light comes through the pupil and hits the retina, which has light-sensitive
cells (rods and cones) spread across it. Now suppose that you look at the night sky with
one bright star in it. How will you see the star, or to put it another way, which rods on your
retina will detect the light of the star? The obvious answer is that there will be one localised
area of your retina that picks up the light, and a few rods that are close together will detect
it, while the rest don’t see anything except the dark night sky. However, if you looked at
the sky again a few hours later, when the position of the star in the sky had changed, then
different rods would detect it (assuming that your head is in the same position, of course).
So even though the appearance of the star is the same, because the relative position of the
star has changed because the earth has rotated, so the rods that you use to detect it have
changed. The receptive field of a particular rod within your eye is the area on your retina
that it responds to light from. We can extend this to particular sensory neurons as well, so
that the response of particular neurons may depend on the location of the stimulus.

We might want to know what shape these receptive fields are, and how the response of
the rod (or neuron) changes as the stimulus moves away from the area that matches the rod.
If we were equipped with a neuroscience lab with electrodes and measurement devices (and
animals, and ethics approval) then we could measure exactly this. We could show pictures
of light blobs on dark backgrounds to animals and measure the amount of neuronal activity
in particular neurons as the position of the blob moved. And people have done exactly this.

For now, let’s just try a thought experiment: it’s simpler and cheaper, and nothing gets
hurt. If we are looking at our star again, then we have already worked out that there is a
set of rods that is detecting the light, and plenty of others that aren’t. What about a rod
that is just at the boundary where the light from the star stops being visible? Let’s pick
one where its receptive field stops just to the left of this boundary, so that the neuron is not
firing. Now move your head slightly to the right, so that it is just inside. What happens?
For a real neuron it would start to spike. Assuming that the number of times the neuron
spikes says how bright the light that it detects is (which probably isn’t exactly true), then
it wouldn’t spike very often. As you move your head to the right again so that the light
on that particular neuron gets brighter and brighter, that neuron will spike more and more
often, until once you’ve moved your head past the light and the spiking slows down, and
eventually stops. The left-hand graph of Figure 5.1 shows this, with the points plotted and
a smooth curve that goes through them.

Now suppose that you repeat the experiment, but this time you start with the star below
your vision and move your head down until you can see it, and then keep on moving your
head further down. The exact same thing happens. The graph in the middle of Figure 5.1
shows this. So for this example, it doesn’t matter where the point of light is with regard
to the neuron, just how far away it is. In other words, if we were to put the star on a wire
circle centred on one particular rod within our eye (a bit painful, but that’s the good thing
about thought experiments), then as we moved the light along the wire the activation of the
rod would not change. Only the radius of the circle matters, which is why functions that
model this are known as radial functions. Mathematically, we say that they only depend on
the two-norm ‖xi − x‖2, that is the Euclidean distance between the point and the centre of
the circle.

The main thing that we have not decided yet is how the drop-off should occur from
response to maximum brightness to nothing. For real neurons the drop-off has to change



Radial Basis Functions and Splines � 113

FIGURE 5.1 Left: Count of the number of spikes per second as the distance of a rod from
the light varies horizontally. Note that it does not go to zero, but to the spontaneous
firing rate of the neuron, which is how often it fires without input. Centre: The same
thing for vertical motion. Right: The combination of the two makes a set of circles.

between integer values, but for our mathematical model it doesn’t: we can make it decrease
smoothly, so that we can use well-behaved (that is, differentiable) mathematical functions.
Then we can pick any function that we can differentiate, that decreases symmetrically (in
all directions, or radially) from a maximum to zero. There are obviously lots of possible
functions with this property that we can pick, but for now we’ll go with by far the most
common one in statistics, the Gaussian, something that was important enough to get its
own section earlier on (Section 2.4.3). It doesn’t really go to 0, but if we truncate it a little,
then the output value becomes 0 fairly quickly as we move away from the centre. We do not
typically use a real Gaussian function for the activation function, ignoring the normalisation
to get an approximation to it written as:

g(x,w, σ) = exp
(
−‖x−w‖2

2σ2

)
. (5.1)

The choice of σ in this equation is quite important, since it controls the width of the
Gaussian. If we make it infinitely large, then the neuron responds to every input. Suppose
instead that we make σ smaller and smaller, so that the Gaussian gets thinner and thinner.
This means that the receptive field gets narrower and narrower. Eventually, this neuron will
respond to exactly one stimulus, and even then, if the input is corrupted by noise, it won’t
recognise it. This function is sometimes known as an indicator or delta function. Picking the
value of σ for each individual node needs to be part of the algorithm.

So, we can use Gaussians to model these receptive fields for neurons so that nodes will
fire strongly if the input is close to them, less strongly if the input is further away, and not at
all if it is even further away. We are going to see several neural networks in different chapters
that use these ideas, mostly for unsupervised learning, but first we will see a supervised one,
the radial basis function (RBF) network. Figure 5.2 shows a set of nodes that represent radial
bases in weight space. They are often known as centres because they each form the centre
of their own circle or ellipse.



114 � Machine Learning: An Algorithmic Perspective

FIGURE 5.2 The effect of radial basis functions in weight space. The points show the
position of the RBF in weight space, while the circle around each point shows the receptive
field of the node. In higher dimensions these circles become hyperspheres.

5.2 THE RADIAL BASIS FUNCTION (RBF) NETWORK
The argument that started this chapter was that inputs that are close together should
generate the same output, whereas inputs that are far apart should not. We have seen that
using Gaussian activations, where the output of a neuron is proportional to the distance
between the input and the weight, gives us receptive fields. The Gaussian activations mean
that normalising the input vectors is very important for the RBF network; Section 14.1.3
will make the reason for this clearer. For any input that we present to a set of these neurons,
some of them will fire strongly, some weakly, and some will not fire at all, depending upon
the distance between the weights and the particular input in weight space. We can treat
these nodes as a hidden layer, just as we did for the MLP, and connect up some output
nodes in a second layer. This simply requires adding weights from each hidden (RBF) neuron
to a set of output nodes. This is known as an RBF network, and a schematic is shown in
Figure 5.3. In the figure, the nodes in both the hidden and output layer are drawn the same,
but we haven’t decided what kind of nodes to use in the output layer—they don’t need to
have Gaussian activations. The simplest solution is to use McCulloch and Pitts neurons,
in which case this second part of the network is simply a Perceptron network. Note that
there is a bias input for the output layer, which deals with the situation when none of the
RBF neurons fire. Since we already know exactly how to train the Perceptron, training this
second part of the network is easy. The questions that we need to ask are whether or not it
is any better than using a Perceptron, and how to train the first layer weights that position
the RBF neurons.

A little thought should persuade you that this network is better than just a Perceptron,
since the inputs that are given to the Perceptron are non-linear functions of the inputs. In



Radial Basis Functions and Splines � 115

FIGURE 5.3 The Radial Basis Function network consists of input nodes connected by
weights to a set of RBF neurons, which fire proportionally to the distance between the
input and the neuron in weight space. The activations of these nodes are used as inputs
to the second layer, which consists of linear nodes. The schematic looks very similar to
the MLP except for the lack of a bias in the hidden layer.



116 � Machine Learning: An Algorithmic Perspective

FIGURE 5.4 We can space out RBF nodes to cover the whole of space by continuing this
pattern everywhere, so that the network acts as a universal approximator, since there is
an output for every possible input.

fact, the RBF network is a universal approximator, just like the MLP. To see this, imagine
that we fill the entire space with RBF nodes equally spaced in all directions, so that their
receptive fields just overlap, as in Figure 5.4. Now, no matter what the input, there is
an RBF node that recognises it and can respond appropriately to it. If we need to make
the outputs more finely grained, then we just add more RBFs at the relevant positions and
reduce the radius of the receptive fields; and if we don’t care, we can just make the receptive
fields of each node bigger and use fewer of them.

RBF networks never have more than one layer of non-linear neurons, in contrast to
the MLP. However, there are many similarities between the two networks: they are both
supervised learning algorithms that form universal approximators. In fact, it turns out that
you can turn one into the other because the two types of neuron firing rules (RBFs based
on distance and MLPs on inner product) are related. This fact will turn up in another form
in Section 14.1.3. The most important difference between them is the fact that the MLP
uses the hidden nodes to separate the space using hyperplanes, which are global, while the
RBF uses them to match functions locally.

In an RBF network, when we see an input several of the nodes will activate to some
degree or other, according to how close they are to the input, and the combination of these
activations will enable the network to decide how to respond. Using the analogy we had
earlier of looking at a star, suppose that the star is replaced by a torch, and somebody is
signalling directions to us. If the torch is high (at 12 o’clock) we go forwards, low (6 o’clock)
we go backwards, and left and right (9 and 3 o’clock, respectively) mean that we turn. The
RBF network would work in such a way that if the torch was at 2 o’clock or thereabouts,
then we would do some of the 12 o’clock action and a bit more of the 3 o’clock action, but
none of the 6 or 9 o’clock actions. So we would move forwards and to the right. This adding



Radial Basis Functions and Splines � 117

up of the contributions from the different basis functions according to how active they are
means that our responses are local.

5.2.1 Training the RBF Network
In the MLP we used back-propagation of error to adjust first the output layer weights, and
then the hidden layer weights. We can do exactly the same thing with the RBF network,
by differentiating the relevant activation functions. However, there are simpler and better
alternatives for RBF networks. They do not need to compute gradients for the hidden nodes
and so they are significantly faster. The important thing to notice is that the two types of
node provide different functions, and so they do not need to be trained together. The purpose
of the RBF nodes in the hidden layer is to find a non-linear representation of the inputs,
while the purpose of the output layer is to find a linear combination of those hidden nodes
that does the classification. So we can split the training into two parts: position the RBF
nodes, and then use the activations of those nodes to train the linear outputs. This makes
things much simpler. For the linear outputs we can use an algorithm that we already know:
the Perceptron (Section 3.3).

However, we need to work out something different for the first layer weights, which
control the positions of the RBF nodes. One thing that we can do is to avoid the problem
of training completely by randomly picking some of the datapoints to act as basis locations.
Provided that our training data are representative of the full dataset, this often turns out
to be a good solution. The other thing that we can do is to try to position the nodes so that
they are representative of typical inputs. This is precisely the problem solved by several
unsupervised learning methods, and we are going to see several algorithms for doing this in
Chapter 14. For the RBF network, the most common one is the k-means algorithm that
is described in Section 14.1. Thus, training an RBF network can be reduced to using two
other algorithms that are commonly used in machine learning, one after the other. This is
known as a hybrid algorithm, since it combines supervised and unsupervised learning.

The Radial Basic Function Algorithm

• Position the RBF centres by either:

– using the k-means algorithm to initialise the positions of the RBF centres OR
– setting the RBF centres to be randomly chosen datapoints

• Calculate the actions of the RBF nodes using Equation (5.1)

• Train the output weights by either:

– using the Perceptron OR
– computing the pseudo-inverse of the activations of the RBF centres (this will be

described shortly)

To implement this in Python we can simply import the other algorithms, and use them
directly (if they are in different directories, then you need to add them to the PYTHONPATH
variable; precisely how to do this varies between programming IDEs. The training is then
very simple:



118 � Machine Learning: An Algorithmic Perspective

def rbftrain(self,inputs,targets,eta=0.25,niterations=100):

if self.usekmeans==0:
# Version 1: set RBFs to be datapoints
indices = range(self.ndata)
np.random.shuffle(indices)
for i in range(self.nRBF):

self.weights1[:,i] = inputs[indices[i],:]
else:

# Version 2: use k-means
self.weights1 = np.transpose(self.kmeansnet.kmeanstrain(inputs))

for i in range(self.nRBF):
self.hidden[:,i] = np.exp(-np.sum((inputs - np.ones((1,self.nin))'
*self.weights1[:,i])**2,axis=1)/(2*self.sigma**2))

if self.normalise:
self.hidden[:,:-1] /= np.transpose(np.ones((1,np.shape(self.'
hidden)[0]))*self.hidden[:,:-1].sum(axis=1))

# Call Perceptron without bias node (since it adds its own)
self.perceptron.pcntrain(self.hidden[:,:-1],targets,eta,niterations)

In fact, because of this separation of the two learning parts, we can do better than a
Perceptron for training the outputs weights. For each input vector, we compute the activa-
tion of all the hidden nodes, and assemble them into a matrix G. So each element of G,
say Gij , consists of the activation of hidden node j for input i. The outputs of the network
can then be computed as y = GW for set of weights W. Except that we don’t know what
the weights are—that is what we set out to compute—and we want to choose them using
the target outputs t.

If we were able to get all of the outputs correct, then we could write t = GW. Now
we just need to calculate the matrix inverse of G, to get W = G−1t. Unfortunately, there
is a little problem here. The matrix inverse is only defined if a matrix is square, and this
one probably isn’t—there is no reason why the number of hidden nodes should be the same
as the number of training inputs. In fact, we hope it isn’t, since that would probably be
serious overfitting.

Fortunately, there is a well-defined pseudo-inverse G+ of a matrix, which is G+ =
(GTG)−1GT . Since the point of the inverse G−1 to a matrix G is that G−1G = I, where
I is the identity matrix, the pseudo-inverse is the matrix that satisfies G+G = I. If G is a
square, non-singular (i.e., with non-zero determinant) matrix then G+ = G−1. In NumPy
the pseudo-inverse is np.linalg.pinv(). This gives us an alternative to the Perceptron
network that is even faster, since the training only needs one iteration:

self.weights2 = np.dot(np.linalg.pinv(self.hidden),targets)

There is one thing that we haven’t considered yet, and that is the size of the receptive
fields σ for the nodes. We can avoid the problem by giving all of the nodes the same size, and



Radial Basis Functions and Splines � 119

testing lots of different sizes using a validation set to select one that works. Alternatively,
we can select it in advance by arguing that the important thing is that the whole space is
covered by the receptive fields of the entire set of basis functions, and so the width of the
Gaussians should be set according to the maximum distance between the locations of the
hidden nodes (d) and the number of hidden nodes. The most common choice is to pick the
width of the Gaussian as σ = d/

√
2M , where M is the number of RBFs.

There is another way to deal with the fact that there may be inputs that are outside the
receptive fields of all nodes, and that is to use normalised Gaussians, so that there is always
at least one input firing: the node that is closest to the current input, even if that is a long
way off. It is a modification of Equation (5.1) and it looks like the soft-max function:

g(x,w, σ) = exp(−‖x−w‖/2σ2)∑
i exp(−‖x−wi‖/2σ2) . (5.2)

Using the RBF network on the iris dataset that was used in Section 4.4.3 with five
RBF centres gives similar results to the MLP, with well over 90% classification accuracy.

With the MLP, one question that we failed to find a nice answer to was how to pick the
number of hidden nodes, and we were reduced to training lots of networks with different
numbers of nodes and using the one that performed best on the validation set. The same
problem occurs with the RBF network.

In the RBF network the activations of the hidden nodes is based on the distance between
the current input and the weights. There are various measures of distance that we can use, as
will be discussed in Section 7.2.3; we generally use the Euclidean distance. These distances
can be computed for any number of dimensions, but as the number of dimensions increases,
something rather worrying happens, which is that we start needing more RBF nodes to cover
the space. The number of input dimensions has a profound effect on learning, something
that has a suitably impressive name that we have already seen—the curse of dimensionality
(Section 2.1.2). For RBFs, the effect of the curse is that the amount of the space covered by
an RBF with a fixed receptive field will decrease, and so we will need many more of them
to cover the space.

5.3 INTERPOLATION AND BASIS FUNCTIONS
One of the problems that we looked at in Chapter 1 was that of function approximation:
given some data, find a function that goes through the data without overfitting to the
noise, so that values between the known datapoints can be inferred or interpolated. The
RBF network solves this problem by each of the basis functions making a contribution
to the output whenever the input is within its receptive field. So several RBF nodes will
probably respond for each input.

We are now going to make the problem a bit simpler. We won’t allow the receptive fields
to overlap, and we’ll space them out so that they just meet up with each other. Obviously,
we won’t need the Gaussian part that decides how much each one matches now, either. If the
datapoint is within the receptive field of this function then we listen only to this function,
otherwise we ignore it and listen to some other function. If each function just returns the
average value within its patch, then for one-dimensional data we get a histogram output, as
is shown in Figure 5.5. We can extend this a bit further so that the lines are not horizontal,
but instead reflect the first derivative of the curve at that point, as is shown in Figure 5.6.
This is all right, but we might want the output to be continuous, so that the line within
the first bin meets up with the line in the second bin at the boundary, so we can add the
extra constraint that the lines have to meet up as well. This gives the curve in Figure 5.7.



120 � Machine Learning: An Algorithmic Perspective

FIGURE 5.5 Top: Curve showing a function. Second: A set of datapoints from the curve.
Third: Putting a straight horizontal line through each point creates a histogram that
describes an approximation to the curve. Bottom: That approximation.



Radial Basis Functions and Splines � 121

FIGURE 5.6 Representing the points by straight lines that aren’t necessarily horizontal (so
that their first derivative matches at the point) gives a better approximation.

FIGURE 5.7 Making the straight lines meet so that the function is continuous gives a
better approximation.

FIGURE 5.8 Using cubic functions to connect the points gives an even better approxima-
tion, and the curve is also continuous at the points where the sections join up (known as
knotpoints).



122 � Machine Learning: An Algorithmic Perspective

Of course, there is no reason why the functions should be linear at all—if we use cubic
functions (i.e., polynomials with x3, x2, x and constant components) to approximate each
piece of data, then we can get results like those shown in Figure 5.8. We can continue to
make the functions more complicated, with the important point being how many degrees
of continuity we require at the boundaries between the points. These functions are known
as splines, and the most common one to use is the cubic spline. To reach the stage where we
can understand it, we need to go back and think about some theory.

5.3.1 Bases and Basis Expansion
Radial basis functions and several other machine learning algorithms can be written in this
form:

f(x) =
n∑
i=1

αiΦi(x), (5.3)

where Φi(x) is some function of the input value x and the αi are the parameters we can
solve for in order to make the model fit the data. We will consider the input being scalar
values x rather than vector values x in what follows. The Φi(x) are known as basis functions
and they are parameters of the model that are chosen. The first thing we need to think
about is where each Φi is defined. Looking at the third graph of Figure 5.5 we see that the
first function should only be defined between 0 and x1, the next between x1 and x2, and so
on. These points xi are called knotpoints and they are generally evenly spaced, but choosing
how many of them there should be is not necessarily easy. The more knotpoints there are,
the more complex the model can be, in which case the model is more likely to overfit, and
needs more training data, just like the neural networks that we have seen.

We can choose the Φi in any way we like. Suppose that we simply use a constant function
Φ(x) = 1. Now the model would have value α1 to the left of x1, value α2 between x1 and
x2, etc. So depending upon how we fit the spline model to the data, the model will have
different values, but it will certainly be constant in each region. This is sufficient to make the
straight line approximation shown at the bottom of Figure 5.5. However, we might decide
that a constant value is not enough, and we use a function that varies linearly (a linear
function that has value Φ(x) = x within the region). In this case, we can make Figure 5.6,
where each point is represented by a straight line that is not necessarily horizontal. This
represents the line close to each point fairly well, but looks messy because the line segments
do not meet up.

The question then is how to extend the model to include matching at the knotpoints,
where one line segment stops and the next one starts. In fact, this is easy. We just insist that
the αi have to be chosen so that at the knotpoint the value of f(x1) is the same whether we
come from the left of x1 or the right. These are often written as f(x−1 ) and f(x+

1 ). Now we
just need to work out which α values are involved in the x1 knotpoint from each side. There
are going to be four of them: two for the constant part, and two for the linear part. The
ones connected with the constant are obvious: α1 and α2. Now suppose that the linear ones
are α11 and α12 (which would mean that there were 10 regions and therefore 9 knotpoints,
since then α1 . . . α10 correspond to the constant functions for each region). In that case,
f(x−1 ) = α1 + x1α11 and f(x+

1 ) = α2 + x1α12. This is an extra constraint that we will need
to include when we solve for the values of the αi.

There is a simpler way to encode this, which is to add some extra basis functions. As
well as Φ1(x) = 1, Φ2(x) = x, we add some basis functions that insist that the value
is 0 at the boundary with x1: Φ3(x) = (x − x1)+, and the next with the boundary at



Radial Basis Functions and Splines � 123

x2: Φ4(x) = (x − x2)+, etc., where (x)+ = x if x > 0 and 0 otherwise. These functions
are sufficient to insist that the knotpoint values are enforced, since one is defined on each
knotpoint. This is then enough for us to construct the approximation shown in Figure 5.7.

5.3.2 The Cubic Spline
We can carry on adding extra powers of x, but it turns out that the cubic spline is generally
sufficient. This has four basic basis functions (Φ1(x) = 1,Φ2(x) = x,Φ3(x) = x2,Φ4(x) =
x3), and then as many extras as there are knotpoints, each of the form Φ4+i(x) = (x−xi)3

+.
This function constrains the function itself and also its first two derivatives to meet at each
knotpoint. Notice that while the Φs are not linear, we are simply adding up a weighted sum
of them, and so the model is linear in them. We can then produce curves like Figure 5.8,
which represent the data very well.

5.3.3 Fitting the Spline to the Data
Having defined the functions, we need to work out how to choose the αi in order to make
the model fit the data. We will continue to define the sum-of-squares error and to minimise
that, which is known in the statistical literature as least-squares fitting, and will be described
in more detail in Section 9.2. The important point is that everything is linear in the basis
functions, so computing the least-squares fit is a linear problem. As with the MLP, the error
that we are trying to minimise is:

E(y, f(x)) =
N∑
i=1

(yi − f(xi))2. (5.4)

NumPy already has a method defined for computing linear least-squares optimisation:
the function np.linalg.lstsq(). As a simple example of how to use it we will make some
noisy data from a couple of Gaussians and then fit the model parameters, which are 2.5 and
3.2. The final line gives the result, which isn’t too far from the correct one, and Figure 5.9
shows the results.

import numpy as np
import pylab as pl

x = np.arange(-3,10,0.05)
y = 2.5 * np.exp(-(x)**2/9) + 3.2 * np.exp(-(x-0.5)**2/4) +
np.random.normal('
0.0, 1.0, len(x))
nParam = 2
A = np.zeros((len(x),nParam), dtype=float)
A[:,0] = np.exp(-(x)**2/9)
A[:,1] = np.exp(-(x-0.5)**2/4)
(p, residuals, rank, s) = np.linalg.lstsq(A,y)

pl.plot(x,y,’.’)
pl.plot(x,p[0]*A[:,0]+p[1]*A[:,1],’x’)

p



124 � Machine Learning: An Algorithmic Perspective

FIGURE 5.9 Using linear least-squares to fit parameters for two Gaussians produces the
line from the noisy datapoints plotted as circles.

>>> array([ 2.00101406, 3.09626831])

5.3.4 Smoothing Splines
The way that we constructed the splines in Section 5.3 was to insist that they went through
each knotpoint exactly. This was a good way to describe our constraints, but it is not
necessarily realistic: almost all of the data that we ever see will be noisy, and insisting that
the data goes through the knotpoints therefore overfits: imagine that the line in Figure 5.9
went through each datapoint. As we try to make the spline model match the data more
and more accurately, we will add further knotpoints, which leads to further overfitting. We
can deal with this by using regularisation. This is a very important idea in optimisation. In
essence, it means adding an extra constraint that makes the problem simpler to solve by
providing some way to choose from amongst the set of possible solutions.

The most common regulariser that is used for splines is to make the spline model as
‘smooth’ as possible, where the smoothness is measured by computing the second derivative
of the curve at each point, squaring it so that it is always positive, and integrating it along
the curve. In this way, a straight line is perfectly smooth, but probably won’t be a good
match for the data, so we introduce a parameter λ that describes the tradeoff between the
two parts. We regain the interpolating spline of Section 5.3 for λ = 0, whereas for λ→∞ we
get the least-squares straight line. This type of spline is known as a smoothing spline. The
cubic smoothing spline is often used. While there are automated methods of choosing λ, it
is more normal to use cross-validation to find a value that seems to work well. The form of
the optimisation is now:



Radial Basis Functions and Splines � 125

FIGURE 5.10 B-spline fitting of the data shown in Figure 5.9 with left: λ = 0 and right:
λ = 100.

E(y, f(x), λ) =
N∑
i=1

(yi − f(xi))2 + λ

∫ (
d2f

dt2

)2

dt. (5.5)

SciPy already has functions to perform this in Python, the output of two different values
of the smoothing parameter are shown in Figure 5.10.

import scipy.signal as sig
# Fit spline
spline = sig.cspline1d(y,100)
xbar = np.arange(-5,15,0.1)
# Evaluate spline
ybar = sig.cspline1d_eval(spline, xbar, dx=x[1]-x[0],x0=x[0])

5.3.5 Higher Dimensions
Everything that we have done so far is aimed at one spatial dimension and all of our
effort has gone into the cubic spline. However, it is not very clear what to do with higher-
dimensional data. One common thing that is done is to take a set of independent basis
functions in each different coordinate (x, y, and z in 3D) and then to combine them in all
possible combinations (Φxi(x)Φyj(y)Φzk(z)). This is known as the tensor product basis, and
suffers from the curse of dimensionality very quickly, but works well in 2D and 3D, where
the B-spline is built up in this way. Figure 5.11 shows a grid of knotpoints and a set of
points inbetween that can be interpolated in the x1 and x2 directions separately.

However, for the smoothing spline there is another problem: what is the higher-
dimensional analogue of the curvature measurement that was computed with the second
derivative in Equation (5.5)? In two dimensions, one possibility is to consider the bending
energy. This measures how much energy is required to bend a thin plate so that it passes
through a set of points without gravity. It leads to a penalty term that consists of:∫ ∫

R2

(
∂2f

∂x2
1

)2

+ 2
(

∂2f

∂x1∂x2

)2

+
(
∂2f

∂x2
2

)2

dx1dx2. (5.6)



126 � Machine Learning: An Algorithmic Perspective

FIGURE 5.11 In 2D the knotpoints (black squares) can be used to interpolate other points
(grey circles) in each dimension individually.



Radial Basis Functions and Splines � 127

Computing the optimal values under this penalty leads to thin-plate splines, which are
radial basis functions of the form f(x, y) = f(r) = r2 log |r|, where r is the radial distance
between x and y, which was first published by Duchon in 1978, but popularised by Bookstein,
who uses it to look at what he calls morphometrics, which is the study of how shape changes
as animals are growing. The fitting is no different, it is just the basis functions that have
changed.

5.3.6 Beyond the Bounds
There is an interesting extra feature to consider. We are fitting our spline to the training
data in order to predict the values for other datapoints that we do not know target values
for. We assume that our training data are representative of the entire training set, but
that does not mean that it contains the lowest possible values, nor the highest. The spline
model that we have built has constraints to ensure that the pieces of the spline match up
continuously at the knotpoints, but we haven’t done anything at all regarding thinking
about what happens before the first knotpoint, or after the last. For the polynomials that
we are using here, this turns out to be a serious problem, which means that guesses outside
the boundaries (extrapolations) often turn out to be very inaccurate. Since we don’t have
any data, it is hard to do much, but one thing that is sometimes done is to insist that
outside the boundary knotpoints the function is linear. This is known as the natural spline.

FURTHER READING
The original paper on radial basis function neural networks is:

• J. E. Moody and C. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1:281–294, 1989.

For more information on splines, not necessarily from the machine learning viewpoint,
try:

• C. de Boor. A Practical Guide to Splines. Springer, Berlin, Germany, 1978.

• G. Wahba. Spline Models for Observational Data. SIAM, Philadelphia, USA, 1990.

• F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural network archi-
tectures. Neural Computation, 7:219–269, 1995.

• Chapter 5 and Section 6.7 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning, 2nd edition, Springer, Berlin, Germany, 2008.

• Chapter 5 of S. Haykin. Neural Networks: A Comprehensive Foundation, 2nd edition,
Prentice-Hall, New Jersey, USA, 1999.

The field of morphometrics, studying how shape changes as organisms grow, is a very
interesting one. A possible place to start studying this topic would be:

• F.L. Bookstein. Morphometric Tools for Landmark Data: Geometry and Biology.
Cambridge University Press, Cambridge, UK, 1991.



128 � Machine Learning: An Algorithmic Perspective

PRACTICE QUESTIONS
Problem 5.1 Create an RBF network that solves the XOR function.

Problem 5.2 Apply the RBF network to the Pima Indian dataset and the classification of
the MNIST letters. Can you identify differences in the results between the RBF and
the MLP?

Problem 5.3 The RBF code that is available on the website uses the hybrid approach.
You should be able to change the code so that it uses the fixed centres or full gradient
descent method, and then you can experiment with them and see which one works
better. In particular, you should be able to find examples where the fixed centres one
does not work well if the order of the inputs is poorly chosen.

Problem 5.4 The following function creates some noisy data from a sinusoidal function:

def gendata(npoints):
x = np.arange(0,4*np.pi,1./npoints)

data = x*np.sin(x) + np.random.normal(0,2,np.size(x))
print data
pl.plot(x,x*np.sin(x),’k-’,x,data,’k.’)
pl.show()
return x,data

Fit a spline to this data using both the interpolating and smoothing versions of the B-
spline. Which makes more sense here? Experiment with different values of the smooth-
ing parameter. Can you work out an algorithm that will attempt to set it based on a
validation set?

Problem 5.5 Implement the B-spline in 2D by convolving two 1D cubic splines in orthog-
onal directions. Can you use it to warp images?



CHA PT E R 6

Dimensionality Reduction

When looking at data and plotting results, we can never go beyond three dimensions in our
data, and usually find two dimensions easier to interpret. In addition, we have already seen
the curse of dimensionality (Section 2.1.2) means that the higher the number of dimensions
we have, the more training data we need. Further, the dimensionality is an explicit factor for
the computational cost of many algorithms. These are some of the reasons why dimensionality
reduction is useful. However, it can also remove noise, significantly improve the results
of the learning algorithm, make the dataset easier to work with, and make the results
easier to understand. In extreme cases such as the Self-Organising Map that we will see in
Section 14.3, where the number of dimensions becomes three or fewer, we can also plot the
data, which makes it much easier to understand and interpret.

With this many good things to say about dimensionality reduction, clearly it is some-
thing that we need to understand. The importance of the field for machine learning and
other forms of data analysis can be seen from the fact that in the year 2000 there were
three articles related to dimensionality reduction published together in the prestigious jour-
nal Science. At the end of the chapter we are going to see two of the algorithms that were
described in those papers: Locally Linear Embedding and Isomap.

There are three different ways to do dimensionality reduction. The first is feature se-
lection, which typically means looking through the features that are available and seeing
whether or not they are actually useful, i.e., correlated to the output variables. While many
people use neural networks precisely because they don’t want to ‘get their hands dirty’ and
look at the data themselves, as we have already seen, the results will be better if you check
for correlations and other simple things before using the neural network or other learning
algorithm. The second method is feature derivation, which means deriving new features from
the old ones, generally by applying transforms to the dataset that simply change the axes
(coordinate system) of the graph by moving and rotating them, which can be written simply
as a matrix that we apply to the data. The reason this performs dimensionality reduction is
that it enables us to combine features, and to identify which are useful and which are not.
The third method is simply to use clustering in order to group together similar datapoints,
and to see whether this allows fewer features to be used.

To see how choosing the right features can make a problem significantly simpler, have
a look at the table on the left of Figure 6.1. It shows the x and y coordinates of 4 points.
Looking at the numbers it is hard to see any correlation between the points, and even
when they are plotted it simply looks like they might form corners of a rotated rectangle.
However, the plot on the right of the figure shows that they are simply a set of four points
from a circle, (in fact, the points at (π/6, 4π/6, 7π/6, 11π/6)) and using this one coordinate,
the angle, makes the data a lot easier to understand and analyse.

129



130 � Machine Learning: An Algorithmic Perspective

x y
2.00 -1.43
2.37 -2.80
1.00 -3.17
0.63 -1.80

FIGURE 6.1 Three views of the same four points. Left: As numbers, where the links are
unclear. Centre: As four plotted points. Right: As four points that lie on a circle.

Once we have worked out how to represent the data, we can suppress dimensions that
aren’t useful to the algorithm. Even before we get into any form of analysis at all, we can try
to perform feature selection, looking at the possible inputs that we have for the problem, and
deciding which are useful. Many of the methods that we will see in this chapter merge this
idea with transformations of the data, so that combinations of the different inputs, rather
than the inputs themselves, are used. However, even before using any of the algorithms
identified here, input features can be ignored if they do not seem to be useful.

We will see another method of doing feature selection later, since it is inherent to the
way that the decision tree (Chapter 12) works: at each stage of the algorithm it decides
which feature to add next. This is the constructive way to decide on the features: start with
none, and then iteratively add more, testing the error at each stage to see whether or not it
changed at all when that feature was added. The destructive method is to prune the decision
tree, lopping off branches and checking whether the error changed at all.

In general, selecting the features is a search problem. We take the best system so far,
and then search over the set of possible next features to add. This can be computationally
very expensive, since for d features there are 2d − 1 possible sets of features to search over,
from any individual feature up to the full set. In general, greedy methods (Section 9.4) are
employed, although backtracking can also be employed to check whether the search gets
stuck.

Many of the algorithms that we will see in this chapter are unsupervised. The disadvan-
tage of this is that we are not then able to use the knowledge of their classes in order to
reduce the problem further. However, we will start off by considering a method of dimen-
sionality reduction that is aimed at supervised learning, Linear Discriminant Analysis. This
method is credited to one of the best-known statisticians of the 20th century, R.A. Fisher,
and dates from 1936.

6.1 LINEAR DISCRIMINANT ANALYSIS (LDA)
Figure 6.2 shows a simple two-dimensional dataset consisting of two classes. We can compute
various statistics about the data, but we will settle for the means of the two classes in the
data, µ1 and µ2, the mean of the entire dataset (µ), and the covariance of each class with
itself (see Section 2.4.2 for a description of covariance), which is

∑
j(xj − µ)(xj − µ)T .

The question is what we can do with these pieces of data. The principal insight of LDA
is that the covariance matrix can tell us about the scatter within a dataset, which is the
amount of spread that there is within the data. The way to find this scatter is to multiply
the covariance by the pc, the probability of the class (that is, the number of datapoints
there are in that class divided by the total number). Adding the values of this for all of the
classes gives us a measure of the within-class scatter of the dataset:



Dimensionality Reduction � 131

FIGURE 6.2 A set of datapoints in
two dimensions, with two classes.

FIGURE 6.3 The meaning of the
between-class and within-class scat-
ter. The hearts mark the means of
the two classes.

SW =
∑

classes c

∑
j∈c

pc(xj − µc)(xj − µc)T . (6.1)

If our dataset is easy to separate into classes, then this within-class scatter should be
small, so that each class is tightly clustered together. However, to be able to separate the
data, we also want the distance between the classes to be large. This is known as the between-
classes scatter and is a significantly simpler computation, simply looking at the difference
in the means:

SB =
∑

classes c
(µc − µ)(µc − µ)T . (6.2)

The meanings of these two measurements is shown in Figure 6.3. The argument about
good separation suggests that datasets that are easy to separate into the different classes
(i.e., the classes are discriminable) should have SB/SW as large as possible. This seems per-
fectly reasonable, but it hasn’t told us anything about dimensionality reduction. However,
we can say that the rule about making SB/SW as large as possible is something that we
want to be true for our data when we reduce the number of dimensions. Figure 6.4 shows
two projections of the dataset onto a straight line. For the projection on the left it is clear
that we can’t separate out the two classes, while for the one on the right we can. So we just
need to find a way to compute a suitable projection.

Remember from Chapter 3 that any line can be written as a vector w (which we used
as our weight vector in Section 3.4; it is one row of weight matrix W). The projection of
the data can be written as z = wT · x for datapoint x. This gives us a scalar that is the
distance along the w vector that we need to go to find the projection of point x. To see
this, remember that wT · x is the sum of the vectors multiplied together element-wise, and
is equal to the size of w times the size of x times the cosine of the angle between them. We
can make the size of w be 1, so that we don’t have to worry about it, and all that is then
described is the amount of x that lies along w.

So we can compute the projection of our data along w for every point, and we will
have projected our data onto a straight line, as is shown in the two examples in Figure 6.4.
Since the mean can be treated as a datapoint, we can project that as well: µ′c = wT · µc.
Now we just need to work out what happens to the within-class and between-class scatters.



132 � Machine Learning: An Algorithmic Perspective

FIGURE 6.4 Two different possible projection lines. The one on the left fails to separate
the classes.

Replacing xj with wT · xj in Equations (6.1) and (6.2) we can use some linear algebra
(principally the fact that (ATB)T = BTATT = BTA) to get:

∑
classes c

∑
j∈c

pc(wT · (xj − µc))(wT · (xj − µc))T = wTSWw (6.3)

∑
classes c

wT (µc − µ)(µc − µ)Tw = wTSBw. (6.4)

So our ratio of within-class and between-class scatter looks like wTSWw
wTSBw .

In order to find the maximum value of this with respect to w, we differentiate it and set
the derivative equal to 0. This tells us that:

SBw(wTSWw)− SWw(wTSBw)
(wTSWw)2 = 0. (6.5)

So we just need to solve this equation for w and we are done. We start with a little bit
of rearranging to get:

SWw = wTSWw
wTSBw SBw. (6.6)

If there are only two classes in the data, then we can rewrite Equation (6.2) as SB =
(µ1 − µ2)(µ1 − µ2)T . To see this, consider that there are N1 examples of class 1 and N2
examples of class 2. Then substitute (N1 +N2)µ = N1µ1 +N2µ2) into Equation (6.2). The
rewritten SBw is in the direction (µ1 − µ2), and so w is in the direction of S−1

W (µ1 − µ2),
as can be seen by recalling that the scalar product is independent of order, and so after
substituting in the new expression for SB , the order of the bracketed terms can be changed.
Note that we can ignore the ratio of within-class and between-class scatter, since it is a
scalar and therefore does not affect the direction of the vector.

Unfortunately, this does not work for the general case. There, finding the minimum is
not simple, and requires computing the generalised eigenvectors of S−1

W SB , assuming that
S−1
W exists. We will be discussing eigenvectors in the next section if you are not sure what

they are.



Dimensionality Reduction � 133

Turning this into an algorithm is very simple. You simply have to compute the between-
class and within-class scatters, and then find the value of w. In NumPy, the entire algorithm
can be written as (where the generalised eigenvectors are computed in SciPy rather than
NumPy, which was imported using from scipy import linalg as la):

C = np.cov(np.transpose(data))

# Loop over classes
classes = np.unique(labels)
for i in range(len(classes)):

# Find relevant datapoints
indices = np.squeeze(np.where(labels==classes[i]))
d = np.squeeze(data[indices,:])
classcov = np.cov(np.transpose(d))
Sw += np.float(np.shape(indices)[0])/nData * classcov

Sb = C - Sw
# Now solve for W and compute mapped data
# Compute eigenvalues, eigenvectors and sort into order
evals,evecs = la.eig(Sw,Sb)
indices = np.argsort(evals)
indices = indices[::-1]
evecs = evecs[:,indices]
evals = evals[indices]
w = evecs[:,:redDim]
newData = np.dot(data,w)

As an example of using the algorithm, Figure 6.5 shows a plot of the first two dimensions
of the iris data (with the classes shown as three different symbols) before and after applying
LDA, with the number of dimensions being set to two. While one of the classes (the circles)
can already be separated from the others, all three are readily distinguishable after LDA
has been applied (and only one dimension, the y one, is required for this).

6.2 PRINCIPAL COMPONENTS ANALYSIS (PCA)
The next few methods that we are going to look at are also involved in computing trans-
formations of the data in order to identify a lower-dimensional set of axes. However, unlike
LDA, they are designed for unlabelled data. This does not stop them being used for la-
belled data, since the learning that takes place in the lower dimensional space can still
use the target data, although it does mean that they miss out on any information that is
contained in the targets. The idea is that by finding particular sets of coordinate axes, it
will become clear that some of the dimensions are not required. This is demonstrated in
Figure 6.6, which shows two versions of the same dataset. In the first the data are arranged
in an ellipse that runs at 45◦ to the axes, while in the second the axes have been moved
so that the data now runs along the x−axis and is centred on the origin. The potential
for dimensionality reduction is in the fact that the y dimension does not now demonstrate
much variability, and so it might be possible to ignore it and use the x axis values alone



134 � Machine Learning: An Algorithmic Perspective

FIGURE 6.5 Plot of the iris data showing the three classes left: before and right: after
LDA has been applied.

FIGURE 6.6 Two different sets of coordinate axes. The second consists of a rotation and
translation of the first and was found using Principal Components Analysis.

without compromising the results of a learning algorithm. In fact, it can make the results
better, since we are often removing some of the noise in the data.

The question is how to choose the axes. The first method we are going to look at
is Principal Components Analysis (PCA). The idea of a principal component is that it is a
direction in the data with the largest variation. The algorithm first centres the data by
subtracting off the mean, and then chooses the direction with the largest variation and
places an axis in that direction, and then looks at the variation that remains and finds
another axis that is orthogonal to the first and covers as much of the remaining variation
as possible. It then iterates this until it has run out of possible axes. The end result is that
all the variation is along the axes of the coordinate set, and so the covariance matrix is
diagonal—each new variable is uncorrelated with every variable except itself. Some of the
axes that are found last have very little variation, and so they can be removed without
affecting the variability in the data.

Putting this in more formal terms, we have a data matrix X and we want to rotate it so
that the data lies along the directions of maximum variation. This means that we multiply
our data matrix by a rotation matrix (often written as PT ) so that Y = PTX, where P is
chosen so that the covariance matrix of Y is diagonal, i.e.,



Dimensionality Reduction � 135

cov(Y) = cov(PTX) =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . λN

 . (6.7)

We can get a different handle on this by using some linear algebra and the definition of
covariance to see that:

cov(Y) = E[YYT ] (6.8)
= E[(PTX)(PTX)T ] (6.9)
= E[(PTX)(XTP)] (6.10)
= PTE(XXT )P (6.11)
= PT cov(X)P. (6.12)

The two extra things that we needed to know were that (PTX)T = XTPTT = XTP and
that E[P] = P (and obviously the same for PT ) since it is not a data-dependent matrix.
This then tells us that:

Pcov(Y) = PPT cov(X)P = cov(X)P, (6.13)

where there is one tricky fact, namely that for a rotation matrix PT = P−1. This just says
that to invert a rotation we rotate in the opposite direction by the same amount that we
rotated forwards.

As cov(Y) is diagonal, if we write P as a set of column vectors P = [p1,p2, . . . ,pN ]
then:

Pcov(Y) = [λ1p1, λ2p2, . . . , λNpN ], (6.14)

which (by writing the λ variables in a matrix as λ = (λ1, λ2, . . . , λN )T and Z = cov(X))
leads to a very interesting equation:

λpi = Zpi for each pi. (6.15)

At first sight it doesn’t look very interesting, but the important thing is to realise that
λ is a column vector, while Z is a full matrix, and it can be applied to each of the pi vectors
that make up P. Since λ is only a column vector, all it does is rescale the pis; it cannot
rotate it or do anything complicated like that. So this tells us that somehow we have found
a matrix P so that for the directions that P is written in, the matrix Z does not twist
or rotate those directions, but just rescales them. These directions are special enough that
they have a name: they are eigenvectors, and the amount that they rescale the axes (the
λs) by are known as eigenvalues.

All eigenvectors of a square symmetric matrix A are orthogonal to each other. This tells
us that the eigenvectors define a space. If we make a matrix E that contains the (normalised)
eigenvectors of a matrix A as columns, then this matrix will take any vector and rotate
it into what is known as the eigenspace. Since E is a rotation matrix, E−1 = ET , so that
rotating the resultant vector back out of the eigenspace requires multiplying it by ET , where
by ‘normalised’, I mean that the eigenvectors are made unit length. So what should we do
between rotating the vector into the eigenspace, and rotating it back out? The answer is
that we can stretch the vectors along the axes. This is done by multiplying the vector by a



136 � Machine Learning: An Algorithmic Perspective

FIGURE 6.7 Computing the principal components of the 2D dataset on the left and using
only the first one to reconstruct it produces the line of data shown on the right, which is
along the principal axis of the ellipse that the data was sampled from.

diagonal matrix that has the eigenvalues along its diagonal, D. So we can decompose any
square symmetric matrix A into the following set of matrices: A = EDET , and this is what
we have done to our covariance matrix above. This is called the spectral decomposition.

Before we get on to the algorithm, there is one other useful thing to note. The eigen-
values tell us how much stretching we need to do along their corresponding eigenvector
dimensions. The more of this rescaling is needed, the larger the variation along that dimen-
sion (since if the data was already spread out equally then the eigenvalue would be close
to 1), and so the dimensions with large eigenvalues have lots of variation and are therefore
useful dimensions, while for those with small eigenvalues, all the datapoints are very tightly
bunched together, and there is not much variation in that direction. This means that we
can throw away dimensions where the eigenvalues are very small (usually smaller than some
chosen parameter).

It is time to see the algorithm that we need.

The Principal Components Analysis Algorithm

• Write N datapoints xi = (x1i,x2i, . . . ,xMi) as row vectors

• Put these vectors into a matrix X (which will have size N ×M)

• Centre the data by subtracting off the mean of each column, putting it into matrix B

• Compute the covariance matrix C = 1
NBTB

• Compute the eigenvalues and eigenvectors of C, so V−1CV = D, where V holds the
eigenvectors of C and D is the M ×M diagonal eigenvalue matrix

• Sort the columns of D into order of decreasing eigenvalues, and apply the same order
to the columns of V

• Reject those with eigenvalue less than some η, leaving L dimensions in the data

NumPy can compute the eigenvalues and eigenvectors for us. They are both returned in
evals,evecs = np.linalg.eig(x). This makes the entire algorithm fairly easy to imple-
ment:



Dimensionality Reduction � 137

def pca(data,nRedDim=0,normalise=1):

# Centre data
m = np.mean(data,axis=0)
data -= m

# Covariance matrix
C = np.cov(np.transpose(data))

# Compute eigenvalues and sort into descending order
evals,evecs = np.linalg.eig(C)
indices = np.argsort(evals)
indices = indices[::-1]
evecs = evecs[:,indices]
evals = evals[indices]

if nRedDim>0:
evecs = evecs[:,:nRedDim]

if normalise:
for i in range(np.shape(evecs)[1]):

evecs[:,i] / np.linalg.norm(evecs[:,i]) * np.sqrt(evals[i])

# Produce the new data matrix
x = np.dot(np.transpose(evecs),np.transpose(data))
# Compute the original data again
y=np.transpose(np.dot(evecs,x))+m
return x,y,evals,evecs

Two different examples of using PCA are shown in Figures 6.7 and 6.8. The former
shows two-dimensional data from an ellipse being mapped into one principal component,
which lies along the principal axis of the ellipse. Figure 6.8 shows the first two dimensions
of the iris data, and shows that the three classes are clearly distinguishable after PCA has
been applied.

6.2.1 Relation with the Multi-layer Perceptron
We will see (in Section 14.3.2) that PCA can be used in the SOM algorithm to initialise
the weights, thus reducing the amount of learning that is required, and that it is very
useful for dimensionality reduction. However, there is another reason why people who are
interested in neural networks are interested in PCA. We already mentioned it when we
talked about the auto-associative MLP in Section 4.4.5. The auto-associative MLP actually
computes something very similar to the principal components of the data in the hidden
nodes, and this is one of the ways that we can understand what the network is doing.
Of course, computing the principal components with a neural network isn’t necessarily a
good idea. PCA is linear (it just rotates and translates the axes, it can’t do anything more
complicated). This is clear if we think about the network, since it is the hidden nodes that



138 � Machine Learning: An Algorithmic Perspective

FIGURE 6.8 Plot of the first two principal components of the iris data, showing that the
three classes are clearly distinguishable.

are computing PCA, and they are effectively a bit like a Perceptron—they can only perform
linear tasks. It is the extra layers of neurons that allow us to do more.

So suppose we do just that and use a more complicated MLP network with four layers
of neurons instead of two. We still use it as an auto-associator, so that the targets are
the same as the inputs. What will the middle hidden layer look like then? A full answer
is complicated, but we can speculate that the first layer is computing some non-linear
transformation of the data, while the second (bottleneck) layer is computing the PCA of
those non-linear functions. Then the third layer reconstructs the data, which appears again
in the fourth layer. So the network is still doing PCA, just on a non-linear version of the
inputs. This might be useful, since now we are not assuming that the data are linearly
separable. However, to understand it better we will look at it from a different viewpoint,
thinking of the actions of the first layer as kernels, which are described in Section 8.2.

6.2.2 Kernel PCA
One problem with PCA is that it assumes that the directions of variation are all straight
lines. This is often not true. We can use the auto-associator with multiple hidden layers as
just discussed, but there is a very nice extension to PCA that uses the kernel trick (which
is described in Section 8.2) to get around this problem, just as the SVM got around it for
the Perceptron. Just as is done there, we apply a (possibly non-linear) function Φ(·) to each
datapoint x that transforms the data into the kernel space, and then perform normal linear
PCA in that space. The covariance matrix is defined in the kernel space and is:

C = 1
N

N∑
n=1

Φ(xn)Φ(xn)T , (6.16)

which produces the eigenvector equation:

λ (Φ(xi)V) = (Φ(xi)CV) i = 1 . . . N, (6.17)

where V =
∑N
j=1 αjΦ(xj) are the eigenvectors of the original problem and the αj will turn

out to be the eigenvectors of the ‘kernelized’ problem. It is at this point that we can apply
the kernel trick and produce an N ×N matrix K, where:



Dimensionality Reduction � 139

K(i,j) = (Φ(xi) · Φ(xj)) . (6.18)

Putting these together we get the equation NλKα = K2α, and we left-multiply by K−1

to reduce it to Nλα = Kα. Computing the projection of a new point x into the kernel
PCA space requires:

(
Vk · Φ(x)

)
=

N∑
i=1

αk
i (Φ(xi) · Φ(xj)) . (6.19)

This is all there is to the algorithm.

The Kernel PCA Algorithm

• Choose a kernel and apply it to all pairs of points to get matrix K of distances between
the pairs of points in the transformed space

• Compute the eigenvalues and eigenvectors of K

• Normalise the eigenvectors by the square root of the eigenvalues

• Retain the eigenvectors corresponding to the largest eigenvalues

The only tricky part of the implementation is in the diagonalisation of K, which is
generally done using some well-known linear algebra identities, leading to:

K = kernelmatrix(data,kernel)

# Compute the transformed data
D = np.sum(K,axis=0)/nData
E = np.sum(D)/nData
J = np.ones((nData,1))*D
K = K - J - np.transpose(J) + E*np.ones((nData,nData))

# Perform the dimensionality reduction
evals,evecs = np.linalg.eig(K)
indices = np.argsort(evals)
indices = indices[::-1]
evecs = evecs[:,indices[:redDim]]
evals = evals[indices[:redDim]]

sqrtE = np.zeros((len(evals),len(evals)))
for i in range(len(evals)):

sqrtE[i,i] = np.sqrt(evals[i])

newData = np.transpose(np.dot(sqrtE,np.transpose(evecs)))

This is a computationally expensive algorithm, since it requires computing the kernel



140 � Machine Learning: An Algorithmic Perspective

FIGURE 6.9 Plot of the first two non-linear principal components of the iris data, (using
the Gaussian kernel) showing that the three classes are clearly distinguishable.

FIGURE 6.10 A very definitely non-linear dataset consisting of three concentric circles, and
the (Gaussian) kernel PCA mapping of the iris data, which requires only one component
to separate the data.

matrix and then the eigenvalues and eigenvectors of that matrix. The naïve implementation
on the algorithm on the website is O(n3), but with care it is possible to take advantage of
the fact that not all of the eigenvalues are needed, which can lead to an O(n2) algorithm.

Figure 6.9 shows the output of kernel PCA when applied to the iris dataset. The fact
that it can separate this data well is not very surprising since the linear methods that
we have already seen can do it, but it is a useful check of the method. A rather more
difficult example is shown in Figure 6.10. Data are sampled from three concentric circles.
Clearly, linear PCA would not be able to separate this data, but applying kernel PCA to
this example separates the data using only one component.



Dimensionality Reduction � 141

6.3 FACTOR ANALYSIS
The idea of factor analysis is to ask whether the data that is observed can be explained
by a smaller number of uncorrelated factors or latent variables. The assumption is that the
data comes from some underlying data source (or set of data sources) that are not directly
known. The problem of factor analysis is to find those independent factors, and the noise
that is inherent in the measurements of each factor. Factor analysis is commonly used in
psychology and other social sciences, and the factors are generally chosen to have some
particular meanings: in psychology, they can be related to IQ and other tests.

Suppose that we have a dataset in the usual N×M matrix X, i.e., each row of X is anM -
dimensional datapoint, and X has covariance matrix Σ. As, with PCA, we centre the data
by subtracting off the mean of each variable (i.e., each column): bj = xj −µj , j = 1 . . .M ,
so that the mean E[bi] = 0. Which we’ve done before, for example for the MLP and many
times since.

We can write the model that we are assuming as:

X = WY + ε, (6.20)

where X are the observations and ε is the noise. Since the factors bi that we want to
find should be independent, so cov(bi,bj) = 0 if i 6= j. Factor analysis takes explicit
notice of the noise in the data, using the variable ε. In fact, it assumes that the noise is
Gaussian with zero mean and some known variance: Ψ, with the variance of each element
being Ψi = var(εi). It also assumes that these noise measurements are independent of each
other, which is equivalent to the assumption that the data come from a set of separate
(independent) physical processes, and seems reasonable if we don’t know otherwise.

The covariance matrix of the original data, Σ, can now be broken down into cov(Wb +
ε) = WWT + Ψ, where Ψ is the matrix of noise variances and we have used the fact that
cov(b) = I since the factors are uncorrelated.

With all of that set up, the aim of factor analysis is to try to find a set of factor loadings
Wij and values for the variance of the noise parameters Ψ, so that the data in X can be
reconstructed from the parameters, or so that we can perform dimensionality reduction.

Since we are looking at adding additional variables, the natural formulation is an EM
algorithm (as described in Section 7.1.1) and this is how the computations are usually
performed to produce the maximum likelihood estimate. Getting to the EM algorithm
takes some effort. We first define the log likelihood (where θ is the data we are trying to
fit) as:

Q(θt|θt−1) =
∫
p(x|y,θt−1) log(p(y|x,θt)p(x))dx. (6.21)

We can replace several of the terms in here with values, and we can also ignore any
terms that do not depend on θ. The end result of this is a new version of Q, which forms
the basis of the E-step:

Q(θt|θt−1) = 1
2

∫
p(x|y,θt−1) log(det(Ψ−1))−

(
y−Wx)TΨ−1(y−Wx)

)
dx. (6.22)

For the EM algorithm we now have to differentiate this with respect to W and the
individual elements of Ψ, and apply some linear algebra, to get update rules:



142 � Machine Learning: An Algorithmic Perspective

Wnew =
(
yE(x|y)T

) (
E(xxT |y)

)−1
, (6.23)

Ψnew = 1
N

diagonal
(
xxT −WE(x|y)yT

)
, (6.24)

where diagonal() ensures that the matrix retains values only on the diagonal and the ex-
pectations are:

E(x|y) = WT (WWT + Ψ)−1b (6.25)
E(xxT |x)− E(x|y)E(x|y)T = I−WT (WWT + Ψ)−1W. (6.26)

The only other things that we need to add to the algorithm is some way to decide when
to stop, which involves computing the log likelihood and stopping the algorithm when it
stops descending. This leads to an algorithm where the basic steps in the loop are:

# E-step
A = np.dot(W,np.transpose(W)) + np.diag(Psi)
logA = np.log(np.abs(np.linalg.det(A)))
A = np.linalg.inv(A)

WA = np.dot(np.transpose(W),A)
WAC = np.dot(WA,C)
Exx = np.eye(nRedDim) - np.dot(WA,W) + np.dot(WAC,np.transpose(WA))

# M-step
W = np.dot(np.transpose(WAC),np.linalg.inv(Exx))
Psi = Cd - (np.dot(W,WAC)).diagonal()

tAC = (A*np.transpose(C)).sum()

L = -N/2*np.log(2.*np.pi) -0.5*logA - 0.5*tAC
if (L-oldL)<(1e-4):

print "Stop",i
break

The output of using factor analysis on the iris dataset are shown in Figure 6.11.

6.4 INDEPENDENT COMPONENTS ANALYSIS (ICA)
There is a related approach to factor analysis that is known as Independent Components Anal-
ysis. When we looked at PCA above, the components were chosen so that they were orthog-
onal and uncorrelated (so that the covariance matrix was diagonal, i.e., so cov(bi,bj) = 0 if
i 6= j). If, instead, we require that the components are statistically independent (so that for
E[bi,bj ] = E[bi]E[bj ] as well as the bi being uncorrelated), then we get ICA.

The common motivation for ICA is the problem of blind source separation. As with factor
analysis, the assumption is that the data we see are actually created by a set of underlying



Dimensionality Reduction � 143

FIGURE 6.11 Plot of the first two factor analysis components of the iris data, showing
that the three classes are clearly distinguishable.

physical processes that are independent. The reason why the data we see are correlated is
because of the way the outputs from different processes have been mixed together. So given
some data, we want to find a transformation that turns it into a mixture of independent
sources or components.

The most popular way to describe blind source separation is known as the cocktail party
problem. If you are at a party, then your ears hear lots of different sounds coming from
lots of different locations (different people talking, the clink of glasses, background music,
etc.) but you are somehow able to focus on the voice of the people you are talking to, and
can in fact separate out the sounds from all of the different sources even though they are
mixed together. The cocktail party problem is the challenge of separating out these sources,
although there is one wrinkle: for the algorithm to work, you need as many ears as there are
sources. This is because the algorithm does not have the information we have about what
things sound like.

Suppose that we have two sources making noise (st1, st2) where the top index covers the
fact that there are lots of datapoints appearing over time, and two microphones that hear
things, giving inputs (xt1, xt2). The sounds that are heard come from the sources as:

x1 = as1 + bs2, (6.27)
x2 = cs1 + ds2, (6.28)

which can be written in matrix form as:

x = As, (6.29)

where A is known as the mixing matrix. Reconstructing s looks easy now: we just compute
s = A−1x. Except that, unfortunately, we don’t know A. The approximation to A−1 that
we work out is generally labelled as W, and it is a square matrix since we have the same
number of microphones as we do sources.

At this point we need to work out what we actually know about the sources and the
signals. There are three things:

• the mixtures are not independent, even though the sources are



144 � Machine Learning: An Algorithmic Perspective

• the mixtures will look like normal distributions even if the sources are not (this is
because of the Central Limit Theorem, something that we won’t look at further here)

• the mixtures will look more complicated than the sources

We can use the first fact to say that if we find factors that are independent of each
other then they are probably sources, and the second to say that if we find factors that are
not Gaussian then they are probably sources. We can measure the amount of independence
between two variables by using the mutual information, which we will see in Section 12.2.1
when we look at entropy. In fact, the most common approach is to use what is rather
uglily known as negentropy: J(y) = H(z) − H(y), which maximises the deviations from
Gaussianness (where H(·) is the entropy):

H(y) = −
∫
g(y) log g(y)dy. (6.30)

One common approximation is J(y) = (E[G(y)]− E[G(z)])2, where g(u) =
1
a log cosh(au), so g′(u) = tanh(au) 1 ≤ a ≤ 2. Implementing ICA is actually quite tricky
because of some numerical issues, so we won’t do it ourselves. There are a few well-used
ICA implementations out there, of which the most popular is known as FastICA, which is
available in Python as part of the MDP package.

6.5 LOCALLY LINEAR EMBEDDING
Two relatively recent methods of computing dimensionality reduction were mentioned in the
introduction because they were published in the journal Science. Both are non-linear, and
both attempt to preserve the neighbourhood relations in the data (as will be discussed for
the SOM in Section 14.3) but they use different approaches. The first tries to approximate
the data by sticking together sets of locally flat patches that cover the dataset, while the
second uses the shortest distances (geodesics) on the non-linear space to find a globally
optimal solution.

We will look first at the locally linear algorithm, which is called Locally Linear Embedding
(LLE). It was introduced by Roweis and Saul in 2000. The idea is to say that by making
linear approximations we will make some errors, so we should make these errors as small as
possible by making the patches small where there is lots of non-linearity in the data. The
error is known as the reconstruction error and is simply the sum-of-squares of the distance
between the original point and its reconstruction:

ε =
N∑
i=1

xi −
N∑
j=1

Wijxj

2

. (6.31)

The weights Wij say how much effect the jth datapoint has on the reconstruction of
the ith one. The question is which points can be usefully used to reconstruct a particular
datapoint. If another point is a long way off, then it probably isn’t very useful: only those
points that are close to the current datapoint (that are in its neighbourhood) are used. There
are two common ways to create neighbourhoods:

• Points that are less than some predefined distance d to the current point are neighbours
(so we don’t know how many neighbours there are, but they are all close)

• The k nearest points are neighbours (so we know how many there are, but some could
be far away)



Dimensionality Reduction � 145

Solving for the weights Wij is a least-squares problem, which we can simplify by en-
forcing the constraints that for any point xj that is a long way from the current point xi,
Wij = 0, and that

∑
j Wij = 1. This produces a reconstruction of the data, but it does not

reduce the dimensionality at all. For this we have to reapply the same basic cost function,
but minimise it according to the positions yi of the points in some lower dimensional space
(dimension L):

yi =
N∑
i=1

yi −
L∑
j=1

Wijyj

2

. (6.32)

Solving this is rather more complicated, so we won’t go into details, but it turns out
that the solution is the eigenvalues of the quadratic form matrix Mij = δij −Wij −Wji +∑
k WjiWkj , where δij is the Kronecker delta function, so δij = 1 if i = j and 0 otherwise.

This leads to the following algorithm:

The Locally Linear Embedding Algorithm

• Decide on the neighbours of each point (e.g., K nearest neighbours):

– compute distances between every pair of points
– find the k smallest distances
– set Wij = 0 for other points
– for each point xi:

∗ create a list of its neighbours’ locations zi
∗ compute zi = zi − xi

• Compute the weights matrix W that minimises Equation (6.31) according to the
constraints:

– compute local covariance C = ZZT , where Z is the matrix of zis
– solve CW = I for W, where I is the N ×N identity matrix
– set Wij = 0 for non-neighbours
– set other elements to W/

∑
(W)

• Compute the lower dimensional vectors yi that minimise Equation (6.32):

– create M = (I−W)T (I−W)
– compute the eigenvalues and eigenvectors of M
– sort the eigenvectors into order by size of eigenvalue
– set the qth row of y to be the q+1 eigenvector corresponding to the qth smallest

eigenvalue (ignore the first eigenvector, which has eigenvalue 0)

There are a couple of things in there that are a bit tricky to implement, and there is
a function that we haven’t used before, np.kron(), which takes two matrices and mul-
tiplies each element of the first one by all the elements of the second, putting all of the
results together into one multi-dimensional output array. It is used to construct the set of
neighbourhood locations for each point.



146 � Machine Learning: An Algorithmic Perspective

FIGURE 6.12 The Locally Linear Embedding algorithm with k = 12 neighbours transforms
the iris dataset into three points, separating the data perfectly.

for i in range(ndata):
Z = data[neighbours[i,:],:] - np.kron(np.ones((K,1)),data[i,:])
C = np.dot(Z,np.transpose(Z))
C = C+np.identity(K)*1e-3*np.trace(C)
W[:,i] = np.transpose(np.linalg.solve(C,np.ones((K,1))))
W[:,i] = W[:,i]/np.sum(W[:,i])

M = np.eye(ndata,dtype=float)
for i in range(ndata):

w = np.transpose(np.ones((1,np.shape(W)[0]))*np.transpose(W[:,i]))
j = neighbours[i,:]
#print shape(w), np.shape(np.dot(w,np.transpose(w))), np.shape(M[i,j])
ww = np.dot(w,np.transpose(w))
for k in range(K):

M[i,j[k]] -= w[k]
M[j[k],i] -= w[k]
for l in range(K):

M[j[k],j[l]] += ww[k,l]

evals,evecs = np.linalg.eig(M)
ind = np.argsort(evals)
y = evecs[:,ind[1:nRedDim+1]]*np.sqrt(ndata)

The LLE algorithm produces a very interesting result on the iris dataset: it separates
the three groups into three points (Figure 6.12). This shows that the algorithm works very
well on this type of data, but doesn’t give us any hints as to what else it can do. Figure 6.13
shows a common demonstration dataset for these algorithms. Known as the swissroll for
obvious reasons, it is tricky to find a 2D representation of the 3D data because it is rolled
up. The right of Figure 6.13 shows that LLE can successfully unroll it.



Dimensionality Reduction � 147

FIGURE 6.13 A common example used to demonstrate LLE is the swissroll dataset shown
on the left. To produce a useful 2D representation of this data requires unrolling the data,
which the LLE does successfully, as is shown on the right. The shades are used to identify
neighbouring points, and do not have any other purpose.

6.6 ISOMAP
The other algorithm was proposed by Tenenbaum et al., also in 2000. It tries to minimise
the global error by looking at all of the pairwise distances and computing global geodesics.
It is a variant of the standard multi-dimensional scaling (MDS) algorithm, so we’ll talk about
that first.

6.6.1 Multi-Dimensional Scaling (MDS)
Like PCA, MDS tries to find a linear approximation to the full dataspace that embeds
the data into a lower dimensionality. In the case of MDS the embedding tries to preserve
the distances between all pairs of points (however these distances are measured). It turns
out that if the space is Euclidean, then the two methods are identical. We use the same
notational setup as previously, starting with datapoints x1,x2, . . . ,xN ∈ RM . We choose
a new dimensionality L < M and compute the embedding so that the datapoints are
z1, z2, . . . zN ∈ RL. As usual, we need a cost function to minimise. There are lots of choices
for MDS cost functions, but the more common ones are:

Kruskal–Shephard scaling (also known as least-squares) SKS(z1, z2, . . . zN ) =
∑
i 6=i′(dii′−

‖zi − z′i‖)2

Sammon mapping SSM (z1, z2, . . . zN ) =
∑
i 6=i′

(dii′−‖zi−z′i‖)
2

dii′
. This puts more weight

onto short distances, so that neighbouring points stay the correct distance apart.

In either case, gradient descent can be used to minimise the distances. There is another
version of MDS called classical MDS that uses similarities between datapoints rather than
distances. These can be constructed from a set of distances by using the centred inner
product sii′ = (xi− x̄), (x′i− x̄)T . By doing this it is possible to construct a direct algorithm
that does not have to use gradient descent. The function that needs to be minimised is∑
i6=i′

(
sii′ − (zi − z̄), (z′i − z̄)T

)2. The computations that are needed are:



148 � Machine Learning: An Algorithmic Perspective

The Multi-Dimensional Scaling (MDS) Algorithm

• Compute the matrix of squared pairwise similarities D, Dij = ‖xi − xj‖2

• Compute J = IN−1/N (where IN is the N×N identity function and N is the number
of datapoints)

• Compute B = − 1
2JDJT

• Find the L largest eigenvalues λi of B, together with the corresponding eigenvectors
ei

• Put the eigenvalues into a diagonal matrix V and set the eigenvectors to be columns
of matrix P

• Compute the embedding as X = PV1/2

This classical MDS algorithm works fine on flat manifolds (dataspaces). However, we are
interested in manifolds that are not flat, and this is where Isomap comes in. The algorithm
has to construct the distance matrix for all pairs of datapoints on the manifold, but there
is no information about the manifold, and so the distances can’t be computed exactly.
Isomap approximates them by assuming that the distances between pairs of points that are
close together are good, since over a small distance the non-linearity of the manifold won’t
matter. It builds up the distances between points that are far away by finding paths that
run through points that are close together, i.e., that are neighbours, and then uses normal
MDS on this distance matrix:

The Isomap Algorithm

• Construct the pairwise distances between all pairs of points

• Identify the neighbours of each point to make a weighted graph G

• Estimate the geodesic distances dG by finding shortest paths

• Apply classical MDS to the set of dG

Floyd’s and Dijkstra’s algorithms are well-known algorithms for finding shortest paths on
graphs. They are of O(N3) and O(N2) time complexity, respectively. Any good algorithms
textbook provides the details if you don’t know them.

There is one practical aspect of Isomap, which is that getting the number of neighbours
right can be important, otherwise the graph splits into separate components (that is, seg-
ments of the graph that are not linked to each other), which have infinite distance between
them. You then have to be careful to deal only with the largest component, which means
that you end up with less data than you started with. Otherwise the implementation is
fairly simple.

Figure 6.14 shows the results of applying Isomap to the iris dataset. Here, the default
neighbourhood size of 12 produced a largest component that held only one of the three
classes, and the other two were deleted. By increasing the neighbourhood size over 50, so
that each point had more neighbours than were in its class, the results shown in the figure
were produced. On the swissroll dataset shown on the left of Figure 6.13, Isomap produces
qualitatively similar results to LLE, as can be seen in Figure 6.15.



Dimensionality Reduction � 149

FIGURE 6.14 Isomap transforms the iris data in a similar way to factor analysis, provided
that the neighbourhood size is large enough to avoid points becoming disconnected.

FIGURE 6.15 Isomap also produces a good remapping of the swissroll dataset.



150 � Machine Learning: An Algorithmic Perspective

Although the two algorithms produce similar mappings of the swissroll dataset, they
are based on different principles. Isomap attempts to find a mapping that preserves the
distances between pairs of points within the manifold, no matter how far apart they are,
while LLE focuses only on local regions of the manifold. This means that the computational
cost of LLE is significantly less, but it can make errors by putting points close together that
should be far apart. The choice of which algorithm to use often depends upon the dataset,
and trying both of them out for your particular dataset is often a good idea.

FURTHER READING
Surveys of the area of dimensionality reduction include:

• L.J.P. van der Maaten. An introduction to dimensionality reduction using MATLAB.
Technical Report MICC 07-07, Maastricht University, Maastricht, the Netherlands,
2007.

• F. Camastra. Data dimensionality estimation methods: a survey. Pattern Recognition,
36:2945–2954, 2003.

For more information about many of the methods desribed here, there are books or
papers that contain a lot of information. Notable references include:

• (for LDA) Section 4.3 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning, 2nd edition, Springer, Berlin, Germany, 2008.

• (for PCA) I.T. Jolliffe. Principal Components Analysis. Springer, Berlin, Germany,
1986.

• (for kernel PCA) J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, Cambridge, UK, 2004.

• (for ICA) J.V. Stone. Independent Components Analysis: A Tutorial Introduction.
MIT Press, Cambridge, MA, USA, 2004.

• (for ICA) A. Hyvrinen and E. Oja. Independent components analysis: Algorithms and
applications. Neural Networks, 13(4–5):411–430, 2000.

• (for LLE) S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

• (for MDS) T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman & Hall,
London, UK, 1994.

• (for Isomap) J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geomet-
ric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323,
2000.

• Chapter 12 of C.M. Bishop. Pattern Recognition and Machine Learning. Springer,
Berlin, Germany, 2006.



Dimensionality Reduction � 151

PRACTICE QUESTIONS
Problem 6.1 Use LDA on the iris dataset (which is what Fisher originally tested LDA

on).

Problem 6.2 Compare the results with using PCA, which is not supervised and will not
therefore be able to find the same space.

Problem 6.3 Compute the eigenvalues and eigenvectors of:

(
5 7
−2 −4

) (
1 0
0 1

)  1 2 1
6 −1 0
−1 −2 −1

 (6.33)

Problem 6.4 Compare the algorithms described in this chapter on a variety of different
datasets, including the yeast dataset and the wine dataset. Input the results of the
data reduction method to the MLP and SOM. Are the results better than before this
preprocessing?

Problem 6.5 Modify the Isomap code to use Dijkstra’s algorithm rather than Floyd’s
algorithm.

Problem 6.6 Another dataset that the Isomap and LLE algorithms are commonly demon-
strated on is the ‘S’ shape that is available on the website. Download it and test various
algorithms, not just Isomap and LLE on it. For Isomap and LLE, try different numbers
of neighbours to see the effect that this has.





CHA PT E R 7

Probabilistic Learning

One criticism that is often made of neural networks—especially the MLP—is that it is
not clear exactly what it is doing: while we can go and have a look at the activations of
the neurons and the weights, they don’t tell us much. We’ve already seen some methods
that don’t have this problem, principally the decision tree in Chapter 12. In this chapter
we are going to look at methods that are based on statistics, and that are therefore more
transparent, in that we can always extract and look at the probabilities and see what they
are, rather than having to worry about weights that have no obvious meaning.

We will look at how to perform classification by using the frequency with which examples
appear in the training data, and then we will see how we can deal with our first example
of unsupervised learning, when the labels are not present for the training examples. If the
data comes from known probability distributions, then we will see that it is possible to solve
this problem with a very neat algorithm, the EM algorithm, which we will also see in other
guises in later chapters. Finally, we will have a look at a rather different way of using the
dataset when we look at nearest neighbour methods.

7.1 GAUSSIAN MIXTURE MODELS
For the Bayes’ classifier that we saw in Section 2.3.2 the data had target labels, and so we
could do supervised learning, learning the probabilities from the labelled data. However,
suppose that we have the same data, but without target labels. This requires unsupervised
learning, and we will see lots of ways to deal with this in Chapters 14 and 6, but here we
will look at one special case. Suppose that the different classes each come from their own
Gaussian distribution. This is known as multi-modal data, since there is one distribution
(mode) for each different class. We can’t fit one Gaussian to the data, because it doesn’t
look Gaussian overall.

There is, however, something we can do. If we know how many classes there are in the
data, then we can try to estimate the parameters for that many Gaussians, all at once. If
we don’t know, then we can try different numbers and see which one works best. We will
talk about this issue more for a different method (the k-means algorithm) in Section 14.1.
It is perfectly possible to use any other probability distribution instead of a Gaussian,
but Gaussians are by far the most common choice. Then the output for any particular
datapoint that is input to the algorithm will be the sum of the values expected by all of the
M Gaussians:

f(x) =
M∑
m=1

αmφ(x; µm,Σm), (7.1)

153



154 � Machine Learning: An Algorithmic Perspective

FIGURE 7.1 Histograms of training data from a mixture of two Gaussians and two fitted
models, shown as the line plot. The model shown on the left fits well, but the one on the
right produces two Gaussians right on top of each other that do not fit the data well.

where φ(x; µm,Σm) is a Gaussian function with mean µm and covariance matrix Σm, and

the αm are weights with the constraint that
M∑
m=1

αm = 1.

Figure 7.1 shows two examples, where the data (shown by the histograms) comes from
two different Gaussians, and the model is computed as a sum or mixture of the two Gaussians
together. The figure also gives you some idea of how to use the mixture model once it has
been created. The probability that input xi belongs to class m can be written as (where a
hat on a variable (̂·) means that we are estimating the value of that variable):

p(xi ∈ cm) = α̂mφ(xi; µ̂m; Σ̂m)
M∑
k=1

α̂mφ(xi; µ̂k; Σ̂k)
. (7.2)

The problem is how to choose the weights αm. The common approach is to aim for
the maximum likelihood solution (the likelihood is the conditional probability of the data
given the model, and the maximum likelihood solution varies the model to maximise this
conditional probability). In fact, it is common to compute the log likelihood and then to
maximise that; it is guaranteed to be negative, since probabilities are all less than 1, and the
logarithm spreads out the values, making the optimisation more effective. The algorithm
that is used is an example of a very general one known as the expectation-maximisation (or
more compactly, EM) algorithm. The reason for the name will become clearer below. We
will see another example of an EM algorithm in Section 16.3.3, but here we see how to use it
for fitting Gaussian mixtures, and get a very approximate idea of how the algorithm works
for more general examples. For more details, see the Further Reading section.

7.1.1 The Expectation-Maximisation (EM) Algorithm
The basic idea of the EM algorithm is that sometimes it is easier to add extra variables that
are not actually known (called hidden or latent variables) and then to maximise the function
over those variables. This might seem to be making a problem much more complicated than
it needs to be, but it turns out for many problems that it makes finding the solution
significantly easier.

In order to see how it works, we will consider the simplest interesting case of the Gaussian
mixture model: a combination of just two Gaussian mixtures. The assumption now is that



Probabilistic Learning � 155

data were created by randomly choosing one of two possible Gaussians, and then creating a
sample from that Gaussian. If the probability of picking Gaussian one is p, then the entire
model looks like this (where N (µ,σ2) specifies a Gaussian distribution with mean µ and
standard deviation σ):

G1 = N (µ1,σ
2
1)

G2 = N (µ2,σ
2
2)

y = pG1 + (1− p)G2. (7.3)

If the probability distribution of p is written as π, then the probability density is:

P (y) = πφ(y; µ1,σ1) + (1− π)φ(y; µ2,σ2). (7.4)

Finding the maximum likelihood solution (actually the maximum log likelihood) to this
problem is then a case of computing the sum of the logarithm of Equation (7.4) over all
of the training data, and differentiating it, which would be rather difficult. Fortunately,
there is a way around it. The key insight that we need is that if we knew which of the two
Gaussian components the datapoint came from, then the computation would be easy. The
mean and standard deviation for each component could be computed from the datapoints
that belong to that component, and there would not be a problem. Although we don’t know
which component each datapoint came from, we can pretend we do, by introducing a new
variable f . If f = 0 then the data came from Gaussian one, if f = 1 then it came from
Gaussian two.

This is the typical initial step of an EM algorithm: adding latent variables. Now we
just need to work out how to optimise over them. This is the time when the reason for the
algorithm being called expectation-maximisation becomes clear. We don’t know much about
variable f (hardly surprising, since we invented it), but we can compute its expectation (that
is, the value that we ‘expect’ to see, which is the mean average) from the data:

γi(µ̂1, µ̂2, σ̂1, σ̂2, π̂) = E(f |µ̂1, µ̂2, σ̂1, σ̂2, π̂, D)
= P (f = 1|µ̂1, µ̂2, σ̂1, σ̂2, π̂, D), (7.5)

where D denotes the data. Note that since we have set f = 1 this means that we are
choosing Gaussian two.

Computing the value of this expectation is known as the E-step. Then this estimate of the
expectation is maximised over the model parameters (the parameters of the two Gaussians
and the mixing parameter π), the M-step. This requires differentiating the expectation
with respect to each of the model parameters. These two steps are simply iterated until the
algorithm converges. Note that the estimate never gets any smaller, and it turns out that
EM algorithms are guaranteed to reach a local maxima.

To see how this looks for the two-component Gaussian mixture, we’ll take a closer look
at the algorithm:



156 � Machine Learning: An Algorithmic Perspective

The Gaussian Mixture Model EM Algorithm

• Initialisation

– set µ̂1 and µ̂2 to be randomly chosen values from the dataset

– set σ̂1 = σ̂2 =
N∑
i=1

(yi − ȳ)2/N (where ȳ is the mean of the entire dataset)

– set π̂ = 0.5

• Repeat until convergence:

– (E-step) γ̂i = π̂φ(yi;µ̂1,σ̂1)
π̂φ(yi;µ̂1,σ̂1)+(1−π̂)φ(yi;µ̂2,σ̂2) for i = 1 . . . N

– (M-step 1) µ̂1 =

N∑
i=1

(1−γ̂i)yi

N∑
i=1

(1−γ̂i)

– (M-step 2) µ̂2 =

N∑
i=1

γ̂iyi

N∑
i=1

γ̂i

– (M-step 3) σ̂1 =

N∑
i=1

(1−γ̂i)(yi−µ̂1)2

N∑
i=1

(1−γ̂i)

– (M-step 4) σ̂2 =

N∑
i=1

γ̂i(yi−µ̂2)2

N∑
i=1

γ̂i

– (M-step 5) π̂ =
N∑
i=1

γ̂i
N

Turning this into Python code does not require any new techniques:

while count<nits:
count = count + 1

# E-step
for i in range(N):

gamma[i] = pi*np.exp(-(y[i]-mu1)**2/(2*s1))/ (pi * np.exp(-(y[i]-'
mu1)**2/(2*s1)) + (1-pi)* np.exp(-(y[i]-mu2)**2/2*s2))

# M-step
mu1 = np.sum((1-gamma)*y)/np.sum(1-gamma)
mu2 = np.sum(gamma*y)/np.sum(gamma)
s1 = np.sum((1-gamma)*(y-mu1)**2)/np.sum(1-gamma)



Probabilistic Learning � 157

FIGURE 7.2 Plot of the log likelihood changing as the Gaussian Mixture Model EM algo-
rithm learns to fit the two Gaussians shown on the left of Figure 7.1.

s2 = np.sum(gamma*(y-mu2)**2)/np.sum(gamma)
pi = np.sum(gamma)/N

ll[count-1] = np.sum(np.log(pi*np.exp(-(y[i]-mu1)**2/(2*s1)) + (1-pi)'
*np.exp(-(y[i]-mu2)**2/(2*s2))))

Figure 7.2 shows the log likelihood dropping as the algorithm learns for the example on
the left of Figure 7.1. The computational costs of this model are very good for classifying
a new datapoint, since it is O(M), where M is the number of Gaussians, which is often of
the order of logN (where N is the number of datapoints). The training is, however, fairly
expensive: O(NM2 +M3).

The general algorithm has pretty much exactly the same steps (the parameters of the
model are written as θ, θ′ is a dummy variable, D is the original dataset, and D′ is the
dataset with the latent variables included):

The General Expectation-Maximisation (EM) Algorithm

• Initialisation

– guess parameters θ̂
(0)

• Repeat until convergence:

– (E-step) compute the expectation Q(θ′, θ̂
(j)

) = E(f(θ′;D′)|D, θ̂
(j)

)

– (M-step) estimate the new parameters θ̂
(j+1)

as maxθ′ Q(θ′, θ̂
(j)

)

The trick with applying EM algorithms to problems is in identifying the correct latent
variables to include, and then simply working through the steps. They are very powerful
methods for a wide variety of statistical learning problems.

We are now going to turn our attention to something much simpler, which is how we
can use information about nearby datapoints to decide on classification output. For this we
don’t use a model of the data at all, but directly use the data that is available.



158 � Machine Learning: An Algorithmic Perspective

7.1.2 Information Criteria
The likelihood of the data given the model has another useful function as well. Back in
Section 2.2.2 we identified the need to use model selection in order to identify the right
time to stop learning. In that section we introduced the idea of a validation set, or using
cross-validation if there was not enough data. However, this replaces data with computation
time, as many models are trained on different datasets.

An alternative idea is to identify some measure that tells us about how well we can expect
this trained model to perform. There are two such information criteria that are commonly
used:

Aikake Information Criterium

AIC = ln(L)− k (7.6)

Bayesian Information Criterium

BIC = 2 ln(L)− k lnN (7.7)

In these equations, k is the number of parameters in the model, N is the number of
training examples, and L is the best (largest) likelihood of the model. In both cases, based
on the way that they are written here, the model with the largest value is taken. Both of
the measures will favour simple models, which is a form of Occam’s razor.

7.2 NEAREST NEIGHBOUR METHODS
Suppose that you are in a nightclub and decide to dance. It is unlikely that you will know
the dance moves for the particular song that is playing, so you will probably try to work
out what to do by looking at what the people close to you are doing. The first thing you
could do would be just to pick the person closest to you and copy them. However, since
most of the people who are in the nightclub are also unlikely to know all the moves, you
might decide to look at a few more people and do what most of them are doing. This is
pretty much exactly the idea behind nearest neighbour methods: if we don’t have a model
that describes the data, then the best thing to do is to look at similar data and choose to
be in the same class as them.

We have the datapoints positioned within input space, so we just need to work out which
of the training data are close to it. This requires computing the distance to each datapoint
in the training set, which is relatively expensive: if we are in normal Euclidean space, then
we have to compute d subtractions and d squarings (we can ignore the square root since
we only want to know which points are the closest, not the actual distance) and this has to
be done O(N2) times. We can then identify the k nearest neighbours to the test point, and
then set the class of the test point to be the most common one out of those for the nearest
neighbours. The choice of k is not trivial. Make it too small and nearest neighbour methods
are sensitive to noise, too large and the accuracy reduces as points that are too far away
are considered. Some possible effects of changing the size of k on the decision boundary are
shown in Figure 7.3.

This method suffers from the curse of dimensionality (Section 2.1.2). First, as shown
above, the computational costs get higher as the number of dimensions grows. This is not as
bad as it might appear at first: there are sets of methods such as KD-Trees (see Section 7.2.2
for more details) that compute this in O(N logN) time. However, more importantly, as the
number of dimensions increases, so the distance to other datapoints tends to increase. In



Probabilistic Learning � 159

FIGURE 7.3 The nearest neighbours decision boundary with left: one neighbour and right:
two neighbours.

addition, they can be far away in a variety of different directions—there might be points
that are relatively close in some dimensions, but a long way in others. There are methods
for dealing with these problems, known as adaptive nearest neighbour methods, and there is
a reference to them in the Further Reading section at the end of the chapter.

The only part of this that requires any care during the implementation is what to do
when there is more than one class found in the closest points, but even with that the
implementation is nice and simple:

def knn(k,data,dataClass,inputs):

nInputs = np.shape(inputs)[0]
closest = np.zeros(nInputs)

for n in range(nInputs):
# Compute distances
distances = np.sum((data-inputs[n,:])**2,axis=1)

# Identify the nearest neighbours
indices = np.argsort(distances,axis=0)

classes = np.unique(dataClass[indices[:k]])
if len(classes)==1:

closest[n] = np.unique(classes)
else:

counts = np.zeros(max(classes)+1)
for i in range(k):

counts[dataClass[indices[i]]] += 1
closest[n] = np.max(counts)

return closest



160 � Machine Learning: An Algorithmic Perspective

We are going to look next at how we can use these methods for regression, before we
turn to the question of how to perform the distance calculations as efficiently as possible,
something that is done simply but inefficiently in the code above. We will then consider
briefly whether or not the Euclidean distance is always the most useful way to calculate
distances, and what alternatives there are.

For the k-nearest neighbours algorithm the bias-variance decomposition can be com-
puted as:

E((y− f̂(x))2) = σ2 +
[
f(x)− 1

k

k∑
i=0

f(xi)
]2

+ σ2

k
. (7.8)

The way to interpret this is that when k is small, so that there are few neighbours
considered, the model has flexibility and can represent the underlying model well, but that
it makes mistakes (has high variance) because there is relatively little data. As k increases,
the variance decreases, but at the cost of less flexibility and so more bias.

7.2.1 Nearest Neighbour Smoothing
Nearest neighbour methods can also be used for regression by returning the average value
of the neighbours to a point, or a spline or similar fit as the new value. The most common
methods are known as kernel smoothers, and they use a kernel (a weighting function between
pairs of points) that decides how much emphasis (weight) to put onto the contribution from
each datapoint according to its distance from the input. We will see kernels in a different
context in Section 8.2, but here we shall simply use two kernels that are used for smoothing.

Both of these kernels are designed to give more weight to points that are closer to the
current input, with the weights decreasing smoothly to zero as they pass out of the range
of the current input, with the range specified by a parameter λ. They are the Epanechnikov
quadratic kernel:

KE,λ(x0, x) =
{

0.75
(
1− (x0 − x)2/λ2) if |x− x0| < λ

0 otherwise , (7.9)

and the tricube kernel:

KT,λ(x0, x) =
{ (

1−
∣∣x0−x

λ

∣∣3)3
if |x− x0| < λ

0 otherwise
. (7.10)

The results of using these kernels are shown in Figure 7.4 on a dataset that consists of the
time between eruptions (technically known as the repose) and the duration of the eruptions
of Mount Ruapehu, the large volcano in the centre of New Zealand’s north island. Values
of λ of 2 and 4 were used here. Picking λ requires experimentation. Large values average
over more datapoints, and therefore produce lower variance, but at the cost of higher bias.

7.2.2 Efficient Distance Computations: the KD-Tree
As was mentioned above, computing the distances between all pairs of points is very com-
putationally expensive. Fortunately, as with many problems in computer science, designing
an efficient data structure can reduce the computational overhead a lot. For the problem of
finding nearest neighbours the data structure of choice is the KD-Tree. It has been around
since the late 1970s, when it was devised by Friedman and Bentley, and it reduces the cost
of finding a nearest neighbour to O(logN) for O(N) storage. The construction of the tree



Probabilistic Learning � 161

FIGURE 7.4 Output of the nearest neighbour method and two kernel smoothers on the
data of duration and repose of eruptions of Mount Ruapehu 1860–2006.



162 � Machine Learning: An Algorithmic Perspective

is O(N log2N), with much of the computational cost being in the computation of the me-
dian, which with a naïve algorithm requires a sort and is therefore O(N logN), or can be
computed with a randomised algorithm in O(N) time.

The idea behind the KD-tree is very simple. You create a binary tree by choosing one
dimension at a time to split into two, and placing the line through the median of the point
coordinates of that dimension. Not that different to a decision tree (Chapter 12), really. The
points themselves end up as leaves of the tree. Making the tree follows pretty much the same
steps as usual for constructing a binary tree: we identify a place to split into two choices,
left and right, and then carry on down the tree. This makes it natural to write the algorithm
recursively. The choice of what to split and where is what makes the KD-tree special. Just
one dimension is split in each step, and the position of the split is found by computing the
median of the points that are to be split in that one dimension, and putting the line there.
In general, the choice of which dimension to split alternates through the different choices,
or it can be made randomly. The algorithm below cycles through the possible dimensions
based on the depth of the tree so far, so that in two dimensions it alternates horizontal and
vertical splits.

The centre of the construction method is simply a recursive function that picks the axis
to split on, finds the median value on that axis, and separates the points according to that
value, which in Python can be written as:

# Pick next axis to split on
whichAxis = np.mod(depth,np.shape(points)[1])

# Find the median point
indices = np.argsort(points[:,whichAxis])
points = points[indices,:]
median = np.ceil(float(np.shape(points)[0]-1)/2)

# Separate the remaining points
goLeft = points[:median,:]
goRight = points[median+1:,:]

# Make a new branching node and recurse
newNode = node()
newNode.point = points[median,:]
newNode.left = makeKDtree(goLeft,depth+1)
newNode.right = makeKDtree(goRight,depth+1)
return newNode

Suppose that we had seven two-dimensional points to make a tree from:
(5, 4), (1, 6), (6, 1), (7, 5), (2, 7), (2, 2), (5, 8) (as plotted in Figure 7.5). The algorithm will
pick the first coordinate to split on initially, and the median point here is 5, so the split is
through x = 5. Of those on the left of the line, the median y coordinate is 6, and for those
on the right it is 5. At this point we have separated all the points, and so the algorithm
terminates with the split shown in Figure 7.6 and the tree shown in Figure 7.7.

Searching the tree is the same as any other binary tree; we are more interested in finding
the nearest neighbours of a test point. This is fairly easy: starting at the root of the tree
you recurse down through the tree comparing just one dimension at a time until you find a



Probabilistic Learning � 163

FIGURE 7.5 The initial set of 2D data.

FIGURE 7.6 The splits and leaf points found by
the KD-tree.

FIGURE 7.7 The KD-tree that made the splits.



164 � Machine Learning: An Algorithmic Perspective

leaf node that is in the region containing the test point. Using the tree shown in Figure 7.7
we introduce the test point (3, 5), which finds (2, 2) as the leaf for the box that (3, 5) is in.
However, looking at Figure 7.8 we see that this is not the closest point at all, so we need to
do some more work.

The first thing we do is label the leaf we have found as a potential nearest neighbour, and
compute the distance between the test point and this point, since any other point has to be
closer. Now we need to check any other boxes that could contain something closer. Looking
at Figure 7.8 you can see that point (3, 7) is closer, and that is the label of the leaf for the
sibling box to the one that was returned, so the algorithm also needs to check the sibling
box. However, suppose that we used (4.5, 2) as the test point. In that case the sibling is too
far away, but another point (6, 1) is closer. So just checking the sibling is not enough —
we also need to check the siblings of the parent node, together with its descendants (the
cousins of the first point). A look at the figure again should convince you that the algorithm
can then terminate in most cases; very occasionally it can be necessary to go even further
afield, but it is easy to see which branches to prune. This leads to the following Python
program:

def returnNearest(tree,point,depth):
if tree.left is None:

# Have reached a leaf
distance = np.sum((tree.point-point)**2)
return tree.point,distance,0

else:
# Pick next axis to split on
whichAxis = np.mod(depth,np.shape(point)[0])

# Recurse down the tree
if point[whichAxis]<tree.point[whichAxis]:

bestGuess,distance,height = returnNearest(tree.left,point,depth+1)
else:

bestGuess,distance,height = returnNearest(tree.right,point,depth+1)

if height<=2:
# Check the sibling
if point[whichAxis]<tree.point[whichAxis]:

bestGuess2,distance2,height2 = returnNear-
est(tree.right,point,depth+'

1)
else:

bestGuess2,distance2,height2 = returnNear-
est(tree.left,point,depth+1)

# Check this node
distance3 = np.sum((tree.point-point)**2)
if (distance3<distance2):
distance2 = distance3

bestGuess2 = tree.point



Probabilistic Learning � 165

FIGURE 7.8 Two test points for the example KD-tree.

if (distance2<distance):
distance = distance2
bestGuess = bestGuess2

return bestGuess,distance,height+1

7.2.3 Distance Measures
We have computed the distance between points as the Euclidean distance, which is some-
thing that you learnt about in high school. However, it is not the only option, nor is it
necessarily the most useful. In this section we will look at the underlying idea behind dis-
tance calculations and possible alternatives.

If I were to ask you to find the distance between my house and the nearest shop, then
your first guess might involve taking a map of my town, locating my house and the shop,
and using a ruler to measure the distance between them. By careful application of the
map scale you can now tell me how far it is. However, when I set out to buy some milk
I’m liable to find that I have to walk rather further than you’ve told me, since the direct
line that you measured would involve walking through (or over) several houses, and some
serious fence-scaling. Your ‘as the crow flies’ distance is the shortest possible path, and it
is the straight-line, or Euclidean, distance. You can measure it on the map by just using
a ruler, but it essentially consists of measuring the distance in one direction (we’ll call it
north-south) and then the distance in another direction that is perpendicular to the first
(let’s call it east-west) and then squaring them, adding them together, and then taking the
square root of that. Writing that out, the Euclidean distance that we are all used to is:

dE =
√

(x1 − x2)2 + (y1 − y2)2, (7.11)

where (x1, y1) is the location of my house in some coordinate system (say by using a GPS
tracker) and (x2, y2) is the location of the shop.

If I told you that my town was laid out on a grid block system, as is common in towns



166 � Machine Learning: An Algorithmic Perspective

FIGURE 7.9 The Euclidean and city-block distances between two points.

that were built in the interval between the invention of the motor car and the invention
of innovative town planners, then you would probably use a different measure. You would
measure the distance between my house and the shop in the ‘north-south’ direction and the
distance in the ‘east-west’ direction, and then add the two distances together. This would
correspond to the distance I actually had to walk. It is often known as the city-block or
Manhattan distance and looks like:

dC = |x1 − x2|+ |y1 − y2|. (7.12)

The point of this discussion is to show that there is more than one way to measure a
distance, and that they can provide radically different answers. These two different distances
can be seen in Figure 7.9. Mathematically, these distance measures are known as metrics.
A metric function or norm takes two inputs and gives a scalar (the distance) back, which is
positive, and 0 if and only if the two points are the same, symmetric (so that the distance
to the shop is the same as the distance back), and obeys the triangle inequality, which says
that the distance from a to b plus the distance from b to c should not be less than the direct
distance from a to c.

Most of the data that we are going to have to analyse lives in rather more than two
dimensions. Fortunately, the Euclidean distance that we know about generalises very well
to higher dimensions (and so does the city-block metric). In fact, these two measures are
both instances of a class of metrics that work in any number of dimensions. The general
measure is the Minkowski metric and it is written as:

Lk(x,y) =
(

d∑
i=1
|xi − yi|k

) 1
k

. (7.13)

If we put k = 1 then we get the city-block distance (Equation (7.12)), and k = 2
gives the Euclidean distance (Equation (7.11)). Thus, you might possibly see the Euclidean
metric written as the L2 norm and the city-block distance as the L1 norm. These norms
have another interesting feature. Remember that we can define different averages of a set
of numbers. If we define the average as the point that minimises the sum of the distance
to every datapoint, then it turns out that the mean minimises the Euclidean distance (the
sum-of-squares distance), and the median minimises the L1 metric. We met another distance
measure earlier: the Mahalanobis distance in Section 2.4.2.

There are plenty of other possible metrics to choose, depending upon the dataspace. We
generally assume that the space is flat (if it isn’t, then none of these techniques work, and



Probabilistic Learning � 167

we don’t want to worry about that). However, it can still be beneficial to look at other
metrics. Suppose that we want our classifier to be able to recognise images, for example of
faces. We take a set of digital photos of faces and use the pixel values as features. Then we
use the nearest neighbour algorithm that we’ve just seen to identify each face. Even if we
ensure that all of the photos are taken fully face-on, there are still a few things that will
get in the way of this method. One is that slight variations in the angle of the head (or the
camera) could make a difference; another is that different distances between the face and
the camera (scaling) will change the results; and another is that different lighting conditions
will make a difference. We can try to fix all of these things in preprocessing, but there is
also another alternative: use a different metric that is invariant to these changes, i.e., it does
not vary as they do. The idea of invariant metrics is to find measures that ignore changes
that you don’t want. So if you want to be able to rotate shapes around and still recognise
them, you need a metric that is invariant to rotation.

A common invariant metric in use for images is the tangent distance, which is an approx-
imation to the Taylor expansion in first derivatives, and works very well for small rotations
and scalings; for example, it was used to halve the final error rate on nearest neighbour
classification of a set of handwritten letters. Invariant metrics are an interesting topic for
further study, and there is a reference for them in the Further Reading section if you are
interested.

FURTHER READING
For more on nearest neighbour methods, see:

• T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification
and regression. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo,
editors, Advances in Neural Information Processing Systems, volume 8, pages 409–415.
The MIT Press, 1996.

• N.S. Altman. An introduction to kernel and nearest-neighbor nonparametric regres-
sion. The American Statistician, 46:175–185, 1992.

The original description of KD-trees is:

• A. Moore. A tutorial on KD-trees. Extract from PhD Thesis, 1991. Available from
http://www.cs.cmu.edu/simawm/papers.html.

A reference on the tangent distance is:

• P.Y. Simard, Y.A. Le Cun, J.S. Denker, and B. Victorri. Transformation invariance
in pattern recognition: Tangent distance and propagation. International Journal of
Imaging Systems and Technology, 11:181–194, 2001.

Some of the material in the chapter is covered in:

• Section 9.2 of C.M. Bishop. Pattern Recognition and Machine Learning. Springer,
Berlin, Germany, 2006.

• Chapter 6 (especially Sections 6.1–6.3) of T. Mitchell. Machine Learning. McGraw-
Hill, New York, USA, 1997.

• Section 13.3 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning, 2nd edition, Springer, Berlin, Germany, 2008.



168 � Machine Learning: An Algorithmic Perspective

PRACTICE QUESTIONS
Problem 7.1 Extend the Gaussian Mixture Model algorithm to allow for more than two

classes in the data. This is not trivial, since it involves modifying the EM algorithm.

Problem 7.2 Modify the KD-tree algorithm so that it works on spheres in the data, rather
than rectangles. Since they no longer cover the space you will have to add some cases
that fail to return a leaf at all. However, this means that the algorithm will not return
points that are far away, which will make the results more accurate. Now modify it
so that it does not use the Euclidean distance, but rather the L1 distance. Compare
the results of using these two methods on the iris dataset.

Problem 7.3 Use the small figures of numbers that are available on the book website in
order to compute the tangent distance. You will have to write code that rotates the
numbers by small amounts in order to check that you have written it correctly. What
happens when you make large rotations (particularly of a 6 or 9)? Compare using
nearest neighbours with Euclidean distance and the tangent distance to verify the
results claimed in the chapter. Extend the experiment to the MNIST dataset.



CHA PT E R 8

Support Vector Machines

Back in Chapter 3 we looked at the Perceptron, a set of McCulloch and Pitts neurons
arranged in a single layer. We identified a method by which we could modify the weights
so that the network learned, and then saw that the Perceptron was rather limited in that
it could only identify straight line classifiers, that is, it could only separate out groups of
data if it was possible to draw a straight line (hyperplane in higher dimensions) between
them. This meant that it could not learn to distinguish between the two truth classes of
the 2D XOR function. However, in Section 3.4.3, we saw that it was possible to modify the
problem so that the Perceptron could solve the problem, by changing the data so that it
used more dimensions than the original data.

This chapter is concerned with a method that makes use of that insight, amongst other
things. The main idea is one that we have seen before, in Section 5.3, which is to modify the
data by changing its representation. However, the terminology is different here, and we will
introduce kernel functions rather than bases. In principle, it is always possible to transform
any set of data so that the classes within it can be separated linearly. To get a bit of a
handle on this, think again about what we did with the XOR problem in Section 3.4.3: we
added an extra dimension and moved a point that we could not classify properly into that
additional dimension so that we could linearly separate the classes. The problem is how to
work out which dimensions to use, and that is what kernel methods, which is the class of
algorithms that we will talk about in this chapter, do.

We will focus on one particular algorithm, the Support Vector Machine (SVM) , which
is one of the most popular algorithms in modern machine learning. It was introduced by
Vapnik in 1992 and has taken off radically since then, principally because it often (but not
always) provides very impressive classification performance on reasonably sized datasets.
SVMs do not work well on extremely large datasets, since (as we shall see) the computations
don’t scale well with the number of training examples, and so become computationally very
expensive. This should be sufficient motivation to master the (quite complex) concepts that
are needed to understand the algorithm.

We will develop a simple SVM in this chapter, using cvxopt, a freely available solver
with a Python interface, to do the heavy work. There are several different implementations
of the SVM available on the Internet, and there are references to some of the more popular
ones at the end of the chapter. Some of them include wrappers so that they can be used
from within Python.

There is rather more to the SVM than the kernel method; the algorithm also reformulates
the classification problem in such a way that we can tell a good classifier from a bad one,
even if they both give the same results on a particular dataset. It is this distinction that
enables the SVM algorithm to be derived, so that is where we will start.

169



170 � Machine Learning: An Algorithmic Perspective

FIGURE 8.1 Three different classification lines. Is there any reason why one is better than
the others?

8.1 OPTIMAL SEPARATION
Figure 8.1 shows a simple classification problem with three different possible linear classifi-
cation lines. All three of the lines that are drawn separate out the two classes, so in some
sense they are ‘correct’, and the Perceptron would stop its training if it reached any one
of them. However, if you had to pick one of the lines to act as the classifier for a set of
test data, I’m guessing that most of you would pick the line shown in the middle picture.
It’s probably hard to describe exactly why you would do this, but somehow we prefer a
line that runs through the middle of the separation between the datapoints from the two
classes, staying approximately equidistant from the data in both classes. Of course, if you
were feeling smart, then you might have asked what criteria you were meant to pick a line
based on, and why one of the lines should be any better than the others.

To answer that, we are going to try to define why the line that runs halfway between
the two sets of datapoints is better, and then work out some way to quantify that so we
can identify the ‘optimal’ line, that is, the best line according to our criteria. The data that
we have used to identify the classification line is our training data. We believe that these
data are indicative of some underlying process that we are trying to learn, and that the
testing data that the algorithm will be evaluated on after training comes from the same
underlying process. However, we don’t expect to see exactly the same datapoints in the test
dataset, and inevitably some of the points will be closer to the classifier line, and some will
be further away. If we pick the lines shown in the left or right graphs of Figure 8.1, then
there is a chance that a datapoint from one class will be on the wrong side of the line, just
because we have put the line tight up against some of the datapoints we have seen in the
training set. The line in the middle picture doesn’t have this problem; like the baby bear’s
porridge in Goldilocks, it is ‘just right’.

8.1.1 The Margin and Support Vectors
How can we quantify this? We can measure the distance that we have to travel away from
the line (in a direction perpendicular to the line) before we hit a datapoint. Imagine that
we put a ‘no-man’s land’ around the line (shown in Figure 8.2), so that any point that
lies within that region is declared to be too close to the line to be accurately classified.
This region is symmetric about the line, so that it forms a cylinder about the line in 3D,
and a hyper-cylinder in higher dimensions. How large could we make the radius of this
cylinder until we started to put points into a no-man’s land, where we don’t know which
class they are from? This largest radius is known as the margin, labelled M . The margin
was mentioned briefly in Section 3.4.1, where it affected the speed at which the Perceptron
converged. The classifier in the middle of Figure 8.1 has the largest margin of the three. It



Support Vector Machines � 171

FIGURE 8.2 The margin is the largest region we can put that separates the classes without
there being any points inside, where the box is made from two lines that are parallel to
the decision boundary.

has the imaginative name of the maximum margin (linear) classifier. The datapoints in each
class that lie closest to the classification line have a name as well. They are called support
vectors. Using the argument that the best classifier is the one that goes through the middle
of no-man’s land, we can now make two arguments: first that the margin should be as large
as possible, and second that the support vectors are the most useful datapoints because
they are the ones that we might get wrong. This leads to an interesting feature of these
algorithms: after training we can throw away all of the data except for the support vectors,
and use them for classification, which is a useful saving in data storage.

Now that we’ve got a measurement that we can use to find the optimal decision boundary,
we just need to work out how to actually compute it from a given set of datapoints. Let’s
start by reminding ourselves of some of the things that we worked out in Chapter 3. We
have a weight vector (a vector, not a matrix, since there is only one output) and an input
vector x. The output we used in Chapter 3 was y = w ·x + b, with b being the contribution
from the bias weight. We use the classifier line by saying that any x value that gives a
positive value for w · x + b is above the line, and so is an example of the ‘+’ class, while
any x that gives a negative value is in the ‘◦’ class. In our new version of this we want to
include our no-man’s land. So instead of just looking at whether the value of w · x + b is
positive or negative, we also check whether the absolute value is less than our margin M ,
which would put it inside the grey box in Figure 8.2. Remember that w · x is the inner or
scalar product, w · x =

∑
i wixi. This can also be written as wTx, since this simply means

that we treat the vectors as degenerate matrices and use the normal matrix multiplication
rules. This notation will turn out to be simpler, and so will be used from here on.



172 � Machine Learning: An Algorithmic Perspective

For a given margin value M we can say that any point x where wTx + b ≥ M is a
plus, and any point where wTx + b ≤ −M is a circle. The actual separating hyperplane is
specified by wTx + b = 0. Now suppose that we pick a point x+ that lies on the ‘+’ class
boundary line, so that wTx+ = M . This is a support vector. If we want to find the closest
point that lies on the boundary line for the ‘◦’ class, then we travel perpendicular to the ‘+’
boundary line until we hit the ‘◦’ boundary line. The point that we hit is the closest point,
and we’ll call it x−. How far did we have to travel in this direction? Figure 8.2 hopefully
makes it clear that the distance we travelled is M to get to the separating hyperplane, and
then M from there to the opposing support vector. We can use this fact to write down
the margin size M in terms of w if we remember one extra thing from Chapter 3, namely
that the weight vector w is perpendicular to the classifier line. If it is perpendicular to the
classifier line, then it is obviously perpendicular to the ‘+’ and ‘◦’ boundary lines too, so
the direction we travelled from x+ to x− is along w. Now we need to make w a unit vector
w/‖w‖, and so we see that the margin is 1/‖w‖. In some texts the margin is actually written
as the total distance between the support vectors, so that it would be twice the one that
we have computed.

So now, given a classifier line (that is, the vector w and scalar b that define the line
wTx + b) we can compute the margin M . We can also check that it puts all of the points
on the right side of the classification line. Of course, that isn’t actually what we want to do:
we want to find the w and b that give us the biggest possible value of M . Our knowledge
that the width of the margin is 1/‖w‖ tells us that making M as large as possible is the
same as making wTw as small as possible. If that was the only constraint, then we could
just set w = 0, and the problem would be solved, but we also want the classification line
to separate out the ‘+’ data from the ‘◦’, that is, actually act as a classifier. So we are
going to need to try to satisfy two problems simultaneously: find a decision boundary that
classifies well, while also making wTw as small as possible. Mathematically, we can write
these requirements as: minimise 1

2wTw (where the half is there for convenience as in so
many other cases) subject to some constraint that says that the data are well matched. The
next thing is to work out what these constraints are.

8.1.2 A Constrained Optimisation Problem
How do we decide whether or not a classifier is any good? Obviously, the fewer mistakes that
it makes, the better. So we can write down a set of constraints that say that the classifier
should get the answer right. To do this we make the target answers for our two classes be
±1, rather than 0 and 1. We can then write down ti × yi, that is, the target multiplied by
the output, and this will be positive if the two are the same and negative otherwise. We
can write down the equation of the straight line again, which is how we computed y, to see
that we require that ti(wTx + b) ≥ 1. This means that the constraints just need to check
each datapoint for this condition. So the full problem that we wish to solve is:

minimise 1
2wTw subject to ti(wTxi + b) ≥ 1 for all i = 1, . . . n. (8.1)

We’ve put in a lot of effort to write down this equation, but we don’t know how to solve
it. We could try and use gradient descent, but we would have to put a lot of effort into
making it enforce the constraints, and it would be very, very slow and inefficient for the
problem. There is a method that is much better suited, which is quadratic programming,
which takes advantage of the fact that the problem we have described is quadratic and
therefore convex, and has linear constraints. A convex problem is one where if we take any
two points on the line and join them with a straight line, then every point on the line will



Support Vector Machines � 173

FIGURE 8.3 If the classifier makes some errors, then the distance by which the points
are over the border should be used to weight each error in order to decide how bad the
classifier is.

be above the curve. Figure 8.4 shows an example of a convex and a non-convex function.
Convex functions have a unique minimum, which is fairly easy to see in one dimension, and
remains true in any number of dimensions.

The practical upshot of these facts for us is that the types of problem that we are
interested in can be solved directly and efficiently (i.e., in polynomial time). There are very
effective quadratic programming solvers available, but it is not an algorithm that we will
consider writing ourselves. We will, however, work out how to formulate the problem so
that it can be presented to a quadratic program solver, and then use one of the programs
that other people have been nice enough to prepare and make freely available.

Since the problem is quadratic, there is a unique optimum. When we find that optimal
solution, the Karush–Kuhn–Tucker (KKT) conditions will be satisfied. These are (for all values
of i from 1 to n, and where the ∗ denotes the optimal value of each parameter):

λ∗i (1− ti(w∗Txi + b∗)) = 0 (8.2)
1− ti(w∗Txi + b∗) ≤ 0 (8.3)

λ∗i ≥ 0, (8.4)

where the λi are positive values known as Lagrange multipliers, which are a standard ap-
proach to solving equations with equality constraints.

The first of these conditions tells us that if λi 6= 0 then (1− ti(w∗Txi + b∗)) = 0. This is
only true for the support vectors (the SVMs provide a sparse representation of the data), and
so we only have to consider them, and can ignore the rest. In the jargon, the support vectors



174 � Machine Learning: An Algorithmic Perspective

FIGURE 8.4 A function is convex if every straight line that links two points on the curve
does not intersect the curve anywhere else. The function on the left is convex, but the
one on the right is not, as the dashed line shows.

are those vectors in the active set of constraints. For the support vectors the constraints are
equalities instead of inequalities. We can therefore solve the Lagrangian function:

L(w, b,λ) = 1
2wTw +

n∑
i=1

λi(1− ti(wTxi + b)), (8.5)

We differentiate this function with respect to the elements of w and b:

∇wL = w−
n∑
i=1

λitixi, (8.6)

and

∂L
∂b

= −
n∑
i=1

λiti. (8.7)

If we set the derivatives to be equal to zero, so that we find the saddle points (maxima)
of the function, we see that:

w∗ =
n∑
i=1

λitixi,
n∑
i=1

λiti = 0. (8.8)

We can substitute these expressions at the optimal values of w and b into Equation (8.5)
and, after a little bit of rearranging, we get (where λ is the vector of the λi):

L(w∗, b∗,λ) =
n∑
i=1

λi −
n∑
i=1

λiti −
1
2

n∑
i=1

n∑
j=1

λiλjtitjxTi xj , (8.9)

and we can notice that using the derivative with respect to b we can treat the middle term
as 0. This equation is known as the dual problem, and the aim is to maximise it with respect
to the λi variables. The constraints are that λi ≥ 0 for all i, and

∑n
i=1 λiti = 0.

Equation (8.8) gives us an expression for w∗, but we also want to know what b∗ is. We
know that for a support vector ti(wTxi + b) = 1, and we can substitute the expression for



Support Vector Machines � 175

w∗ into there and substitute in the (x, t) of one of the support vectors. However, in case
of errors this is not very stable, and so it is better to average it over the whole set of Ns
support vectors:

b∗ = 1
Ns

∑
support vectors j

(
tj −

n∑
i=1

λitixTi xj

)
. (8.10)

We can also use Equation (8.8) to see how to make a prediction, since for a new point
z:

w∗T z + b∗ =
(

n∑
i=1

λitixi

)T
z + b∗. (8.11)

This means that to classify a new point, we just need to compute the inner product
between the new datapoint and the support vectors.

8.1.3 Slack Variables for Non-Linearly Separable Problems
Everything that we have done so far has assumed that the datatset is linearly separable.
We know that this is not always the case, but if we have a non-linearly separable dataset,
then we cannot satisfy the constraints for all of the datapoints. The solution is to introduce
some slack variables ηi ≥ 0 so that the constraints become ti(wTxi + b) ≥ 1− ηi. For inputs
that are correct, we set ηi = 0.

These slack variables are telling us that, when comparing classifiers, we should consider
the case where one classifier makes a mistake by putting a point just on the wrong side
of the line, and another puts the same point a long way onto the wrong side of the line.
The first classifier is better than the second, because the mistake was not as serious, so we
should include this information in our minimisation criterion. We can do this by modifying
the problem. In fact, we have to do major surgery, since we want to add a term into the
minimisation problem so that we will now minimise wTw + C× (distance of misclassified
points from the correct boundary line). Here, C is a tradeoff parameter that decides how
much weight to put onto each of the two criteria: small C means we prize a large margin
over a few errors, while large C means the opposite. This transforms the problem into
a soft-margin classifier, since we are allowing for a few mistakes. Writing this in a more
mathematical way, the function that we want to minimise is:

L(w, ε) = wTw + C

n∑
i=1

εi. (8.12)

The derivation of the dual problem that we worked out earlier still holds, except that
0 ≤ λi ≤ C, and the support vectors are now those vectors with λi > 0. The KKT conditions
are slightly different, too:

λ∗i (1− ti(w∗Txi + b∗)− ηi) = 0 (8.13)
(C − λ∗i )ηi = 0 (8.14)

n∑
i=1

λ∗i ti = 0. (8.15)

The second condition tells us that, if λi < C, then ηi = 0, which means that these are



176 � Machine Learning: An Algorithmic Perspective

FIGURE 8.5 By modifying the features we hope to find spaces where the data are linearly
separable.

the support vectors. If λi = C, then the first condition tells us that if ηi > 1 then the
classifier made a mistake. The problem with this is that it is not as clear how to choose a
limited set of vectors, and so most of our training set will be support vectors.

We have now built an optimal linear classifier. However, since most problems are non-
linear we seem to have done a lot of work for a case that we could already solve, albeit not
as effectively. So while the decision boundary that is found could be better than that found
by the Perceptron, if there is not a straight line solution, then the method doesn’t work
much better than the Perceptron. Not ideal for something that’s taken lots of effort to work
out! It’s time to pull our extra piece of magic out of the hat: transformation of the data.

8.2 KERNELS
To see the idea, have a look at Figure 8.5. Basically, we see that if we modify the features
in some way, then we might be able to linearly separate the data, as we did for the XOR
problem in Section 3.4.3; if we can use more dimensions, then we might be able to find a
linear decision boundary that separates the classes. So all that we need to do is work out
what extra dimensions we can use. We can’t invent new data, so the new features will have
to be derived from the current ones in some way. Just like in Section 5.3, we are going to
introduce new functions φ(x) of our input features.

The important thing is that we are just transforming the data, so that we are making
some function φ(xi) from input xi. The reason why this matters is that we want to be able
to use the SVM algorithm that we worked out above, particularly Equation (8.11). The
good news is that it isn’t any worse, since we can replace xi by φ(xi) (and z by φ(z)) and
get a prediction quite easily:

wTx + b =
(

n∑
i=1

λitiφ(xi)
)T

φ(z) + b. (8.16)

We still need to pick what functions to use, of course. If we knew something about
the data, then we might be able to identify functions that would be a good idea, but
this kind of domain knowledge is not always going to be around, and we would like to
automate the algorithm. For now, let’s think about a basis that consists of the polynomials
of everything up to degree 2. It contains the constant value 1, each of the individual (scalar)



Support Vector Machines � 177

FIGURE 8.6 Using x2
1 as well as x1 allows these two classes to be separated.

input elements x1, x2, . . . , xd, and then the squares of each input element x2
1, x

2
2, . . . , x

2
d, and

finally, the products of each pair of elements x1x2, x1x3, . . . , xd−1xd. The total input vector
made up of all these things is generally written as Φ(x); it contains about d2/2 elements.
The right of Figure 8.6 shows a 2D version of this (with the constant term suppressed), and
I’m going to write it out for the case d = 3, with a set of

√
2s in there (the reasons for them

will become clear soon):

Φ(x) = (1,
√

2x1,
√

2x2,
√

2x3, x
2
1, x

2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3). (8.17)

If there was just one feature, x1, then we would have changed this from a one-dimensional
problem into a three-dimensional one (1, x1, x

2
1).

The only thing that this has cost us is computational time: the function Φ(xi) has d2/2
elements, and we need to multiply it with another one the same size, and we need to do this
many times. This is rather computationally expensive, and if we need to use the powers of
the input vector greater than 2 it will be even worse. There is one last piece of trickery that
will get us out of this hole: it turns out that we don’t actually have to compute Φ(xi)TΦ(xj).
To see how this works, let’s work out what Φ(x)TΦ(y) actually is for the example above
(where d = 3 to match perfectly):

Φ(x)TΦ(y) = 1 + 2
d∑
i=1

xiyi +
d∑
i=1

x2
i y

2
i + 2

d∑
i,j=1;i<j

xixjyiyj . (8.18)

You might not recognise that you can factorise this equation, but fortunately somebody
did: it can be written as (1+xTy)2. The dot product here is in the original space, so it only
requires d multiplications, which is obviously much better—this part of the algorithm has
now been reduced from O(d2) to O(d). The same thing holds true for the polynomials of
any degree s that we are making here, where the cost of the naïve algorithm is O(ds). The
important thing is that we remove the problem of computing the dot products of all the
extended basis vectors, which is expensive, with the computation of a kernel matrix (also
known as the Gram matrix) K that is made from the dot product of the original vectors,
which is only linear in cost. This is sometimes known as the kernel trick. It means that
you don’t even have to know what Φ(·) is, provided you know a kernel. These kernels are
the fundamental reason why these methods work, and the reason why we went to all that
effort to produce the dual formulation of the problem. They produce a transformation of
the data so that they are in a higher-dimensional space, but because the datapoints only



178 � Machine Learning: An Algorithmic Perspective

appear inside those inner products, we don’t actually have to do any computations in those
higher-dimensional spaces, only in the original (relatively cheap) low-dimensional space.

8.2.1 Choosing Kernels
So how do we go about finding a suitable kernel? Any symmetric function that is positive
definite (meaning that it enforces positivity on the integral of arbitrary functions) can be
used as a kernel. This is a result of Mercer’s theorem, which also says that it is possible to
convolve kernels together and the result will be another kernel. However, there are three
different types of basis functions that are commonly used, and they have nice kernels that
correspond to them:

• polynomials up to some degree s in the elements xk of the input vector (e.g., x3
3 or

x1 × x4) with kernel:
K(x,y) = (1 + xTy)s (8.19)

For s = 1 this gives a linear kernel

• sigmoid functions of the xks with parameters κ and δ, and kernel:

K(x,y) = tanh(κxTy− δ) (8.20)

• radial basis function expansions of the xks with parameter σ and kernel:

K(x,y) = exp
(
−(x− y)2/2σ2) (8.21)

Choosing which kernel to use and the parameters in these kernels is a tricky problem.
While there is some theory based on something known as the Vapnik–Chernik dimension that
can be applied, most people just experiment with different values and find one that works,
using a validation set as we did for the MLP in Chapter 4.

There are two things that we still need to worry about for the algorithm. One is some-
thing that we’ve discussed in the context of other machine learning algorithms: overfitting,
and the other is how we will do testing. The second one is probably worth a little explaining.
We used the kernel trick in order to reduce the computations for the training set. We still
need to work out how to do the same thing for the testing set, since otherwise we’ll be stuck
with doing the O(ds) computations. In fact, it isn’t too hard to get around this problem,
because the forward computation for the weights is wTΦ(x), where:

w =
∑

i where λi>0
λitiΦ(xi). (8.22)

So we still have the computation of Φ(xi)TΦ(xj), which we can replace using the kernel as
before.

The overfitting problem goes away because of the fact that we are still optimising wTw
(remember that from somewhere a long way back?), which tries to keep w small, which
means that many of the parameters are kept close to 0.



Support Vector Machines � 179

8.2.2 Example: XOR
We motivated the SVM by thinking about how we solved the XOR function in Section 3.4.3.
So will the SVM actually solve the problem? We’ll need to modify the problem to have
targets -1 and 1 rather than 0 and 1, but that is not difficult. Then we’ll introduce a basis
of all terms up to quadratic in our two features: 1,

√
2x1,
√

2x2, x1x2, x
2
1, x

2
2, where the

√
2

is to keep the multiplications simple. Then Equation (8.9) looks like:

4∑
i=1

λi −
4∑
i,j

λiλjtitjΦ(xi)TΦ(xj), (8.23)

subject to the constraints that λ1− λ2 + λ3− λ4 = 0, λi ≥ 0 i = 1 . . . 4. Solving this (which
can be done algebraically) tells us that the classifier line is at x1x2 = 0. The margin that
corresponds to this is

√
2. Unfortunately we can’t plot it, since our four points have been

transferred into a six-dimensional space. We know that this is not the smallest number that
it can be solved in, since we did it in three dimensions in Section 3.4.3, but the dimensionality
of the kernel space doesn’t matter, as all the computations are in the 2D space anyway.

8.3 THE SUPPORT VECTOR MACHINE ALGORITHM
Quadratic programming solvers tend to be very complex (lots of the work is in identifying
the active set), and we would be a long way off topic if we tried to write one. Fortunately,
general purpose solvers have been written, and so we can take advantage of this. We will
use cvxopt, which is a convex optimisation package that includes a wrapper for Python.
There is a link to the relevant website on the book webpage. Cvxopt has a nice and clean
interface so we can use this to do the computational heavy lifting for an implementation of
the SVM. In essence, the approach is fairly simple: we choose a kernel and then for given
data, assemble the relevant quadratic problem and its constraints as matrices, and then
pass them to the solver, which finds the decision boundary and necessary support vectors
for us. These are then used to build a classifier for that training data. This is given as an
algorithm next, and then some parts of the implementation are highlighted, particularly
those parts where some speed-up can be achieved by some linear algebra.

The Support Vector Machine Algorithm

• Initialisation

– for the specified kernel, and kernel parameters, compute the kernel of distances
between the datapoints

∗ the main work here is the computation K = XXT

∗ for the linear kernel, return K, for the polynomial of degree d return 1
σKd

∗ for the RBF kernel, compute K = exp(−(x− x′)2/2σ2)

• Training

– assemble the constraint set as matrices to solve:

min
x

1
2xT titjKx + qTx subject to Gx ≤ h,Ax = b

– pass these matrices to the solver



180 � Machine Learning: An Algorithmic Perspective

– identify the support vectors as those that are within some specified distance of
the closest point and dispose of the rest of the training data

– compute b∗ using equation (8.10)

• Classification

– for the given test data z, use the support vectors to classify the data for the
relevant kernel using:

∗ compute the inner product of the test data and the support vectors
∗ perform the classification as

∑n
i=1 λitiK(xi, z)+b∗, returning either the label

(hard classification) or the value (soft classification)

8.3.1 Implementation
In order to use the code on the website it is necessary to install the cvxopt package on your
computer. There is a link to this on the website. However, we need to work out exactly what
we are trying to solve. The key is Equation (8.9), which shows the dual problem, which had
constraints λi ≥ 0 and

∑n
i=1 λiti = 0. We need to modify it so that we are dealing with

the case for slack variables, and using a kernel. Introducing slack variables changes this
surprisingly little, basically swapping the first constraint to be 0 ≤ λi ≤ C, while adding
the kernel simply turns xTi xj into K(xi,xj). So we want to solve:

maxλ =
n∑
i=1

λi −
1
2λTλttTK(xi,xj)λ, (8.24)

subject to 0 ≤ λi ≤ C,
n∑
i=1

λiti = 0. (8.25)

The cvxopt quadratic program solver is cvxopt.solvers.qp(). This method takes the
following inputs cvxopt.solvers.qp(P, q, G, h, A, b) and then solves:

min 1
2xTPx + qTx subject to Gx ≤ h,Ax = b, (8.26)

where x is the variable we are solving for, which is λ for us. Note that this solves minimisa-
tion problems, whereas we are doing maximisation, which means that we need to multiply
the objective function by -1. To make the equations match we set P = titjK and q is just
a column vector containing −1s. The second constraint is easy, since if A = λ then we get
the right equation. However, for the first constraint we need to do a little bit more work,
since we want to include two constraints (0 ≤ λi and λi ≤ C). To do this, we double up
on the number of constraints, multiplying the ones where we want ≥ instead of ≤ by -1.
In order to do this multiplication efficiently, it will also be better to use a matrix with the
elements on the diagonal, so that we make the following matrix:



Support Vector Machines � 181



t1 0 . . . 0
0 t2 . . . 0

. . .
0 0 . . . tn
−t1 0 . . . 0
0 −t2 . . . 0

. . .
0 0 . . . −tn




λ1
λ2
. . .
λn

 =



C
C
. . .
C
0
0
. . .
0


(8.27)

Assembling these, turning them into the matrices expected by the solver, and then
calling it can then be written as:

# Assemble the matrices for the constraints
P = targets*targets.transpose()*self.K
q = -np.ones((self.N,1))
if self.C is None:

G = -np.eye(self.N)
h = np.zeros((self.N,1))

else:
G = np.concatenate((np.eye(self.N),-np.eye(self.N)))
h = np.concatenate((self.C*np.ones((self.N,1)),np.zeros((self.N,1))))

A = targets.reshape(1,self.N)
b = 0.0

# Call the quadratic solver
sol = cvxopt.solvers.qp(cvxopt.matrix(P),cvxopt.matrix(q),cvxopt.matrix(G),'
cvxopt.matrix(h), cvxopt.matrix(A), cvxopt.matrix(b))

There are a couple of novelties in the implementation. One is that the training method
actually returns a function that performs the classification, as can be seen here for the
polynomial kernel:

if self.kernel == ’poly’:
def classifier(Y,soft=False):

K = (1. + 1./self.sigma*np.dot(Y,self.X.T))**self.degree

self.y = np.zeros((np.shape(Y)[0],1))
for j in range(np.shape(Y)[0]):

for i in range(self.nsupport):
self.y[j] += self.lambdas[i]*self.targets[i]*K[j,i]

self.y[j] += self.b

if soft:
return self.y

else:
return np.sign(self.y)



182 � Machine Learning: An Algorithmic Perspective

The reason for this is that the classification function has different forms for the different
kernels, and so we need to create this function based on the kernel that is specified. A handle
for the classifier is stored in the class, and the method can then be called as:

output = sv.classifier(Y,soft=False)

The other novelty is that some of the computation of the RBF kernel uses some linear
algebra to make the computation faster, since NumPy is better at dealing with matrix
manipulations than loops. The elements of the RBF kernel are Kij = 1

2σ exp(−‖xi − xj‖2).
We could go about forming this by using a pair of loops over i and j, but instead we can
use some algebra.

The linear kernel has computed Kij = xTi xj , and the diagonal elements of this matrix
are ‖xi‖2. The trick is to see how to use only these elements to compute the ‖xi − xj‖2
part, and it just requires expanding out the quadratic:

(xi − xj)2 = ‖xi‖2 + ‖x2
j‖ − 2xTi xj . (8.28)

The only work involved now is to make sure that the matrices are the right shape. This
would be easy if it wasn’t for the fact that NumPy ‘loses’ the dimension of some N × 1
matrices, so that they are of size N only, as we have seen before. This means that we need
to make a matrix of ones and use the transpose operator a few times, as can be seen in the
code fragment below.

self.xsquared = (np.diag(self.K)*np.ones((1,self.N))).T
b = np.ones((self.N,1))
self.K -= 0.5*(np.dot(self.xsquared,b.T) + np.dot(b,self.xsquared.T))
self.K = np.exp(self.K/(2.*self.sigma**2))

For the classifier we can use the same tricks to compute the product of the kernel and
the test data:

elif self.kernel == ’rbf’:
def classifier(Y,soft=False):

K = np.dot(Y,self.X.T)
c = (1./self.sigma * np.sum(Y**2,axis=1)*np.ones((1,np.shape(Y)[0])))'
.T
c = np.dot(c,np.ones((1,np.shape(K)[1])))
aa = np.dot(self.xsquared[self.sv],np.ones((1,np.shape(K)[0]))).T
K = K - 0.5*c - 0.5*aa
K = np.exp(K/(2.*self.sigma**2))

self.y = np.zeros((np.shape(Y)[0],1))
for j in range(np.shape(Y)[0]):

for i in range(self.nsupport):
self.y[j] += self.lambdas[i]*self.targets[i]*K[j,i]



Support Vector Machines � 183

FIGURE 8.7 The SVM learning about a linearly separable dataset (top row) and a dataset
that needs two straight lines to separate in 2D (bottom row) with left the linear kernel,
middle the polynomial kernel of degree 3, and right the RBF kernel. C = 0.1 in all cases.

self.y[j] += self.b

if soft:
return self.y

else:
return np.sign(self.y)

The first bit of computational work is in computing the kernel (which is O(m2n), where
m is the number of datapoints and n is the dimensionality), and the second part is inside
the solver, which has to factorise a sum of the kernel matrix and a test matrix at each
iteration. Factorisation costs O(m3) in general, and this is why the SVM is very expensive
to use for large datasets. There are some methods by which this can be improved, and there
are some references to this at the end of the chapter.

8.3.2 Examples
In order to see the SVM working, and to identify the differences between the kernels, we
will start with some very simple 2D datasets with two classes.

The first example (shown on the top row of Figure 8.7) simply checks that the SVM can
learn accurately about data that is linearly separable, which it does successfully. Note that
the different kernels produce different decision boundaries, which are not straight lines in
the 2D plot for the polynomial kernel (centre) and RBF kernel (right), and that different
numbers of support vectors (highlighted in bold) are needed for the different kernels as well.

On the second line of the figure is a dataset that cannot be separated by a single straight
line, and which the linear kernel cannot then separate. However, the polynomial and RBF
kernels deal with this data successfully with very few support vectors.



184 � Machine Learning: An Algorithmic Perspective

For the second example the data come from the XOR dataset with some spread around
each of the four datapoints. The dataset is made by making four sets of random Gaus-
sian samples with a small standard deviation, and means of (0, 0), (0, 1), (1, 0), and (1, 1).
Figure 8.8 shows a series of outputs from this dataset with the standard deviations of each
cluster being 0.1 on the left, 0.3 in the middle, and 0.4 on the right, and with 100 datapoints
for training, and 100 datapoints for testing. The training set for the two classes is shown as
black and white circles, with the support vectors marked with a thicker outline. The test
set are shown as black and white squares.

The top row of the figure shows the polynomial kernel of degree 3 with no slack variables,
while the second row shows the same kernel but with C = 0.1; the third row shows the RBF
kernel with no slack variables, and the last row shows the RBF kernel with C = 0.1. It can
be seen that where the classes start to overlap, the inclusion of slack variables leads to far
simpler decision boundaries and a better model of the underlying data. Both the polynomial
and RBF kernels perform well on this problem.

8.4 EXTENSIONS TO THE SVM
8.4.1 Multi-Class Classification
We’ve talked about SVMs in terms of two-class classification. You might be wondering how
to use them for more classes, since we can’t use the same methods as we have done to work
out the current algorithm. In fact, you can’t actually do it in a consistent way. The SVM
only works for two classes. This might seem like a major problem, but with a little thought
it is possible to find ways around the problem. For the problem of N -class classification,
you train an SVM that learns to classify class one from all other classes, then another that
classifies class two from all the others. So for N -classes, we have N SVMs. This still leaves
one problem: how do we decide which of these SVMs is the one that recognises the particular
input? The answer is just to choose the one that makes the strongest prediction, that is, the
one where the basis vector input point is the furthest into the positive class region. It might
not be clear how to work out which is the strongest prediction. The classifier examples in
the code snippets return either the class label (as the sign of y) or the value of y, and this
value of y is telling us how far away from the decision boundary it is, and clearly it will
be negative if it is a misclassification. We can therefore use the maximum value of this soft
boundary as the best classifier.

output = np.zeros((np.shape(test)[0],3))
output[:,0] = svm0.classifier(test[:,:2],soft=True).T
output[:,1] = svm1.classifier(test[:,:2],soft=True).T
output[:,2] = svm2.classifier(test[:,:2],soft=True).T

# Make a decision about which class
# Pick the one with the largest margin
bestclass = np.argmax(output,axis=1)
err = np.where(bestclass!=target)[0]
print len(err)/ np.shape(target)[0]

Figure 8.9 shows the first two dimensions of the iris dataset and the class decision
boundaries for the three classes. It can be seen that using only two dimensions does not



Support Vector Machines � 185

FIGURE 8.8 The effects of different kernels when learning a version of XOR with pro-
gressively more overlap (left to right) between the classes. Top row: polynomial kernel of
degree 3 with no slack variables, second row: polynomial of degree 3 with C = 0.1, third
row: RBF kernel, no slack variables, bottom row: RBF kernel with C = 0.1. The support
vectors are highlighted, and the decision boundary is drawn for each case.



186 � Machine Learning: An Algorithmic Perspective

FIGURE 8.9 A linear (left) and polynomial, degree 3 (right) kernel learning the first two
dimensions of the iris dataset, which separates one class very well from the other two,
but cannot distinguish between the other two (for good reason). The support vectors are
highlighted.

allow good separation of the data, and both kernels get about 33% accuracy, but allowing for
all four dimensions, both the RBF and polynomial kernels reliably get about 95% accuracy.

8.4.2 SVM Regression
Perhaps rather surprisingly, it is also possible to use the SVM for regression. The key is to
take the usual least-squares error function (with the regulariser that keeps the norm of the
weights small):

1
2

N∑
i=1

(ti − yi)2 + 1
2λ‖w‖2, (8.29)

and transform it using what is known as an ε-insensitive error function (Eε) that gives 0 if
the difference between the target and output is less than ε (and subtracts ε in any other case
for consistency). The reason for this is that we still want a small number of support vectors,
so we are only interested in the points that are not well predicted. Figure 8.10 shows the
form of this error function, which is:

N∑
i=1

Eε(ti − yi) + λ
1
2‖w‖

2. (8.30)

You might see this written in other texts with the constant λ in front of the second
term replaced by a C in front of the first term. This is equivalent up to scaling. The picture
to think of now is almost the opposite of Figure 8.3: we want the predictions to be inside
the tube of radius ε that surrounds the correct line. To allow for errors, we again introduce
slack variables for each datapoint (εi for datapoint i) with their constraints and follow the
same procedure of introducing Lagrange multipliers, transferring to the dual problem, using
a kernel function and solving the problem with a quadratic solver.

The upshot of all this is that the prediction we make for test point z is:

f(z) =
n∑
i=1

(µi − λiK(xi, z) + b), (8.31)



Support Vector Machines � 187

FIGURE 8.10 The ε-insensitive error function is zero for any error below ε.

where µi and λi are two sets of constraint variables.

8.4.3 Other Advances
There is a lot of advanced work on kernel methods and SVMs. This includes lots of work
on the optimisation, including Sequential Minimal Optimisation, and extensions to compute
posterior probabilities instead of hard decisions, such as the Relevance Vector Machine. There
are some references in the Further Reading section.

There are several SVM implementations available via the Internet that are more ad-
vanced than the implementation on the book website. They are mostly written in C, but
some include wrappers to be called from other languages, including Python. An Internet
search will find you some possibilities to try, but some common choices are SVMLight,
LIBSVM, and scikit-learn.

FURTHER READING
The treatment of SVMs here has only skimmed the surface of the topic. There is a useful
tutorial paper on SVMs at:

• C.J. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

If you want more information, then any of the following books will provide it (the first
is by the creator of SVMs):

• V. Vapnik. The Nature of Statistical Learning Theory. Springer, Berlin, Germany,
1995.

• B. Schölkopf, C.J.C. Burges, and A.J. Smola. Advances in Kernel Methods: Support
Vector Learning. MIT Press, Cambridge, MA, USA, 1999.



188 � Machine Learning: An Algorithmic Perspective

• J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004.

If you want to know more about quadratic programming, then a good reference is:

• S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004.

Other machine learning books that give useful coverage of this area are:

• Chapter 12 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning, 2nd edition, Springer, Berlin, Germany, 2008.

• Chapter 7 of C.M. Bishop. Pattern Recognition and Machine Learning. Springer,
Berlin, Germany, 2006.

PRACTICE QUESTIONS
Problem 8.1 Suppose that the following are a set of points in two classes:

class 1 :
(

1
1

)(
1
2

)(
2
1

)
(8.32)

class 2 :
(

0
0

)(
1
0

)(
0
1

)
(8.33)

Plot them and find the optimal separating line. What are the support vectors, and
what is the margin?

Problem 8.2 Suppose that the points are now:

class 1 :
(

0
0

)(
1
2

)(
2
1

)
(8.34)

class 2 :
(

1
1

)(
1
0

)(
0
1

)
(8.35)

Try out the different basis functions that were given in the chapter to see which
separate this data and which do not.

Problem 8.3 Apply it to the wine dataset, trying out the different kernels. Compare the
results to using an MLP. Do the same for the yeast dataset.

Problem 8.4 Use an SVM on the MNIST dataset.

Problem 8.5 Verify that introducing the slack variables does not change the dual prob-
lem much at all (only changing the constraint to be 0 ≤ λi ≤ C). Start from Equa-
tion (8.12) and introduce the Lagrange multipliers and then compare the result to
Equations (8.9).



CHA PT E R 9

Optimisation and Search

In almost all of the algorithms that we’ve looked at in the previous chapters there has
been some element of optimisation, generally by defining some sort of error function, and
attempting to minimise it. We’ve talked about gradient descent, which is the optimisation
method that forms the basis of many machine learning algorithms. In this chapter, we will
look at formalising the gradient descent algorithm and understanding how it works, and
then we will look at what we can do when there are no gradients in the problem, and so
gradient descent doesn’t work.

Whatever method we have used to solve the optimisation problem, the basic methodol-
ogy has been the same: to compute the derivative of the error function to get the gradient
and follow it downhill. What if that derivative doesn’t exist? This is actually common in
many problems—discrete problems are not defined on continuous functions, and hence can’t
be differentiated, and so gradient descent can’t be used. In theory, it is possible to check all
of the cases for a discrete problem to find the optimum, but the computations are infeasible
for any interesting problem. We therefore need to think of some other approaches. Some
examples of discrete problems are:

Chip design Lay a circuit onto a computer chip so that none of the tracks cross.

Timetabling Given a list of courses and which students are on each course, find a timetable
with the minimum number of clashes (or given a number of planes and routes, schedule
the planes onto the routes).

The Travelling Salesman Problem Given a set of cities, find a tour (that is, a solution
that visits every city exactly once, and returns to the starting point) that minimises
the total distance travelled.

One thing that is worth noting is that there is no one ideal solution to the search
problem. That is, there is no one search algorithm that is guaranteed to perform the best
on every problem that is presented to it—you always have to put some work into choosing
the algorithm that will be most effective for your problem, and phrasing your problem to
make the algorithm work as efficiently as possible. This is called the No Free Lunch theorem.

189



190 � Machine Learning: An Algorithmic Perspective

FIGURE 9.1 The downhill gradients to minimise a function. At the solution the gradient
is 0. This is a nice example without local minima; they would also have gradient 0.

9.1 GOING DOWNHILL
We will start by trying to derive a better understanding of gradient descent, and seeing
the algorithms that can be used for finding local optima for general problems. We will also
look at the specific case of solving least-squares optimisation problems, which are the most
common examples in machine learning.

The basic idea, as we have already seen, is that we want to minimise a function f(x),
where x is a vector (x1, x2, . . . , xn) that has elements for each feature value, starting from
some initial guess x(0). We try to find a sequence of new points x(i) that move downhill
towards a solution. The methods that we are going to look at work in any number of
dimensions. We will therefore have to take derivatives of the function in each of the different
dimensions of x. We write down this whole set of functions as ∇f(x), which is a vector with
elements ( ∂f∂x1

, ∂f∂x2
, . . . , ∂f∂xn ), so that it gives us the gradient in each dimension separately.

Figure 9.1 shows a set of directions in two dimensions in order to minimise some function.
The first thing to think about is how we know when we have found a solution; in other

words, how will we know when to stop? This is relatively easy: it is when ∇f = 0, since then
there is no more downhill to go. If you are walking down a hill, then you have reached the
bottom when everything is flat around you (which might not be a very large space before
things start going up again, but if the function is continuous, as we will assume here, then
there must be a point where it is 0 inbetween where it is going down and where it starts
going up). So we will know when to terminate the algorithm by checking whether or not
∇f = 0. In practice, the algorithms will always have some numerical inaccuracy, since they
are floating point numbers inside the computer, so we usually stop if |∇f | < ε where ε is
some small number, maybe 10−5. There is another concept that it can be useful to think
about, which is the places that we can travel to without going up or down, i.e., the places
that are at the same level as we are. The full set of places that have the same function
value are known as level sets of the function, and some examples are shown in Figure 9.2.
Often there will be several discrete parts to a level set, so it is not possible to explore it all
without stepping off the set itself.

So from the current point xi there are two things that we need to decide: what direction
should we move in to go downhill as fast as possible, and how far should we move? Looking



Optimisation and Search � 191

FIGURE 9.2 The lines show contours of equal value (level sets) for a function.

at the second of these questions first, there are two types of methods that can be used to
solve it. The simplest approach is a line search: if we know what direction to look in, then
we move along it until we reach the minimum in this direction. So this is just a search along
the line we are moving along. Writing this down mathematically, if we are currently at xk
then the next guess will be xk+1, which is:

xk+1 = xk + αkpk, (9.1)

where pk is the direction we have chosen to move in and αk is the distance to travel in
that direction, chosen by the line search. Finding a value for αk can be computationally
expensive and inaccurate, so it is generally just estimated.

The other method of choosing how far to move is known as a trust region. It is more
complex, since it consists of making a local model of the function as a quadratic form and
finding the minimum of that model. We will see one example of a trust region method in
Section 9.2, and more information about general trust region methods is available in the
books listed at the end of the chapter.

The direction pk can also be chosen in several ways. The left of Figure 9.3 shows the
ideal situation, which is that we point directly to the minimum, in which case the line
search finds it straight away. Since we don’t know the minimum (it is what we are trying to
find!) this is virtually impossible. One thing that we can do is to make greedy choices and
always go downhill as fast as possible at each point. This is known as steepest descent, and
it means that pk = −∇f(xk). The problem with it can be seen on the right of Figure 9.3,
which is that many of the directions that it travels in are not directly towards the centre.
In extreme cases they can be very different: across the valley, rather than down towards the
global minimum (we saw this in Figure 4.7).

If we don’t worry about the stepsize, and just set it as αk = 1, then we can perform the
search using Equation (9.1) with a very simple program. All that is needed is to iterate the
line search until the solution stops changing (or you decide that there have been too many
iterations). The only other thing that you have to compute is the derivative of the function,
which is the direction pk. This is the problem-specific part of the algorithm, and as a small
example, we consider a simple three-dimensional function f(x) = (0.5x2

1 + 0.2x2
2 + 0.6x2

3).
We can differentiate once to compute the vector of derivatives, ∇f(x) = (x1, 0.4x2, 1.2x3),
which is returned by the gradient() function in the code below:



192 � Machine Learning: An Algorithmic Perspective

FIGURE 9.3 Left: In an ideal world we would know how to go to the minimum directly. In
practice, we don’t, so we have to approximate it by something like right: moving in the
direction of steepest descent at each stage.

def gradient(x):
return np.array([x[0], 0.4*x[1], 1.2*x[2]])

def steepest(x0):
i = 0
iMax = 10
x = x0
Delta = 1
alpha = 1

while i<iMax and Delta>10**(-5):
p = -Jacobian(x)
xOld = x
x = x + alpha*p
Delta = np.sum((x-xOld)**2)
print x
i += 1

To compute the minimum we now need to pick a start point, for example, x(0) =
(−2, 2,−2), and then we can compute the steepest downhill direction as (−2, 0.8,−2.4).
Using the steepest descent method for this example gives fairly poor results, taking several
steps before the answer gets close to the correct answer of (0, 0, 0), and even then it is not
that close:



Optimisation and Search � 193

[ 0. 1.20 0.40]
[ 0. 0.72 -0.08]
[ 0. 0.43 0.01]
[ 0. 0.26 -0.00]
[ 0. 0.16 0.00]
[ 0. 0.09 -0.00]
[ 0. 5.69-02 2.56-05]

To see how we can improve on this we need to examine the basics of function approximation.

9.1.1 Taylor Expansion
Steepest descent is based on the Taylor expansion of the function, which is a method of
approximating the value of a function at a point in terms of its derivatives: a function f(x)
can be approximated by:

f(x) ≈ f(x0) + J(f(x))|x0(x− x0) + 1
2(x− x0)TH(f(x))|x0(x− x0) + . . . , (9.2)

where x0 is a common, but potentially slightly confusing notation for the initial guess x(0),
the |x0 notation means that the function is evaluated at that point, and the J(x) term is
the Jacobian, which is the vector of first derivatives:

J(x) = ∂f(x)
∂x =

(
∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xn

)
(9.3)

and H(x) is the Hessian matrix of second derivatives (the Jacobian of the gradient), which
for a single function f(x1, x2, . . . xn) is defined as:

H(x) = ∂

∂xi
∂

∂xj
f(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

. . .
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂fn(x)
∂x2
n

 . (9.4)

If f(x) is a scalar function (so that it returns just 1 number) then J(x) = ∇f(x) and is a
vector and H(x) = ∇2f(x) is a two-dimensional matrix. For a vector f(x) with components
f1(x), f2(x), etc., J(x) is a two-dimensional matrix and H(x) is three-dimensional.

If we ignore the Hessian term in Equation (9.2), then for scalar f(x) we get precisely
the steepest descent step. However, if we choose to minimise Equation (9.2) exactly as it is
written (i.e., ignoring third derivatives and higher), then we find the Newton direction at the
kth iteration to be: pk = −(∇2f(xk))−1∇f(xk). There is something important to notice
about this equation, which is that we actually use the inverse of the Hessian. Computing
this is generally of order O(N3) (where N is the number of elements in the matrix) which
makes this a computationally expensive method. The compensation for this cost is that we
don’t really have to worry about the stepsize at all; it is always set to 1.

Implementing this requires only 1 line of change to our basic steepest descent algorithm,
plus the addition of a function that computes the Hessian. The line to change is the one
that computes pk, which becomes:



194 � Machine Learning: An Algorithmic Perspective

p = -np.dot(np.linalg.inv(Hessian(x)),Jacobian(x))

For this simple example, this algorithm goes straight to the correct answer in one step,
which is much better than the steepest descent method that we saw earlier. However, for
more complicated functions it won’t work as well, because the estimate of the Hessian is
not as accurate. There are particular cases where we can, however, do better, as we shall
see.

9.2 LEAST-SQUARES OPTIMISATION
For many of the algorithms that we have derived we have used a least-squares error function,
such as the error of the MLP and the linear regressor. Least-squares problems turn out to
be the most common optimisation problems in many fields, and this means that they have
been very well studied and, fortunately, they have special structure in the problem that
makes solving them easier than other problems. This leads to a set of special algorithms for
solving least-squares problems, although they are mostly special cases of standard methods.
One of these has become very well known, the Levenberg–Marquardt method, which is a
trust region optimisation algorithm. We will derive the Levenberg–Marquardt algorithm,
beginning by identifying why least-squares optimisation is a special case.

9.2.1 The Levenberg–Marquardt Algorithm
For least-squares problems, the objective function that we are optimising is:

f(x) = 1
2

m∑
j=1

r2
j (x) = 1

2‖r(x)‖22, (9.5)

where the 1
2 makes the derivative nicer, and r(x) = (r1(x), r2(x), . . . , rm(x))T . In this last

version, we can write the (transpose of the) Jacobian of r as:

JT (x) =


∂r1
∂x1

∂r2
∂x1

. . . ∂rm
∂x1

∂r1
∂x2

∂r2
∂x2

. . . ∂rm
∂x2

. . . . . . . . . . . .
∂r1
∂xn

∂r2
∂xn

. . . ∂rm
∂xn

 =
[
∂rj
∂xi

]
j=1,...,m, i=1,...,n

, (9.6)

which is useful because the function gradients that we want can mostly be computed directly:

∇f(x) = J(x)T r(x) (9.7)

∇2f(x) = J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x). (9.8)

The upshot of this is that knowing the Jacobian gives you the first (and usually, most
important) part of the Hessian effectively without any additional computational cost, and
it is this that special algorithms can exploit to solve least-squares problems efficiently. To
see this, remember that, as in all of the other gradient-descent algorithms that we have
looked at, we are approximating the function by the Taylor series (Equation (9.2)) up to
second-order (Hessian) terms.



Optimisation and Search � 195

If ‖r(x)‖ is a linear function of x (which means that f(x) is quadratic), then the Jacobian
is constant and ∇2rj(x) = 0 for all j. In this case, substituting Equations (9.7) and (9.8)
into Equation (9.2) and taking derivatives, we see that at a solution:

∇f(x) = JT (Jx + r) = 0, (9.9)

and so:

JTJx = −JT r(x). (9.10)

This is a linear least-squares problem and can be solved. In an ideal world we would be
able to see that it is effectively just the statement Ax = b (where A = JTJ is a square
matrix and b = −JT r(x) and so solve it directly as:

x = −(JTJ)−1JT r. (9.11)

However, this is computationally expensive and numerically very unstable, so we need
to use linear algebra to find x in a variety of different ways, such as Cholesky factorisation,
QR factorisation, or using the Singular Value Decomposition. We will look at the last of these
methods, since it uses eigenvectors, which we have already seen in Chapter 6, although we
will see the first method in Chapter 18.

The Singular Value Decomposition (SVD) is the decomposition of a matrix A of size
m× n into:

A = USVT , (9.12)

where U and V are orthogonal matrices (i.e., the inverse of the matrix is its transpose, so
UTU = UUT = I, where I is the identity matrix). U is of size m×m and V is of size n×n.
S is a diagonal matrix of size m× n, with the elements of this matrix, σi, being known as
singular values.

To apply this to the linear least-squares problem we compute the SVD of JTJ and
substitute it into Equation (9.11):

x =
[
(USVT )T (USVT )

]−1
(USVT )TJT r (9.13)

= VSUTJT r (9.14)

using the fact that ABT = BTAT and similar linear algebraic identities.
We can actually go a bit further, and deal with the fact that J is probably not a square

matrix. The size of the various matrices will be m × m for U and m × m for the other
two (where m and n are defined in Equation (9.6); generally n < m). We can split U into
two parts, U1 of size m × n and then the last few columns into a second part U2 of size
(n−m)× n. This lets us solve the linear least-squares equation as:

x = VS−1UT
1 Jr. (9.15)

NumPy has an algorithm for linear least-squares in np.linalg.lstsq() and can com-
pute the SVD decomposition using np.linalg.svd().

We can now use this derivation to look at the most well-known method for solving
non-linear least-squares problems, the Levenberg–Marquardt algorithm. The principal ap-
proximation that the algorithm makes is to ignore the residual terms in Equation (9.8),
making each iteration a linear least-squares problem, so that ∇2f(x) = J(x)TJ(x). Then
the problem to be solved is:



196 � Machine Learning: An Algorithmic Perspective

min
p

1
2‖Jkp + rk‖22, ‖p‖ ≤ ∆k, (9.16)

where ∆k is the radius of the trust region, which is the region where it is assumed that this
approximation holds well. In normal trust region methods, the size of the region (∆k) is
controlled explicitly, but in Levenberg–Marquardt it is used to control a parameter ν ≥ 0
that is added to the diagonal elements of the Jacobian matrix and is known as the damping
factor. The minimum p then satisfies:

(JTJ + νI)p = −JT r. (9.17)

This is a very similar equation to the one that we solved for the linear least-squares
method, and so we can just use that solver here; effectively non-linear least-squares solvers
solve a lot of linear problems to find the non-linear solution. There are very efficient
Levenberg–Marquardt solvers, since it is possible to avoid computing the JTJ term ex-
plicitly using the SVD composition that we worked out above.

The basic idea of the trust region method is to assume that the solution is quadratic
about the current point, and use that assumption to minimise the current step. You then
compute the difference between the actual reduction and the predicted one, based on the
model, and make the trust region larger or smaller depending upon how well these two
match, and if they do not match at all, then you reject that update. The Levenberg–
Marquardt algorithm itself is very general, but it needs to have the function to be minimised,
along with its gradient and Jacobian passed into it. The entire algorithm can be written as:

The Levenberg–Marquardt Algorithm

• Given start point x0

• While JT r(x) >tolerance and maximum number of iterations not exceeded:

– repeat
∗ solve (JTJ + νI)dx = −JT r for dx using linear least-squares
∗ set xnew = x + dx
∗ compute the ratio of the actual and prediction reductions:

· actual = ‖f(x)− f(xnew)‖
· predicted = ∇fT (x)× xnew − x
· ρ = actual/predicted

∗ if 0 < ρ < 0.25:
· accept step: x = xnew

∗ else if ρ > 0.25:
· accept step: x = xnew

· increase trust region size (reduce ν)
∗ else:

· reject step
· reduce trust region (increase ν)

– until x is updated or maximum number of iterations is exceeded

In SciPy the Levenberg–Marquardt optimiser is in the optimize module, and it can



Optimisation and Search � 197

be called using scipy.optimize.leastsq(). Some general details about using the SciPy
optimisers are given in Section 9.3.2.

We will look at two examples of using non-linear least-squares. One is a simple case of
finding the minimum of a function that consists of two quadratic terms added together, i.e.,
a sum-of-squares problem, while the second is to minimise the fitting of a function to data.

The function that we will attempt to minimise is Rosenbrock’s function:

f(x1, x2) = 100(x2 − x2
1)2 + (1− x1)2. (9.18)

This is a common problem to try since it has a long narrow valley, so finding the optimal
solution is not especially easy (except by hand: if you look at the problem, then guessing
that x1 = 1, x2 = 1 is the minimum is fairly obvious). You need to work out how to encode
this in the form required for a sum-of-squares problem, which is basically to write:

r = (10(x2 − x2
1), 1− x1)T . (9.19)

The Jacobian is then:

J =
(
−20x1 10
−1 0

)
. (9.20)

In this notation, f(x1, x2) = rT r and the gradient is JT r. All of which can be written
as a simple Python function:

def function(p):
r = np.array([10*(p[1]-p[0]**2),(1-p[0])])
fp = np.dot(transpose(r),r)
J = (np.array([[-20*p[0],10],[-1,0]]))
grad = np.dot(J.T,r.T)
return fp,r,grad,J

Running the algorithm with starting point (−1.92, 2) leads to the following outputs,
where the numbers printed on each line are the function value, the parameters that gave it,
the gradient, and the value of ν.

f(x) Params Grad nu
292.92 [ 0.66 -6.22] 672.00 0.001
4421.20 [ 0.99 0.87] 1099.51 0.0001
1.21 [ 1.00 1.00] 24.40 1e-05
8.67-07 [ 1.00 1.00] 0.02 1e-06
6.18-17 [ 1.00 1.00] 1.57-07 1e-07

The second example is fitting a function to data. The function is a moderately compli-
cated beast that is definitely not amenable to linear least-squares fitting:

y = f(p1, p2) = p1 cos(p2x) + p2 sin(p1x), (9.21)

where the pi are the parameters to be fitted and x is a datapoint from a set that are



198 � Machine Learning: An Algorithmic Perspective

FIGURE 9.4 Using Levenberg–Marquardt for least-squares data fitting of data from Equa-
tion (9.21). The example on the left converges to the correct solution, while the one
on the right, which still starts from a point close to the correct solution, fails to find it,
resulting in significantly different output.

used to construct the function to be fitted. This is a difficult function to fit because it has
lots of minima (since sin and cos are periodic, with period 2π). For data fitting problems,
the assumption is often that data are generated at regular x points by a noisy process
that produces the y values. Then the sum-of-squares error that we wish to minimise is the
difference between the data (y) and the current fit (parameter estimates p̂1, p̂2):

r = y − p̂1 cos(p̂2x) + p̂2 sin(p̂1x). (9.22)
The Jacobian for this function requires some careful differentiating, and then the whole

problem can be left to the optimiser. Figure 9.4 shows two examples of trying to recover
values p1 = 100, p2 = 102. On the left, the starting point is (100.5, 102.5), while on the
right it is (101, 101). It can be seen that on this problem, Levenberg–Marquardt is very
susceptible to local minima, since while the example on the left works (converging after
only 8 iterations), the example on the right, which still starts with parameter values very
close to the correct ones, gets stuck and fails, with final parameter values (100.89, 101.13).

9.3 CONJUGATE GRADIENTS
Not every problem that we want to solve is a least-squares problem. The good news is that
we can do rather better than steepest descent even when we want to minimise an arbitrary
objective function. The key to this is to look again at Figure 9.3, where you can see that
there are several of the steepest gradient lines that are in pretty much the same direction.
We would only need to go in that direction once if we knew how far to go the first time.
And then we would go in a direction orthogonal (at right angles) to that one and, in two
dimensions, we would be finished, as is shown on the right of Figure 9.5, where one step in
the x direction and one in the y direction are enough to complete the minimisation. In n
dimensions we would have to take n steps, and then we would have finished. This amazing
scenario is the aim of the method of conjugate gradients. It manages to achieve it in the
linear case, but in most non-linear cases, which are the kind we are usually interested in, it
usually requires a few more iterations than it theoretically should, although still many less
steps than most other methods for real problems.

It turns out that making the lines be orthogonal is generally impossible, since you don’t



Optimisation and Search � 199

FIGURE 9.5 Left: If the directions are orthogonal to each other and the stepsize is correct,
then only one step is needed for each dimension in the data, here two. Right: The conjugate
directions are not orthogonal to each other on the ellipse.

have enough information about the solution space. However, it is possible to make them
conjugate or A-orthogonal. Two vectors pi,pj are conjugate if pTi Apj = 0 for some matrix A.
Conjugate lines for the ellipse contours in Figure 9.2 are shown on the right of Figure 9.5.
Amazingly, the line search that we wrote down in Equation (9.1) is soluble along these
directions, since they do not interfere with each other, with solution:

αi = pTi (−∇f(xi−1))
pTi Api

. (9.23)

We then need to use a function to find the zeros of this. The Newton–Raphson iteration,
which is one method that will do it, is described below. So if we can find conjugate directions,
then the line search is much better. The only question that remains is how to find them.
This requires a Gram–Schmidt process, which constructs each new direction by taking a
candidate solution and then subtracting off any part that lies along any of the directions
that have already been used. We start by picking a set of mutually orthogonal vectors ui
(the basic coordinate axes will do; there are better options, but they are beyond the scope
of this book) and then using:

pk = uk +
k−1∑
i=0

βkipi. (9.24)

There are two possible β terms that can be used. They are both based on the ratios
between the squared Jacobian before and after an update. The Fletcher–Reeves formula is:

βi+1 = ∇f(xx+1)T∇f(xi+1)
∇f(xi)T∇f(xi)

, (9.25)

while the Polak–Ribiere formula is:

βi+1 = ∇f(xi+1)T (∇f(xi+1)−∇f(x)i)
∇f(xi)T∇f(xi)

. (9.26)

The second one is often faster, but sometimes fails to converge (reach a stopping point).



200 � Machine Learning: An Algorithmic Perspective

We can put these things together to form a complete algorithm. It starts by computing
an initial search direction p0 (steepest descent will do), then finding the αi that minimises
the function f(xi + αipi), and using it to set xi+1 = xi + αipi. The next direction is then
pi+1 = −∇f(xi+1) + βi+1pi where β is set by one of the two formulas above.

It is common to restart the algorithm every n iterations (where n is the number of
dimensions in the problem) because the algorithm has now generated the whole set of
conjugate directions. The algorithm will then cycle through the directions again making
incremental improvements.

The only thing that we don’t know how to do yet is to find the αis. The usual method
of doing that is the Newton–Raphson iteration, which is a method of finding the zero points
of a polynomial. It works by computing the Taylor expansion of the function f(x + αp),
which is:

f(x+αp) ≈ f(x)+αp
(
d

dα
f(x + αp)

)∣∣∣∣
α=0

+ α2

2 p ·p
(
d2

dα2 f(x + αp)
)∣∣∣∣

α=0
+ . . . , (9.27)

and differentiating it with respect to α, which requires the Jacobian and Hessian matrices
(here, these matrices are derivatives of f(·), not r as they were in Section 9.2):

d

dα
f(x + αp) ≈ J(x)p + αpTH(x)p. (9.28)

Setting this equal to zero tells us that the minimiser of f(x + αp) is:

α = J(x)Tp
pTH(x)p . (9.29)

Unless f(x) is an especially nice function, the second derivative approximation that we
have made here won’t get us to the bottom in one step, so we will have to iterate this step a
few times to find the zero point, which is why it is known as the Newton–Raphson iteration,
i.e., you have to put it into a loop that runs until the iterate stops changing.

Putting all of those things together gives the entire algorithm, which we’ll look at before
we work on an example:

The Conjugate Gradients Algorithm

• Given start point x0, and stopping parameter ε, set p0 = −∇f(x)

• Set p = p0

• While p > ε2p0:

– compute αk and xnew = x + αkp using the Newton–Raphson iteration:
∗ while α2dp > ε2:

· α = −(∇f(x)Tp)/(pTH(x)p)
· x = x + αp
· dp = pTp

– evaluate ∇f(xnew)
– compute βk+1 using Equation (9.25) or (9.26)
– update p← ∇f(xnew) + βk+1p
– check for restarts



Optimisation and Search � 201

9.3.1 Conjugate Gradients Example
Computing the conjugate gradients solution to the function f(x) = (0.5x2

1 + 0.2x2
2 + 0.6x2

3)
makes use of the Jacobian and Hessian again. The first Newton–Raphson step yields an α
value of 0.931, so that the next step is:

x(1) =

 −2
2
0

+ 0.931×

 2
−0.8
2.4

 =

 −0.138
1.255
0.235

 (9.30)

Then β = 0.0337, so that the direction is:

p(1) =

 0.138
−0.502
−0.282

+ 0.0337×

 2
−0.8
2.4

 =

 0.205
−0.529
−0.201

 (9.31)

In the second step, α = 1.731,

x(2) =

 −0.138
1.255
0.235

+ 1.731×

 0.205
−0.529
−0.201

 =

 −0.217
−0.136
0.136

 (9.32)

and the update is:

p(2) =

 −0.217
−0.136
0.136

+ 0.240×

 0.205
−0.529
−0.201

 =

 −0.168
−0.263
0.088

 (9.33)

A third step then gives the final answer as (0, 0, 0).

9.3.2 Conjugate Gradients and the MLP
The scientific Python libraries SciPy include a set of general purpose optimisation algo-
rithms in scipy.optimize, including an interface function (scipy.optimize.minimize())
that can call the others. In this section we will investigate using the methods that are pro-
vided within that library, particularly the conjugate gradient optimiser, in order to find the
weights of the Multi-layer Perceptron (MLP) that was the main algorithm of Chapter 4.
In that chapter we derived an algorithm based on gradient descent of the back-propagated
error from first principles, but here we can use general methods.

In order to use any gradient descent algorithm we need to work out a function to
minimise, an initial guess for where to start searching, and (preferably) the gradient of that
function with respect to the variables. The reason for saying ‘preferably the gradient’ is that
many of the algorithms will create a numerical estimate of the gradient if an explicit version
is not given. However, since the gradient is fairly easy to compute for the MLP, numerical
estimation is not necessary. We used the sum-of-squares error for the MLP, so we just need
to work out the derivatives of that function for the three different activation functions that
we allow: the normal logistic function, the linear activation that was used for regression
problems, and the soft-max activation, and we’ve already done that in Section 4.6.5.

As was mentioned above, there is an interface function for most of the SciPy optimisers,
which has the following form:



202 � Machine Learning: An Algorithmic Perspective

scipy.optimize.minimize(fun, x0, args=(), method=’BFGS’, jac=None,
hess=None,'
hessp=None, bounds=None, constraints=(), tol=None, callback=None, '
options=None)}.

The choice of method, which is the actual gradient descent algorithm used can include
‘BFGS’ (which is the Broyden, Fletcher, Goldfarb, and Shanno algorithm, a variation on
Newton’s method from Section 9.1.1 that computes an approximation to the Hessian rather
than requiring the programmer to supply it) and CG which is the conjugate gradient algo-
rithm.

Looking at the code snippet again we see that we need to pass in an error function and
the function to compute the derivatives. Both of these functions take arguments, specifically
the inputs to the network, and the targets that those inputs are meant to produce. There
is one issue that we have to deal with here, which is that the SciPy optimisers find the
minimum value for a vector of parameters, and we currently have two separate weights
matrices. We need to reshape these two matrices into vectors and then concatenate them
before they can be used, using:

w = np.concatenate((self.weights1.flatten(),self.weights2.flatten()))

and something similar for the gradients. When the optimiser has run we will need to separate
them and put the values back into the weight matrices using:

split = (self.nin+1)*self.nhidden
self.weights1 = np.reshape(wopt[:split],(self.nin+1,self.nhidden))
self.weights2 = np.reshape(wopt[split:],(self.nhidden+1,self.nout))

The optimiser also needs an initial guess x0 for the weights, but this is not an issue since
in the original algorithm they are already set to have small positive and negative values, so
we can just use those values.

In fact, there is a numerical detail that we need to deal with as well; technically it could
be a problem with the version of the MLP that we implemented in Chapter 4 as well, but
it doesn’t usually seem to be an issue there. The problem is that when we use the sigmoid
function and take the exponential we can get overflow in the floating point number, either
from it becoming too large, or too close to 0. This is a particular problem when we use the
cross-entropy error function of Section 4.6.6, because we then take the logarithm, and we
need to make sure that the input is in the range of the log function. NumPy provides some
useful constants to make these checks, and they can be seen in use in the following code
snippet, which replaces the error calculation in the original MLP:



Optimisation and Search � 203

# Different types of output neurons
if self.outtype == ’linear’:

error = 0.5*np.sum((outputs-targets)**2)
elif self.outtype == ’logistic’:

# Non-zero checks
maxval = -np.log(np.finfo(np.float64).eps)
minval = -np.log(1./np.finfo(np.float64).tiny - 1.)
outputs = np.where(outputs<maxval,outputs,maxval)
outputs = np.where(outputs>minval,outputs,minval)
outputs = 1./(1. + np.exp(-outputs))
error = - np.sum(targets*np.log(outputs) + (1 - targets)*np.log(1 - '
outputs))

elif self.outtype == ’softmax’:
nout = np.shape(outputs)[1]
maxval = np.log(np.finfo(np.float64).max) - np.log(nout)
minval = np.log(np.finfo(np.float32).tiny)
outputs = np.where(outputs<maxval,outputs,maxval)
outputs = np.where(outputs>minval,outputs,minval)
normalisers = np.sum(np.exp(outputs),axis=1)*np.ones((1,np.shape(outputs)'
[0]))
y = np.transpose(np.transpose(np.exp(outputs))/normalisers)
y[y<np.finfo(np.float64).tiny] = np.finfo(np.float32).tiny
error = - np.sum(targets*np.log(y));

Finally, we need to decide how accurate we want the result to be, and how many itera-
tions we are going to allow the algorithm to run for before calling a halt to the optimisation.
When the algorithm has reached a minimum the gradient function will be 0, and so the
normal convergence criterium is that the gradient is close to zero. The default value for this
parameter is 1× 10−5 and we will leave this unchanged. We will also specify that the algo-
rithm can run for no more than 10,000 steps. Together, these lead to the following function
call to the conjugate gradient optimiser (here the code uses an explicit call to the conjugate
gradient method rather than the interface, but there is no real difference):

out = so.fmin_cg(self.mlperror, w, fprime=self.mlpgrad,
args=(inputs,targets)'
, maxiter=10000, full_output=True, disp=1)

The full_output and disp parameters tell the optimiser to give a report on whether
or not it was successful and how much work it did, something like:

Warning: Maximum number of iterations has been exceeded.
Current function value: 7.487182
Iterations: 10000
Function evaluations: 250695



204 � Machine Learning: An Algorithmic Perspective

Gradient evaluations: 140930

Now all that remains is to extract the new weight values from the values that the
optimiser returns, which are in out[0], and we are ready to use the algorithm. The demon-
strations that we used in Chapter 4 are all perfectly suitable, of course, and all that needs
changing is to import the conjugate gradient version of the MLP instead of the earlier
version.

There are other methods of doing gradient descent, some of which are more effective
on certain problems (but note that the No Free Lunch theorem tells us that no one solver
will be the most effective for every problem). For example, the convex optimisation that
was used for the Support Vector Machine in Chapter 8 is a gradient descent method for
a particular type of constrained problem. We will next consider what happens when the
problems that we wish to solve are discrete, which means that there is no gradient to find.

9.4 SEARCH: THREE BASIC APPROACHES
We are going to discuss three different ways to attempt optimisation without gradients.
For each one, we will see how it works on the Travelling Salesman Problem (TSP), which
is a classic discrete optimisation problem that consists of trying to find the shortest route
through a set of cities that visits each city exactly once and returns to the start. For the
first (starting) city we can choose any of the N that are available. For the next, there are
N − 1 choices, and for the next N − 2. Using a brute force search in this way provides a
O(N !) solution, which is obviously infeasible.

In fact, the TSP is an NP-hard problem. The best-known solution that is guaranteed
to find the global maximum is using dynamic programming and its computational cost is
O(n22n), but we won’t be considering that here—the TSP is an example, not a problem we
really want to solve here. The basic search methods are described next.

9.4.1 Exhaustive Search
Try out every solution and pick the best one. While this is obviously guaranteed to find the
global optimum, because it checks every single solution, it is impractical for any reasonable
size problem. For the TSP it would involve testing out every single possible way of ordering
the cities, and calculating the distance for each ordering, so the computational complexity
is O(N !), which is worse than exponential.

It is computationally infeasible to do the computations for more than about N = 10
cities. The basic part of the algorithm uses a helper function permutation() that computes
possible orderings of the cities, but is otherwise fairly obvious:

for newOrder in permutation(range(nCities)):
possibleDistanceTravelled = 0
for i in range(nCities-1):

possibleDistanceTravelled += distances[newOrder[i],newOrder[i+1]]
possibleDistanceTravelled += distances[newOrder[nCities-1],0]

if possibleDistanceTravelled < distanceTravelled:



Optimisation and Search � 205

distanceTravelled = possibleDistanceTravelled
cityOrder = newOrder

9.4.2 Greedy Search
Just make one pass through the system, making the best local choice at each stage. So for
the TSP, choose the first city arbitrarily, and then repeatedly pick the city that is closest
to where you are now that hasn’t been visited yet, until you run out of cities. This is
computationally very cheap (O(N logN)), but it is certainly not guaranteed to find the
optimal solution, or even a particularly good one. The code is very simple, though:

for i in range(nCities-1):
cityOrder[i+1] = np.argmin(dist[cityOrder[i],:])
distanceTravelled += dist[cityOrder[i],cityOrder[i+1]]
# Now exclude the chance of travelling to that city again
dist[:,cityOrder[i+1]] = np.Inf

# Now return to the original city
distanceTravelled += distances[cityOrder[nCities-1],0]

9.4.3 Hill Climbing
The basic idea of the hill climbing algorithm is to perform local search around the current
solution, choosing any option that improves the result. (It might seem odd to talk about hill
climbing when we’ve always talked about minimising a function. Of course, the difference
between maximisation and minimisation is just whether you put a minus sign in front of
the equation or not, and ‘hill climbing’ sounds much better than ‘hollow descending.’) The
choice of how to do local search is called the move-set. It describes how the current solution
can be changed to generate new solutions. So if we were to imagine moving about in 2D
Euclidean space, possible moves might be to move 1 step north, south, east, or west.

For the TSP, the hill climbing solution would consist of choosing an initial solution
randomly, and then swapping pairs of cities in the tour and seeing if the total length of
the tour decreases. The algorithm would stop after some pre-defined number of swaps had
occurred, or when no swap improved the result for some pre-defined length of time. As with
the greedy search, there is no way to predict how good the solution will be: there is a chance
that it will find the global maximum, but no guarantee of it; it could get stuck in the first
local maxima. The central loop of the hill climbing algorithm just picks a pair of cities to
swap, and keeps the change if it makes the total distance shorter:

for i in range(1000):
# Choose cities to swap
city1 = np.random.randint(nCities)
city2 = np.random.randint(nCities)



206 � Machine Learning: An Algorithmic Perspective

if city1 != city2:
# Reorder the set of cities
possibleCityOrder = cityOrder.copy()
possibleCityOrder = np.where(possibleCityOrder==city1,-1,'
possibleCityOrder)
possibleCityOrder = np.where(possibleCityOrder==city2,city1,'
possibleCityOrder)
possibleCityOrder = np.where(possibleCityOrder==-1,city2,'
possibleCityOrder)

# Work out the new distances
# This can be done more efficiently
newDistanceTravelled = 0
for j in range(nCities-1):

newDistanceTravelled += distances[possibleCityOrder[j],'
possibleCityOrder[j+1]]

distanceTravelled += distances[cityOrder[nCities-1],0]

if newDistanceTravelled < distanceTravelled:
distanceTravelled = newDistanceTravelled
cityOrder = possibleCityOrder

Hill climbing has three particular types of functions that it does badly on. They can all
be imagined using the analogy of real hill climbing.

The first is when there are lots of foothills around the optimal solution. In that case the
algorithm climbs the local maximum, and may get stuck there; certainly it will take a very
long time to reach the optimal solution. The second is on a plateau, where no changes that
the algorithm makes affect the solution. In this case the solution will just change randomly,
if at all, and the maximum will probably not be found. The third case is when there is a
very gently sloping ridge in the data. Most directions that the algorithm looks in will be
downhill, and so it may decide that it has already reached the maximum.

9.5 EXPLOITATION AND EXPLORATION
The search methods above can be separated into methods that perform exploration of the
search space, always trying out new solutions, like exhaustive search, and those performing
exploitation of the current best solution, by trying out local variations of that current best
solution, like hill climbing. Ideally, we would like some combination of the two—we should
be trying to improve on the current best solution by local search, and also looking around
in case there is an even better solution hiding elsewhere in the search space.

One way to think about this is known as the n-armed bandit problem. Suppose that we
have a room full of one-armed bandit machines in some tacky Las Vegas casino (for those
who don’t know, a one-armed bandit is a slot machine with a lever that you pull, as in
Figure 9.6). You don’t know anything about the machines in advance, such as what the
payouts are, and how likely you are to get the payout. You enter the room with a fistful of
50 cent coins from your student loan, aiming to generate enough beer money to get through
the year. How do you choose which machine to use?



Optimisation and Search � 207

FIGURE 9.6 A one-armed bandit machine. It has one arm, and it steals your money.

At first, you have no information at all, so you choose randomly. However, as you explore,
you pick up information about which machines are good (here, good means that you get
a payout more often). You could carry on using them (exploiting your knowledge) or you
could try out other machines in the hope of finding one that pays out even more (exploring
further). The optimal approach is to trade off the two, always making sure that you have
enough money to explore further by exploiting the best machines you know of, but exploring
when you can.

One place where this combination of exploration and exploitation can be clearly seen
is in evolution. We’ll talk about that in the next chapter, but here we will look to physics
instead of biology to act as our inspiration.

9.6 SIMULATED ANNEALING
In the field of statistical mechanics physicists have to deal with systems that are very large
(tens of thousands of molecules and more) so that, while the computations are possible in
principle, in practice the computational time is far too large. They have developed stochas-
tic methods (that is, based on randomness) in order to get approximate solutions to the
problems that, while still expensive, do not require the massive computational times that
the full solution would.

The method that we will look at is based on the way in which real-world physical systems
can be brought into very low energy states, which are therefore very stable. The system is
heated, so that there is plenty of energy around, and each part of the system is effectively
random. An annealing schedule is applied that cools the material down, allowing it to relax
into a low energy configuration. We are going to model the same idea.

We start with an arbitrary temperature T , which is high. We will then randomly choose
states and change their values, monitoring the energy of the system before and after. If the
energy is lower afterwards, then the system will prefer that solution, so we accept the change.
So far, this is similar to gradient descent. However, if the energy is not lower, then we still
consider whether or not to accept the solution. We do this by evaluating Ebefore−Eafter and
accepting the new solution if the value of exp((Ebefore−Eafter)/T ) is bigger than a uniform
random value between 0 and 1 (note that the expression is between 0 and 1 since it is the
exponential of a negative value). This is called the Boltzmann distribution. The rationale



208 � Machine Learning: An Algorithmic Perspective

behind sometimes accepting poorer states is that we might have found a local minimum,
and by allowing this more expensive energy state we can escape from it.

After doing this a few times, the annealing schedule is applied in order to reduce the
temperature and the method continues until the temperature reaches 0. As the temperature
gets lower, so does the chance of accepting any particular higher energy state. The most
common annealing schedule is T (t + 1) = cT (t), where 0 < c < 1 (more commonly, 0.8 <
c < 1). The annealing needs to be slow to allow for lots of search to happen. For the TSP
the best way to include simulated annealing is to modify the hill climbing algorithm above,
changing the acceptance criteria for a change in the city ordering to:

if newDistanceTravelled < distanceTravelled or (distanceTravelled - '
newDistanceTravelled) < T*np.log(np.random.rand()):

distanceTravelled = newDistanceTravelled
cityOrder = possibleCityOrder

# Annealing schedule
T = c*T

9.6.1 Comparison
Running all four methods above on the TSP for five cities gave the following results, where
the best solution found and the distance are given in the first line and the time it took to
run (in seconds) on the second:

>>> TSP.runAll()
Exhaustive search
((3, 1, 2, 4, 0), 2.65)
0.0036
Greedy search
((0, 2, 1, 3, 4), 3.27)
0.0013
Hill Climbing
((4, 3, 1, 2, 0]), 2.66)
0.1788
Simulated Annealing
((3, 1, 2, 4, 0]), 2.65)
0.0052

With ten cities the results were quite different, showing how important good approxi-
mations to search are, since even for this fairly small problem the exhaustive search takes
a very long time. Note that the greedy search does nearly as well in this case, but this is
simply chance.

Exhaustive search
((1, 5, 10, 6, 3, 9, 2, 4, 8, 7, 0), 4.18)



Optimisation and Search � 209

1781.0613
Greedy search
((3, 9, 2, 6, 10, 5, 1, 8, 4, 7, 0]), 4.49)
0.0057
Hill Climbing
((7, 9, 6, 2, 4, 0, 3, 8, 1, 5, 10]), 7.00)
0.4572
Simulated Annealing
((10, 1, 6, 9, 8, 0, 5, 2, 4, 7, 3]), 8.95)
0.0065

FURTHER READING
Two books on numerical optimization that provide much more information are:

• J. Nocedal and S.J. Wright. Numerical Optimization. Springer, Berlin, Germany,
1999.

• C.T. Kelley. Iterative Methods for Optimization. Number 18 in Frontiers in Applied
Mathematics. SIAM, Philadelphia, USA, 1999.

A possible reference for the second half of the chapter is:

• J.C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simula-
tion, and Control. Wiley-Interscience, New York, USA, 2003.

Some of the material is covered in:

• Section 6.9 and Sections 7.1–7.2 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern
Classification, 2nd edition, Wiley-Interscience, New York, USA, 2001.

PRACTICE QUESTIONS
Problem 9.1 In the discussion after Equation (9.10) it is stated that the direct solution

is unstable. Experiment with this and see that it is true.

Problem 9.2 Modify the code in CG.py in order to take a general function, together with
its Jacobian (and if available its Hessian) and then compute the minimum.

Problem 9.3 Experiment with the Fletcher–Reeves and Polak–Ribiere formulas (Equa-
tions (9.25) and (9.26)) when solving Rosenbrock’s function using conjugate gradients.
Can you find places where one works better than the other?

Problem 9.4 Generate data from the equation a(1− exp(−b(x− c))) for choice of param-
eters a, b, c and x in the range −5 to 5 (with noise). Use Levenberg–Marquardt to fit
the parameters.

Problem 9.5 Modify the conjugate gradient version of the MLP to use the other opti-
misation algorithms provided by SciPy and compare the results. Also, try stopping
the optimiser from using the exact computation of the gradient and instead making
a numerical estimate of it, and see how that changes the results.



210 � Machine Learning: An Algorithmic Perspective

Problem 9.6 By incorporating back-tracking into hill climbing, it is possible to escape
from some poor local maxima. Add this into the code and test the results on the
Travelling Salesman problem.

Problem 9.7 The logical satisfiability problem is an NP-complete problem that consists of
finding truth assignments to sets of logical statements (e.g., (a1 ∧ a2) ∨ (¬a1 ∨ a3)) so
that they are true. It is an NP-complete problem to find truth assignments. Devise a
way to use hill climbing and simulated annealing on the problem.



CHA PT E R 10

Evolutionary Learning

In this chapter we are going to start by treating evolution the same way that we treated
neuroscience earlier in the book—by cherry-picking a few useful concepts, and then filling
in the gaps with computer science in order to make an effective learning method. To see
why this might be interesting, you need to view evolution as a search problem. We don’t
generally think of it in this way, but animals are competing with each other in all kinds
of ways—for example, eating each other—which encourages them to try to find camouflage
colours, become toxic to certain predators, etc.

Evolution works on a population through an imaginary fitness landscape, which has an
implicit bias towards animals that are ‘fitter’, i.e., those animals that live long enough to
reproduce, are more attractive, and so get more mates, and generate more and healthier
offspring. You can find out more from hundreds of books, such as Charles Darwin’s The
Origin of Species (the original book on the topic, still in print and very interesting) and
Richard Dawkin’s The Blind Watchmaker.

The genetic algorithm models the genetic process that gives rise to evolution. In partic-
ular, it models sexual reproduction, where both parents give some genetic information to
their offspring. As is sketched in Figure 10.1, in biological organisms, each parent passes on
one chromosome out of their two, and so there is a 50% chance of any gene making it into
the offspring. Of the two versions of each gene (one from each parent) one allele (variation)
is selected. Hence, children have similarities with their parents, and there is lots of genetic
inheritance. However, there are also random mutations, caused by copying errors when the
chromosome material is reproduced, which means that some things do change over time.
Real genetics is obviously a lot more complicated than this, but we are taking only the
things that we want for our model.

The genetic algorithm shows many of the things that are best and worst about machine
learning: it is often, but not always, very effective, it has an array of parameters that are
crucial, but hard to set, and it is impossible to guarantee that it will find a result that is any
good at all. Having said all that, it often works very well, and it has become a very popular
algorithm for people to use when they have no idea of any other way to find a reasonable
solution.

In the terms that we saw at the end of the previous chapter, genetic algorithms perform
both exploitation and exploration, so that they can make incremental improvements to
current good solutions, but also find radically new solutions, some of which may be better
than the current best.

We will also look briefly at two other topics in this chapter, a variation of the genetic
algorithm that acts on trees that represent computer programs that is known as Genetic

211



212 � Machine Learning: An Algorithmic Perspective

FIGURE 10.1 Each adult in the mating pair passes one of their two chromosomes to their
offspring.

Programming, and a set of algorithms that use sampling from a probability distribution
rather than an evolving population in order to find better solutions.

10.1 THE GENETIC ALGORITHM (GA)
The Genetic Algorithm is a computational approximation to how evolution performs search,
which is by producing modifications of the parent genomes in their offspring and thus
producing new individuals with different fitness. Like another mathematical model that we
saw earlier in the book—the neuron—it attempts to abstract away everything except the
important parts that we need to understand what evolution does. From this principle, the
things that we need to model simple genetics inside a computer and solve problems with it
are:

• a method for representing problems as chromosomes

• a way to calculate the fitness of a solution

• a selection method to choose parents

• a way to generate offspring by breeding the parents

These items are all described in the following sections, and the basic algorithm is de-
scribed. We are going to use an example to describe the methods, which is an NP-complete
problem (if you are not familiar with the term NP-complete, its practical implication is
that the problem runs in exponential time or worse in the number of inputs) known as the



Evolutionary Learning � 213

knapsack problem (a knapsack is a rather old name for a rucksack or bag). Sections 10.3.1
and 10.3.4 provide other examples. The knapsack problem is easy to describe, but difficult
to solve in general. Here is the version of it that we will use:

Suppose that you are packing for your holidays. You’ve bought the biggest and best rucksack
that was for sale, but there is still no way that you are going to fit in everything you want to take
(camera, money, addresses of friends, etc.) and the things that your mum is insisting you take
(spare underwear, phrasebook, stamps to write home with, etc.). As a good computer scientist
you decide to measure how much space it takes up and then write a program to work out how
to fill as much of the bag as possible, so that you get the best value for your airfare.

This problem, and variations of it, appear in various disguises in cryptography, com-
binatorics, applied mathematics, logistics, and business, so it is an important problem.
Unfortunately, since it is NP-complete, finding the optimal solution for interesting cases
(pretty much anything above 10 items) is computationally impossible. There is an obvious
greedy algorithm that finds solutions to the knapsack problem. At each stage it takes the
largest thing that hasn’t been packed yet and that will still fit into the bag, and iterates
that rule. This will not necessarily return the optimal solution (unless each thing is larger
than the sum of all the ones smaller than it, in which case it will), but it is very quick and
simple. So a GA should be getting a much better solution than the greedy rule most of the
time to be worth all the effort involved in writing and running it.

10.1.1 String Representation
The first thing that we need is some way to represent the individual solutions, in analogy
to the chromosome. GAs use a string, with each element of the string (equivalent to the
gene) being chosen from some alphabet. The different values in the alphabet, which is often
just binary, are analogous to the alleles. For the problem we are trying to solve we have to
work out a way of encoding the description of a solution as a string. We then create a set
of random strings to be our initial population.

It is possible to modify the GA so that the alphabet it uses runs over the real numbers.
While purists don’t think that this is a GA at all, it is quite popular, because of the number
of applications, but it is not as elegant as using a discrete alphabet. It also tends to make
the mutation operator that we will see later less useful.

For the knapsack problem the alphabet is very simple, since we can make it binary, since
for each item we just need to say whether or not we want to take it. We make the string L
units long, where L is the total number of things we would like to take with us, and make
each unit a binary digit. We then encode a solution using 0 for the things we will not take
and 1 for the things we will. So if there were four things we wanted to take, then (0, 1, 1, 0)
would mean that we take the middle two, but not the first or last.

Note that this does not tell us whether or not this string is possible (that is, whether
the things that we have said we will take will actually fit into the knapsack), nor whether
it is a good string (whether it fills the knapsack). To work these out we need some way to
decide how well each string fulfills the problem criteria. This is known as the fitness of the
string.

10.1.2 Evaluating Fitness
The fitness function can be seen as an oracle that takes a string as an argument and returns
a value for that string. Together with the string encoding the fitness function forms the
problem-specific part of the GA. It is worth thinking about what we want from our fitness
function. Clearly, the best string should have the highest fitness, and the fitness should



214 � Machine Learning: An Algorithmic Perspective

decrease as the strings do less well on the problem. In real evolution, the fitness landscape
is not static: there is competition between different species, such as predators and prey, or
medical cures for certain diseases, and so the measure of fitness changes over time. We’ll
ignore that in the genetic algorithm.

For the knapsack problem, we decided that we wanted to make the bag as full as possible.
So we would need to know the volume of each item that we want to put into the knapsack,
and then for a given string that says which things should be taken, and which should not,
we can compute the total volume. This is then a possible fitness function. However, it does
not tell us anything about whether they will fit into the bag—with this fitness function
the optimal solution is to take everything. So we need to check that they will fit, and if
they will not, reduce the fitness of that solution. One option would be to set the fitness to
0 if the things in that string will not all fit. However, suppose that the solution is almost
perfect, it is just that there is one thing too many in the knapsack. By setting the fitness
to 0 we are reducing the chance of this solution being allowed to evolve and improve during
later iterations. For this reason we will make the fitness function be the sum of the values
of the items to be taken if they fit into the knapsack, but if they do not we will subtract
twice the amount by which they are too big for the knapsack from the size of the knapsack.
This allows solutions that are only just over to be considered for improvement, but tries to
ensure that they are not the fittest solutions around.

10.1.3 Population
We can now measure the fitness of any string. The GA works on a population of strings,
with the first generation usually being created randomly. The fitness of each string is then
evaluated, and that first generation is bred together to make a second generation, which is
then used to generate a third, and so on. After the initial population is chosen randomly, the
algorithm evolves to produce each successive generation, with the hope being that there will
be progressively fitter individuals in the populations as the number of generations increases.

To make the initial population for the knapsack problem, we will now create a set of
random binary strings of length L by using the random number generator, which is very
easy in NumPy using the uniform random number generator and the np.where() function:

pop = np.random.rand(popSize,stringLength)
pop = np.where(pop<0.5,0,1)

We now need to choose parents out of this population, and start breeding them.

10.1.4 Generating Offspring: Parent Selection
For the current generation we need to select those strings that will be used to generate
new offspring. The idea here is that average fitness will improve if we select strings that are
already relatively fit compared to the other members of the population (following natural
selection), which is exploitation of our current population. However, it is also good to allow
some exploration in there, which means that we have to allow some possibility of weak
strings being considered. If strings are chosen proportionally to their fitness, so that fitter
strings are more likely to be chosen to enter the ‘mating pool’, then this allows for both
options. There are three commonly employed ways to do this, although the last one tends
to produce better results:



Evolutionary Learning � 215

Tournament Selection Repeatedly pick four strings from the population, with replace-
ment and put the fittest two of them into the mating pool.

Truncation Selection Pick some fraction f of the best strings and ignore the rest. For
example, f = 0.5 is often used, so the best 50% of the strings are put into the mating
pool, each twice so that the pool is the right size. The pool is randomly shuffled to
make the pairs. This is obviously very easy to implement, but it does limit the amount
of exploration that is done, biasing the GA towards exploitation.

Fitness Proportional Selection The better option is to select strings probabilistically,
with the probability of a string being selected being proportional to its fitness. The
function that is generally used is (for string α):

pα = Fα∑
α′ F

α′
, (10.1)

where Fα is the fitness. If the fitness is not positive then F needs to be replaced by
exp(sF ) throughout, where s is the selection strength, a parameter, and you might
recognise the equation as the soft-max activation from Chapter 4:

pα = exp(sFα)∑
α′ exp(sFα′) . (10.2)

There is an implementation issue here. We want to pick each string with probability
proportional to its fitness, but if we only have one copy of each string, then the
probability of picking each string is the same. One way around this is to add more
copies of the fitter strings, so that they are more likely to get chosen. This is sometimes
called ‘roulette selection’, because if you imagine that each string gets an area on a
roulette wheel, then the larger the area associated to one number, the more likely it
is that the ball will land there. You can then just randomly pick strings from this
larger set. A method of doing this is shown in the following code snippet, which
uses the np.kron() function. We’ve seen this before (in Section 6.5); it is a NumPy
function that multiplies each element of its first array argument by every element of
the second, putting all of the results together into one multi-dimensional output array.
It is useful here in order to populate the new and much larger newPopulation array,
which contains multiple copies of each string.

# Put in repeated copies of each string according to fitness
# Deal with strings with very low fitness
j=0
while np.round(fitness[j])<1:
j = j+1

newPop = np.kron(np.ones((np.round(fitness[j]),1)),pop[j,:])

# Add multiple copies of strings into the newPop
for i in range(j+1,self.popSize):
if np.round(fitness[i])>=1:
newPop = np.concatenate((newPop,np.kron(np.ones((np.round(fitness[i]),1)),'



216 � Machine Learning: An Algorithmic Perspective

pop[i,:])),axis=0)

# Shuffle the order (note that there are still too many)
indices = range(np.shape(newPop)[0])
np.random.shuffle(indices)
newPop = newPop[indices[:popSize],:]
return newPop

However we select the strings to put into the mating pool, the next operation is to put
them into pairs. Since the order that they are in is random, we can simply pair up the
strings so that each even-indexed string takes the following odd-indexed one as its mate.

10.2 GENERATING OFFSPRING: GENETIC OPERATORS
Having selected our breeding pairs, we now need to decide how to combine their two strings
to generate the offspring, which is the genetics part of the algorithm. There are two genetic
operators that are generally used, and they are discussed now. There are others, but these
were the original choices, and are far and away the most common.

10.2.1 Crossover
In biology, organisms have two chromosomes, and each parent donates one of them. Members
of our GA population only have one chromosome-equivalent, the string. Thus, we generate
the new string as part of the first parent and part of the second. The most common way of
doing this is to pick one point at random in the string, and to use parent 1 for the first part
of the string, up to the crossover point and parent 2 for the rest. We actually generate two
offspring, with the second one consisting of the first part of parent 2 and the second part
of parent 1. This scheme is known as single point crossover, and the extension to multi-point
crossover is hopefully obvious. The most ‘extreme’ version is known as uniform crossover
and consists of independently selecting each element of the string at random from the two
parents. The three types of crossover are shown in Figure 10.2.

Crossover is the operator that performs global exploration, since the strings that are
produced are radically different to both parents in at least some places. The hope is that
sometimes we will take good parts of both solutions and put them together to make an
even better solution. A nice picture example is to imagine a bird that has webbed feet for
good swimming, but that cannot fly, breeding with a bird that can fly, but not swim. The
offspring? A duck! Obviously, this is not biologically plausible, but it is a good picture of
how crossover works. One interesting feature of the GA that obviously isn’t true in real
genetics is that in addition to the duck the algorithm would produce the bird that can’t fly
or swim, although it is unlikely to last long since its fitness will presumably not be high. In
fact, there are exceptions to this, such as the great New Zealand Kiwi, which can neither
swim nor fly, but is happily not extinct.

The following code snippet shows a NumPy implementation of single point crossover.
The extension to multi-point and uniform crossover is not particularly difficult.



Evolutionary Learning � 217

FIGURE 10.2 The different forms of the crossover operator. (a) Single point crossover. A
position in the string is chosen at random, and the offspring is made up of the first part of
parent 1 and the second part of parent 2. (b) Multi-point crossover. Multiple points are
chosen, with the offspring being made in the same way. (c) Uniform crossover. Random
numbers are used to select which parent to take each element from.

def spCrossover(pop):
newPop = np.zeros(shape(pop))
crossoverPoint = np.random.randint(0,stringLength,popSize)
for i in range(0,self.popSize,2):

newPop[i,:crossoverPoint[i]] = pop[i,:crossoverPoint[i]]
newPop[i+1,:crossoverPoint[i]] = pop[i+1,:crossoverPoint[i]]
newPop[i,crossoverPoint[i]:] = pop[i+1,crossoverPoint[i]:]
newPop[i+1,crossoverPoint[i]:] = pop[i,crossoverPoint[i]:]
return newPop

Crossover is not always useful, depending upon the problem; for example, in the Trav-
elling Salesman Problem that we talked about in Chapter 9, the strings that are generated
by crossover might not even be valid tours. However, when it is useful, it is often the more
powerful of the genetic operators, and has led to the building block hypothesis of how GAs
work. The idea is that GAs work well on problems where the solution comes from putting
together lots of little solutions, so that different strings assemble each separate building
block, and then crossover puts those substrings together to make the final solution.

10.2.2 Mutation
The other genetic operator is mutation, which effectively performs local random search.
The value of any element of the string can be changed, governed by some (usually low)
probability p. For our binary alphabet in the knapsack problem, mutation causes a bit-flip,
as is shown in Figure 10.3. For chromosomes with real values, some random number is
generally added or subtracted from the current value. Often, p ≈ 1/L where L is the string
length, so that there is approximately one mutation in each string. This might seem quite
high, but it is often found to be a good choice given that the mutation rate has to trade off
doing lots of local search with the risk of disrupting the good solutions.



218 � Machine Learning: An Algorithmic Perspective

FIGURE 10.3 The effects of mutation on a string.

10.2.3 Elitism, Tournaments, and Niching
At this stage we have taken pairs of parents, and produced pairs of offspring. There is now
a choice of what to do with them. The simplest option would be simply replace the parents
by their children to make a completely new population, and carry on from there. However,
this means that the maximum fitness in each generation can decrease, at least temporarily,
and since in the end we are only interested in the ‘best’ solution, this seems a bit risky: we
could potentially lose a really good string that we find early on in the search, and that we
never see again.

There is a variety of ways to avoid this, of which the simplest is to use elitism, which
takes some number of the fittest strings from one generation and puts them directly into the
next population, replacing strings that are already there either at random, or by choosing
the least fit to replace. Note that at every iteration the population stays the same size,
something else that is unlike real evolution. Another solution is to implement a tournament,
where the two parents and their two offsprings compete, with the two fittest out of the four
being put into the new population.

The implementation of these functions continues along the same lines as the previous
ones; the np.argsort() function returns the indices of the array that sorts them into order,
but does not actually sort the array. It returns an array the same size as the one that is
sorted, and we only want to extract the first few elite ones. When we do this we will be
left with a matrix with a singleton dimension, which is why the np.squeeze() function is
needed to reduce the array to the right size.

def elitism(oldPop,pop,fitness):
best = np.argsort(fitness)
best = np.squeeze(oldPop[best[-nElite:],:])
indices = range(np.shape(pop)[0])
np.random.shuffle(indices)
pop = pop[indices,:]
pop[0:nElite,:] = best
return pop

While elitism and tournaments both ensure that good solutions aren’t lost, they both
have the problem that they can encourage premature convergence, where the algorithm
settles down to a constant population that never changes even though it hasn’t found an
optimum. This happens because the GA favours fitter members of the population, which
means that a solution that reaches a local maximum will generally be favoured, and this



Evolutionary Learning � 219

solution will be exploited. Tournaments and elitism encourage this, because they reduce the
amount of diversity in the population by allowing the same individuals to remain over many
generations. This means that the exploration aspect of the GA stops occurring. Exploration
will be downplayed, making it hard to escape from the local maximum—most strings will
have worse fitness, and will therefore be replaced in the population. Eventually, the majority
of the strings in the population will be the same, but will represent a local maximum, not
the global maximum. The randomness in the GA is a very large part of why it works, and
schemes to reduce that randomness often harm the overall results.

One way to solve the problem of premature convergence is through niching (also known
as using island populations), where the population is separated into several subpopulations,
which all evolve independently for some period of time, so that they are likely to have con-
verged to different local maxima, and a few members of one subpopulation are occasionally
injected as ‘immigrants’ into another subpopulation. Another approach is known as fitness
sharing, where the fitness of a particular string is averaged across the number of times that
that string appears in the population. This biases the fitness function towards uncommon
strings, but can also mean that very common good solutions are selected against.

There are other methods that have been developed to improve the convergence and final
results of GAs, but they aren’t useful for a basic understanding of how the basic algorithm
works, so we’ll ignore them. Anybody who wants to know more is directed to one of the
books in the references at the end of the chapter.

The complete algorithm for the GA consists of simply putting together the pieces that we
have looked at individually. Extending the basic algorithm to include some of the methods
mentioned above, such as tournaments and niching, can improve the performance of the
algorithm, but does not change the description much. The algorithm is often run for a fixed
number of generations. It is a computationally very expensive algorithm, especially if the
fitness function is non-trivial to evaluate. After seeing a complete description of the GA,
we’ll have a look at an example of how the algorithm works by considering the problem of
graph colouring, and then look at how to use the GA to solve two sample problems.

The Basic Genetic Algorithm

• Initialisation

– generate N random strings of length L with the chosen alphabet

• Learning

– repeat:
∗ create an (initially empty) new population
∗ repeat:

· select two strings from current population, preferably using fitness-
proportional selection

· recombine them in pairs to produce two new strings
· mutate the offspring
· either add the two offspring to the population, or use tournaments to put

two strings from the four of parents and offspring into the population
∗ until N strings for the new population are generated
∗ optionally, use elitism to take the fittest strings from the parent generation
and replace some others from the child generation



220 � Machine Learning: An Algorithmic Perspective

FIGURE 10.4 A sample map that we wish
to colour using the three colours shown,
without any two adjacent squares having
the same colour.

FIGURE 10.5 A possible colouring with
several adjacent squares having the same
colour.

∗ keep track of the best string in the new population
∗ replace the old population with the new one

– until stopping criteria met

10.3 USING GENETIC ALGORITHMS
10.3.1 Map Colouring
Graph colouring is a typical discrete optimisation problem. We want to colour a graph using
only k colours, and choose them in such a way that adjacent regions have different colours.
It has been mathematically proven that any two-dimensional planar graph can be coloured
with four colours, which was the first ever proof that used a computer program to check
the cases. Even though it might be impossible, we are going to try to solve the three-colour
problem using a genetic algorithm, we just won’t be upset if the solution isn’t perfect (this
is a good idea with a GA anyway, of course). With all problems where you want to apply
a genetic algorithm, there are three basic tasks that need to be performed:

Encode possible solutions as strings For this problem, we’ll choose our alphabet to
consist of the three possible shades (black (b), dark (d), and light (l), say). So for a
six-region map, a possible string is α = {bdblbb}. This says that the first region is
black, the second dark grey, etc. We choose an order to record the regions in and stick
to it for all the strings, and now we can encode any way of colouring in those six
regions. An example problem and a colouring are given in Figures 10.4 and 10.5.

Choose a suitable fitness function The thing that we want to minimise (a cost func-
tion) is the number of times that two adjacent regions have the same colour. We could
count these up fairly simply, but it is not a fitness function, because the best solution
has the lowest number, not the highest. One easy way to turn it into a fitness function
would be to multiply all the scores by minus one and use Equation (10.2) to turn them
into fitnesses, or to count the total number of lines between regions and subtract off
the number where the two regions on either side of the line have the same colour.



Evolutionary Learning � 221

FIGURE 10.6 The way that mu-
tation is performed on a colour,
changing it into one of the other
colours. FIGURE 10.7 The effects of

crossover on a map.

FIGURE 10.8 One generation of the GA working on the map colouring problem.

However, we could also just count the number of correct edges. The example in Fig-
ure 10.5 has 16 out of the 26 boundaries correct (where a boundary is the intersection
between any two squares), so its fitness is 16.

Choose suitable genetic operators We’ll use the standard genetic operators for this,
since this example makes the operations of crossover and mutation clear. The way
that they are used is shown in Figures 10.6 and 10.7. In general, people just use the
standard operators for most problems, but if they don’t work well, it can be worth
putting some effort into thinking of new ones.

Having made those choices, we can let the GA run on the problem, with a possible
population and their offspring shown in Figure 10.8, and look at the best solutions after
some preset number of iterations. The GA produces good solutions to this problem, and
implementing it for yourself is one of the suggested exercises for this chapter.

10.3.2 Punctuated Equilibrium
For a long time, one thing that creationists and others who did not believe in evolution used
as an argument against it was the problem of the lack of intermediate animals in the fossil
record. The argument runs that if humans evolved from apes, then there should be some
evidence of a whole set of intermediary species that existed during the transition phase,
and there aren’t. Interestingly, GAs demonstrate one of the explanations why this is not
correct, which is that the way that evolution actually seems to work is known as punctuated



222 � Machine Learning: An Algorithmic Perspective

FIGURE 10.9 A graph showing punctuated equilibrium in a genetic algorithm. There is an
effectively steady state where fitness does not improve, followed by rapid improvements
in fitness until another steady state is reached.

equilibrium. There is basically a steady population of some species for a long time, and
then something changes and over a very short (in evolutionary terms... still hundreds or
thousands of years) period, there is a big change, and then everything settles down again.
So the chance of finding fossils from the intermediary stage is quite small. There is a graph
showing this effect in Figure 10.9.

10.3.3 Example: The Knapsack Problem
We used the knapsack problem as an example while we were looking at components of the
GA. It is now time to see it being solved. Before we do that, we can use some of the methods
from Section 9.4 to solve it. We’ve already mentioned the greedy algorithm solution, and
we can of course use exhaustive search, as well, or any of the other methods we discussed
in the last chapter, such as simulated annealing or hillclimbing.

The website has a simple example with 20 different packages, which have a total size
of 2436.77 and a maximum knapsack size of 500. The greedy algorithm finds a solution of
487.47, while the optimal solution is eventually found by the exhaustive search as 499.98.
The question is how well the GA does on the same problem. We will use the fitness function
that was described in Section 10.1.2, where solutions that are too large are penalised by
having twice the amount they are over subtracted from the maximum size. Figure 10.10
shows a graph of the output when the GA is run on this problem for 100 iterations. The GA
rapidly finds a near-optimal solution (of 499.94) to this relatively simple problem, although
in this run it did not find the global optimum.

10.3.4 Example: The Four Peaks Problem
The four peaks is a toy problem (that is, simple problem that isn’t useful itself, but is good
for testing algorithms) that is quite often used to test out GAs and various developments
of them. It is an invented fitness function that rewards strings with lots of consecutive 0s at
the start of the string, and lots of consecutive 1s at the end. The fitness consists of counting



Evolutionary Learning � 223

FIGURE 10.10 Evolution of the solution to the knapsack problem. The GA finds a very
good solution to this simple problem within a few iterations, but never finds the optimal
solution.

the number of 0s at the start, and the number of 1s at the end and returning the maximum
of them as the fitness. However, if both the number of 0s and the number of 1s are above
some threshold value T then the fitness function gets a bonus of 100 added to it. This is
where the name ‘four peaks’ comes from: there are two small peaks where there are lots of
0s, or lots of 1s, and then there are two larger peaks, where the bonus is included. The GA
should find these larger peaks for a successful run.

In NumPy the four peaks fitness function can be written as:

def fourpeaks(population,T=15):

start = np.zeros((np.shape(population)[0],1))
finish = np.zeros((np.shape(population)[0],1))

fitness = np.zeros((np.shape(population)[0],1))

for i in range(np.shape(population)[0]):
s = np.where(population[i,:]==1)
f = np.where(population[i,:]==0)
if np.size(s)>0:

start = s[0][0]
else:

start = 0

if np.size(f)>0:
finish = np.shape(population)[1] - f[-1][-1] -1

else:



224 � Machine Learning: An Algorithmic Perspective

FIGURE 10.11 Evolution of a solution to
the four peaks problem. The solution
never reaches the bonus score in the fit-
ness function.

FIGURE 10.12 Another solution to the
four peaks problem. This solution does
reach the bonus score, but does not get
the global maximum.

finish = 0

if start>T and finish>T:
fitness[i] = np.maximum(start,finish)+100

else:
fitness[i] = np.maximum(start,finish)

fitness = np.squeeze(fitness)
return fitness

Figures 10.11 and 10.12 show the outputs of two runs for a chromosome length of 100
and with T = 15. In the second the GA reaches the bonus point, while in the first it does not.
Both of these runs used a mutation rate of 0.01, which is 1/L, and single point crossover.
They also used elitism.

10.3.5 Limitations of the GA
There are lots of good things about genetic algorithms, and they work amazingly well a lot
of the time. However, they are not without problems, a significant one of which is they can
be very slow. The main problem is that once a local maximum has been reached, it can
often be a long time before a string is produced that escapes from the local maximum and
finds another, higher, maximum. In addition, because we generally do not know anything
about the fitness landscape, we can’t see how well the GA is doing.

A more basic criticism of genetic algorithms is that it is very hard (read basically impos-
sible) to analyse the behaviour of the GA. We expect that the mean fitness of the population
will increase until an equilibrium of some kind is reached. This equilibrium is between the
selection operator, which makes the population less diverse, but increases the mean fit-
ness (exploitation), and the genetic operators, which usually reduce the mean fitness, but



Evolutionary Learning � 225

increase the diversity in the population (exploration). However, proving that this is guar-
anteed to happen has not been possible so far, which means that we cannot guarantee that
the algorithm will converge at all, and certainly not to the optimal solution. This bothers
a lot of researchers. That said, genetic algorithms are widely used when other methods do
not work, and they are usually treated as a black box—strings are pushed in one end, and
eventually an answer emerges. This is risky, because without knowledge of how the algo-
rithm works it is not possible to improve it, nor do you know how cautiously you should
treat the results.

10.3.6 Training Neural Networks with Genetic Algorithms
We trained our neural networks, most notably the MLP, using gradient descent. However,
we could encode the problem of finding the correct weights as a set of strings, with the
fitness function measuring the sum-of-squares error. This has been done, and with good
reported results. However, there are some problems with this approach. The first is that we
turn all the local information from the targets about the error at each output node of the
network into just one number, the fitness, which is throwing away useful information, and
the second is that we are ignoring the gradient information, which is also throwing away
useful information.

A more sensible use for GAs with neural networks is to use the GA to choose the topology
of the network. Previously, we chose the structure in a completely ad hoc way by trying
out different structures and choosing the one that worked best. We can use a GA for this
problem, although the crossover operator doesn’t make a great deal of sense, so we just
consider mutation. However, we allow for four different types of mutation: delete a neuron,
delete a weight connection, add a neuron, add a connection. The deletion operators bias
the learning towards simple networks. Making the GA more complicated by adding extra
mutation operators might make you wonder if you can make it more complicated again.
And you can; one example of where this can lead is discussed next.

10.4 GENETIC PROGRAMMING
One extension of genetic algorithms that has had a lot of attention is the idea of genetic
programming. This was introduced by John Koza, and the basic idea is to represent a
computer program as a tree (imagine a flow chart of the code). For certain programming
languages, notably LISP, this is actually a very natural way to represent a program, but
it doesn’t work very well in Python, so we will have a quick look at the idea, but not
get into writing any explicit algorithms for the method. Tree-based variants on mutation
and crossover are defined (replace subtrees by other subtrees, either randomly generated
(mutation, Figure 10.13) or swapped from another tree (crossover, Figure 10.14)), and then
the genetic program runs just like a normal genetic algorithm, but acting on these program
trees rather than strings.

Figure 10.15 shows a set of simple trees that perform arithmetic operations, and some
possible developments of them, made using these operators.

Genetic programming has been used for many different tasks, from recognising skin
melanomas to circuit design, and lots of very impressive results have been claimed for it.
However, the search space is unbelievably large, and the mutation operator not especially
useful, and so a lot depends upon the initial population. A set of possibly useful subtrees is
usually chosen by the system developer first in order to give the system a head start. There



226 � Machine Learning: An Algorithmic Perspective

FIGURE 10.13 Example of a mutation in genetic programming.

FIGURE 10.14 Example of a crossover in genetic programming.



Evolutionary Learning � 227

FIGURE 10.15 Top: Four arithmetical trees. Bottom: Example developments of the four
trees: (e) and (h) are a possible crossover of (a) and (d), (f) is a copy of (b), and (g) is
a mutation of (c).

are a couple of places where you can find more information on genetic programming in the
Further Reading section.

10.5 COMBINING SAMPLING WITH EVOLUTIONARY LEARNING
The last machine learning method in this chapter is an interesting variation on the theme
of evolutionary learning, combined with probabilistic models of the type that are described
in Chapter 16, namely Bayesian networks. They are often known as estimation of distribution
algorithms (EDA).

The most basic version is known as Population-Based Incremental Learning (PBIL), and
it is amazingly simple. It works on a binary alphabet, just like the basic GA, but instead
of maintaining a population, it keeps a probability vector p that gives the probability of
each element being a 0 or 1. Initially, each value of this vector is 0.5, so that each element
has equal chance of being 0 or 1. A population is then constructed by sampling from the
distribution specified vector, and the fitness of each member of the population is computed.
A subset of this population (typically just the two fittest vectors) is chosen to update the
probability vector, using a learning rate η, which is often set to 0.005 (where best and
second represent the best and second-best elements of the population):

p = p× (1− η) + η(best + second)/2. (10.3)
The population is then thrown away, and a new one sampled from the updated probabil-

ity vector. The results of using this simple algorithm on the four-peaks problem with T = 11
are shown in Figure 10.16 using strings of length 100 with 200 strings in each population.
This is directly comparable with Figure 10.12.

The centre of the algorithm is simply the code to find the strings with the two highest
fitnesses and use them to update the vector. Everything else is directly equivalent to the
genetic algorithm.



228 � Machine Learning: An Algorithmic Perspective

# Pick best
best[count] = np.max(fitness)
bestplace = np.argmax(fitness)
fitness[bestplace] = 0
secondplace = np.argmax(fitness)

# Update vector
p = p*(1-eta) + eta*((pop[bestplace,:]+pop[secondplace,:])/2)

The probabilistic model that is used in PBIL is very simple: it is assumed that each ele-
ment of the probability vector is independent, so that there is no interaction. However, there
is no reason why more complicated interactions between variables cannot be considered, and
several methods have been developed that do exactly this. The first option is to construct
a chain, so that each variable depends only on the one to its left. This might involve sorting
the order of the probability vector first, but then the algorithm simply needs to measure the
mutual information (see Section 12.2.1) between each pair of neighbouring variables. This
use of mutual information gives the algorithm its name: MIMIC. There are also more com-
plicated variants using full Bayesian networks, such as the Bayesian Optimisation Algorithm
(BOA) and Factorised Distribution Algorithm (FDA).

The power of these developments of the GA is that they use probabilistic models and are
therefore more amenable to analysis than normal GAs, which have steadfastly withstood
many attempts to better understand their behaviour. They also enable the algorithm to
discover correlations between input variables, which can be useful if you want to understand
the solution rather than just apply it.

It is important to remember that there is no guarantee that a genetic algorithm will
find a good solution, although it often will, and certainly no guarantee that it will find the
optimum. The vast majority of applications of genetic algorithms and the other algorithms
described in this chapter do not consider this, but use the algorithms as a way to avoid
having to understand the problem. Recall the No Free Lunch theorem of the last chapter—
there is no universally good solution to the search problem—before using the GA or genetic
program as the only search method that you use. Having said that, providing that you are
prepared to accept the long running time and the fact that there are no guarantees of a
good solution, they are frequently very useful methods.

FURTHER READING
There are entire books written about genetic algorithms, including:

• J.H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1992.

• M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA, 1996.

• D.E. Goldberg. Genetic Algorithms in Search, Optimisation, and Machine Learning.
Addison-Wesley, Reading, MA, USA, 1999.

There are also entire books on genetic programming, including:



Evolutionary Learning � 229

FIGURE 10.16 The evolution of the best fitness using PBIL on the four peaks problem.

• J.R. Koza. Genetic Programming: On the Programming of Computers by the Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

• Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, 3rd
edition, Springer, Berlin, Germany, 1999.

For more on Estimation of Distribution algorithms, look at:

• S. Baluja and R. Caruana. Removing the genetics from the standard genetic algo-
rithm. In A. Prieditis and S. Russel, editors, The International Conference on Machine
Learning, pages 38–46, Morgan Kaufmann Publishers, San Mateo, CA, USA, 1995.

• M. Pelikan, D.E. Goldberg, and F. Lobo. A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications, 21(1):5–20,
2002. Also IlliGAL Report No. 99018.

Details of the two books mentioned about real evolution are:

• C. Darwin. On the Origin of Species by Means of Natural Selection, 6th edition,
Wordsworth, London, UK, 1872.

• R. Dawkins. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Uni-
verse without Design. Penguin, London, UK, 1996.

PRACTICE QUESTIONS
Problem 10.1 Suppose that you want to archive your data files, but you have only got

one CD, and more data files than will fit on it. You decide to choose the files you will
save so as to try to maximise the amount of space you fill on the disk, so that the
most data is backed up, but you can’t split a data file. Write a greedy algorithm and
a hill-climbing algorithm to solve this problem. What guarantees can you make about
efficiency of the solutions?



230 � Machine Learning: An Algorithmic Perspective

Problem 10.2 (from Jon Shapiro)
In video poker, you are dealt five cards face up. You have one chance to replace any
of the cards (or all or none) with cards drawn from the deck. You then get a payout
related to the value of your hand as a poker hand. Say your stake is $1. The lowest
hand which pays is pair of jacks or better; this pays $1 (so your net gain is 0). Two
pair pays $2, three-of-a-kind pays $3, and so forth. Your goal is to make as much
money as possible.
In order to play this game, you need a strategy for deciding which cards to keep and
which to replace. For example, if your hand contains two face cards, but is currently
worthless, should you hold them both or hold only one? If one is held, there are four
chances to match one card; if two are held there are only three chances but there
are two cards to match. If the hand contains a pair of low cards, is it better to keep
the pair in the hopes of drawing another pair or a card which turns the pair into
three-of-a-kind, or is it better to draw five new cards? It is unclear what is the best
strategy for replacing cards in losing hands. Devise a way to use a genetic algorithm
to search for good strategies for playing this game. Assume that you have a computer
version of the game, so that any strategies which the GA proposes can be tested on
the computer over many plays. Could an MLP using gradient descent learning be used
to learn a good strategy? Why or why not?

Problem 10.3 You have 5000 MP3 files sitting on your computer’s hard disk. Unfortu-
nately, the hard disk has started making noises, and you decide that you had better
back up the MP3s. Equally unfortunately, you can only burn CDs, not DVDs, on your
computer. You need to minimise the number of CDs that you use, so you decide to
design a genetic algorithm to choose which MP3s to put onto each CD in order to fill
each CD as completely as possible.
Design a genetic algorithm to solve the problem. You will need to consider how you
would encode the inputs, which genetic operators are suitable, and how you would
make the genetic algorithm deal with the fact that you have multiple CDs, not just
one CD.

Problem 10.4 Convert the GA to use real-valued chromosomes and use it to find the
minima in Rosenbrock’s function (Equation (9.18)).

Problem 10.5 Implement the map colouring fitness function (you will have to design a
map first, of course) and see how good the solutions that the GA finds are. Compare
maps that are three-colourable with some that are not. Can you think of any other
algorithm that could be used to find solutions to this problem?

Problem 10.6 The Royal Road fitness function is designed to test the building block hy-
pothesis, which says that GAs work by assembling small building blocks and then put
them together by crossover. The function splits the binary string into l sequential
pieces, all b bits long. The fitness of the piece is b for blocks that are all 1s, and 0 for
others, and the total fitness is the sum of the fitness for each block. Implement this
fitness function and test it on strings of length 16, with blocks of lengths 1, 2, 4, 8.
Run your GAs for 10,000 iterations. Compare the results to using PBIL.



CHA PT E R 11

Reinforcement Learning

Reinforcement learning fills the gap between supervised learning, where the algorithm is
trained on the correct answers given in the target data, and unsupervised learning, where
the algorithm can only exploit similarities in the data to cluster it. The middle ground is
where information is provided about whether or not the answer is correct, but not how to
improve it. The reinforcement learner has to try out different strategies and see which work
best. That ‘trying out’ of different strategies is just another way of describing search, which
was the subject of Chapters 9 and 10. Search is a fundamental part of any reinforcement
learner: the algorithm searches over the state space of possible inputs and outputs in order
to try to maximise a reward.

Reinforcement learning is usually described in terms of the interaction between some
agent and its environment. The agent is the thing that is learning, and the environment
is where it is learning, and what it is learning about. The environment has another task,
which is to provide information about how good a strategy is, through some reward function.

Think about a child learning to stand up and walk. The child tries out many different
strategies for staying upright, and it gets feedback about which work by whether or not it
ends up flat on its face. The methods that seem to work are tried over and over again, until
they are perfected or better solutions are found, and those that do not work are discarded.
This analogy has another useful aspect: it may well not be the last thing that the child does
before falling that makes it fall over, but something that happened earlier on (it can take
several desperate seconds of waving your arms around before you fall over, but the fall was
caused by tripping over something, not by waving your arms about). So it can be difficult
to work out which action (or combination of actions) made you fall over, because there are
many actions in the chain.

The importance of reinforcement learning for psychological learning theory comes from
the concept of trial-and-error learning, which has been around for a long time, and is also
known as the Law of Effect. This is exactly what happens in reinforcement learning, as we’ll
see, and it was described in a book by Thorndike in 1911 as:

Of several responses made to the same situation, those which are accompanied
or closely followed by satisfaction to the animal will, other things being equal,
be more firmly connected with the situation, so that, when it recurs, they will
be more likely to recur; those which are accompanied or closely followed by
discomfort to the animal will, other things being equal, have their connections
with that situation weakened, so that, when it recurs, they will be less likely to
occur. The greater the satisfaction or discomfort, the greater the strengthening
or weakening of the bond. (E. L. Thorndike, Animal Intelligence, page 244.)

231



232 � Machine Learning: An Algorithmic Perspective

FIGURE 11.1 A robot perceives the current state of its environment through its sensors,
and performs actions by moving its motors. The reinforcement learner (agent) within the
robot tries to predict the next state and reward.

This is where the name ‘reinforcement learning’ comes from, since you repeat actions
that are reinforced by a feeling of satisfaction. To see how it can be applied to machine
learning, we will need some more notation.

11.1 OVERVIEW
Reinforcement learning maps states or situations to actions in order to maximise some nu-
merical reward. That is, the algorithm knows about the current input (the state), and the
possible things it can do (the actions), and its aim is to maximise the reward. There is a clear
distinction drawn between the agent that is doing the learning and the environment, which
is where the agent acts, and which produces the state and the rewards. The most common
way to think about reinforcement learning is on a robot. The current sensor readings of the
robot, or processed versions of them, could define the state. They are a representation of
the environment around the robot in some way. Note that the state doesn’t necessarily tell
us everything that it would be useful to know (the robot’s sensors don’t tell it its location,
only what it can see about it), and there can be noise and inaccuracies in the state data.
The possible ways that the robot can drive its motors are the actions, which move the robot
in the environment, and the reward could be how well it does its task without crashing
into things. Figure 11.1 shows the idea of state, actions, and environment to a robot, while
Figure 11.2 shows how they are linked with each other and with the reward.

In reinforcement learning the algorithm gets feedback in the form of the reward about
how well it is doing. In contrast to supervised learning, where the algorithm is ‘taught’ the
correct answer, the reward function evaluates the current solution, but does not suggest
how to improve it. Just to make the situation a little more difficult, we need to think about
the possibility that the reward can be delayed, which means that you don’t actually get the
reward until a long time in the future. (For example, think about a robot that is learning to
traverse a maze. It doesn’t know whether it has found the centre of the maze until it gets
there, and it doesn’t get the reward until it reaches the centre of the maze.) We therefore
need to allow for rewards that don’t appear until long after the relevant actions have been



Reinforcement Learning � 233

FIGURE 11.2 The reinforcement learning cycle: the learning agent performs action at in
state st and receives reward rt+1 from the environment, ending up in state st+1.

taken. Sometimes we think of the immediate reward and the total expected reward into the
future.

Once the algorithm has decided on the reward, it needs to choose the action that should
be performed in the current state. This is known as the policy. This is done based on some
combination of exploration and exploitation (remember, reinforcement learning is basically
a search method), which in this case means deciding whether to take the action that gave
the highest reward last time we were in this state, or trying out a different action in the
hope of finding something even better.

11.2 EXAMPLE: GETTING LOST
You arrive in a foreign city exhausted after many hours of flying, catch the train into town
and stagger into a backpacker’s hostel without noticing much of your surroundings. When
you wake up it is dark and you are starving, so you set off for a wander around town looking
for somewhere to eat. Unfortunately, it is 3 a.m. and, even more unfortunately, you soon
realise that you are completely lost. To make matters worse, you discover that you can’t
remember the name of the backpacker’s, or much else about it except that it is in one of
the old squares. Of course, that doesn’t help much because this part of the city pretty much
consists of old squares. There are only two things in your favour: you are fairly sure that
you’ll recognise the building, and you’ve studied reinforcement learning and decide to apply
it (yes, this book can save your life!).

You are sure that you’ve only walked through the old part of the city, so you don’t
need to worry about any street that takes you out of the old part. So at the next bus stop
you come to, you have a proper look at the map, and note down the map of the old town
squares, which turns out to look like Figure 11.3.

As you finish drawing the map you notice a 24-hour shop and buy as many bags of
potato chips as you can fit into your pockets. As a reinforcement learner you decide to
reward yourself when you take actions that lead to the backpacker’s rather than stuff your
face immediately (this is a delayed reward). After thinking about a reward structure you
decide that the only one that will work is to eat until you can eat no more when you



234 � Machine Learning: An Algorithmic Perspective

FIGURE 11.3 The old town that you find yourself lost in.

actually get to the backpacker’s, and not to reward yourself at all until then. You’ll just
have to hope that you don’t faint from hunger first!

Inspired by the idea of food, you decide that the backpacker’s is almost definitely in the
square labelled F on the map, because its name seems vaguely familiar. You decide to work
out a reward structure so that you can follow a reinforcement learning algorithm to get
to the backpacker’s. The first thing you work out is that staying still means that you are
sleeping on your feet, which is bad. So you assign a reward of −5 for that (while negative
reinforcement can be viewed as punishment, it doesn’t necessarily correspond clearly, but
you might want to imagine it as pinching yourself so that you stay awake). Of course, once
you reach state F you are in the backpacker’s and will therefore stay there. This is known
as an absorbing state, and is the end of the problem, when you get the reward of eating all
the chips you bought. Now moving between two squares could be good, because it might
take you closer to F. But without looking at the map you won’t know that, so you decide to
just apply a reward when you actually reach F, and leave everything else as neutral. Where
there is no direct road between two squares (so that no action takes you from one to the
other) there is no reward because it is not a viable action. This results in the reward matrix
R shown below (where ‘-’ shows that there is no link) and also in Figure 11.4.

Next State
Current State A B C D E F

A -5 0 - - - -
B 0 -5 0 0 - -
C - 0 -5 0 - 100
D - 0 0 -5 0 -
E - - - 0 -5 100
F - - 0 - 0 -

Of course, as a reinforcement learner you don’t actually know the reward matrix. That’s
pretty much what you are trying to discover, but it doesn’t make for a very good example.
We’ll assume that you have now reached a stage of tiredness where you can’t even read
what is on your paper properly. Having got this set up we’ve reached the stage where we



Reinforcement Learning � 235

FIGURE 11.4 The state diagram if you are correct and the backpacker’s is in square (state)
F. The connections from each state back into itself (meaning that you don’t move) are
not shown, to avoid the figure getting too complicated. They are each worth −5 (except
for staying in state F, which means that you are in the backpacker’s).

need to do some learning, but for now we’ll leave you stranded in that foreign city and flesh
out a few of the things that we’ve talked about so far.

11.2.1 State and Action Spaces
Our reinforcement learner is basically a search algorithm, and obviously the larger the
number of states that the algorithm has to search through, the longer it will take to find a
good solution. The set of all states that are possible for the learner to experience is known
as the state space. There is a corresponding action space that contains all of the possible
actions. If we can reduce the size of the state space and action space, then it is almost
always a good idea, providing that it does not oversimplify the problem. In the example
there are only six states, but still, look at Figure 11.4 and imagine wandering through all
of the squares over and over again while we search: it seems like this learning is going to
take a long time. And it generally does.

Computing the size of the state space (and the corresponding action space) is relatively
simple. For example, suppose that there are five inputs, each an integer between 0 and 100.
The size of the state space is then 100× 100× 100× 100× 100 = 1005, which is incredibly
large, so the curse of dimensionality is really kicking in here. However, if we decide that
we can quantize the data so that instead of 100 numbers there are only two for each input
(for example, by assigning every number less than 50 to class 1, and every number 50 and
above to class 2), then the size of the state space is a more manageable 25 = 32. Choosing
the state space and action space carefully is therefore a crucial part of making a successful
reinforcement learner. You want them to be as small as possible without losing accuracy in
the results—by reducing the scale of each input from 100 to 2, we have obviously thrown
away a lot of information that might have made the quality of the answer better. As is
usually the case, there is some element of compromise between the two.



236 � Machine Learning: An Algorithmic Perspective

11.2.2 Carrots and Sticks: The Reward Function
The basic idea of the learner is that it will choose the action that gets the maximum expected
reward. In the example, we worked out what the rewards would be in a fairly ad hoc way,
by saying what we wanted and then thinking about how to get it. That’s pretty much the
way that it works in practice, too: in Chapter 10 where we looked at genetic algorithms,
we had to carefully craft the fitness function to solve the problem that we wanted, and the
same thing is true of the reward function. In fact, they can be seen as the same thing.

The reward function takes the current state and the chosen action and produces a
numerical reward based on them. So in the example, if we are in state A, and choose the
action of doing nothing, so that we remain in state A, we get a reward of −5. Note that the
reward can be positive or negative, with the latter corresponding to ‘punishment’, showing
that particular actions should be avoided. The reward is generated by the environment
around the learner; it is not internal to the learner itself (this is what makes it difficult to
describe in our example: the environment doesn’t give you rewards in the real world, only
when there is a computer (or brain) as part of the environment to help out). In effect, the
reward function makes the goal of the learner explicit—the learner is trying to maximise
the reward, which means behaving in exactly the way that the reward function expects.
The reward tells the learner what the goal is, not how the goal should be achieved, which
would be supervised learning. It is therefore usually a bad idea to include sub-goals (extra
things that the learner should achieve along the way, which are meant to speed up learning),
because the learner can find methods of achieving the sub-goals without actually achieving
the real goal.

The choice of a suitable reward function is absolutely crucial, with very different be-
haviours resulting from varying the reward function. For example, consider the difference
between these two reward functions for a maze-traversing robot (try to work out the differ-
ence before reading the paragraph that follows them):

• receive a reward of 50 when you find the centre of the maze

• receive a reward of -1 for each move and a reward of +50 when you find the centre of
the maze

In the first version, the robot will learn to get to the centre of the maze, just as it will in
the second version, but the second reward function is biased towards shorter routes through
the maze, which is probably a good thing. The maze problem is episodic: learning is split
into episodes that have a definite endpoint when the robot reaches the centre of the maze.
This means that the rewards can be given at the end and then propagated back through all
the actions that were performed to update the learner. However, there are plenty of other
examples that are not episodic (continual tasks), and there is no cut off when the task stops.
An example is the child learning to walk that was mentioned at the start of the chapter. A
child can walk successfully when it doesn’t fall over at all, not when it doesn’t fall over for
10 minutes.

Now that the reward has been broken into two parts—an immediate part and a pay-off
in the end—we need to think about the learning algorithm a bit more. The thing that is
driving the learning is the total reward, which is the expected reward from now until the end
of the task (when the learner reaches the terminal state or accepting state—the backpacker’s
in our example). At that point there is generally a large pay-off that signals the successful
completion of the task. However, the same thing does not work for continual tasks, because
there is no terminal state, so we want to predict the reward forever into the infinite future,
which is clearly impossible.



Reinforcement Learning � 237

11.2.3 Discounting
The solution to this problem is known as discounting, and means that we take into account
how certain we can be about things that happen in the future: there is lots of uncertainty
in the learning anyway, so we should discount our predictions of rewards in the future
according to how much chance there is that they are wrong. The rewards that we expect to
get very soon are probably going to be more accurate predictions than those a long time in
the future, because lots of other things might change. So we add an additional parameter
0 ≤ γ ≤ 1, and then discount future rewards by multiplying them by γt, where t is the
number of timesteps in the future this reward is from. As γ is less than 1, so γ2 is smaller
again, and γk → 0 as k → ∞ (i.e., γ gets smaller and smaller as k gets larger and larger),
so that we can ignore most of the future predictions. This means that our prediction of the
total future reward is:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . .+ γk−1rk + . . . =
∞∑
k=0

γkrt+k+1. (11.1)

Obviously, the closer γ is to zero, the less distance we look into the future, while with
γ = 1 there is no discounting, as in the episodic case above (in fact, discounting is sometimes
used for episodic learning as well, since the eventual reward could be a very long way off
and we have to deal with that uncertainty in learning somehow). We can apply discounting
to the example of learning to walk. When you fall over you give yourself a reward of -1,
and otherwise there are no rewards. The -1 reward is discounted into the future, so that a
reward k steps into the future has reward −γk. The learner will therefore try to make k as
large as possible, resulting in proper walking.

The point of the reward function is that it gives us a way to choose what to do next—
our predictions of the reward let us exploit our current knowledge and try to maximise
the reward we get. Alternatively, we can carry on exploring and trying out new actions in
the hope that we find ways to get even larger rewards. The methods of exploration and
exploitation that we carry out are the methods of action selection that we perform.

11.2.4 Action Selection
At each stage of the reinforcement learning process, the algorithm looks at the actions
that can be performed in the current state and computes the value of each action; that is,
the average reward that is expected for carrying out that action in the current state. The
simplest way to do this is to compute the average reward that has been received each time
in the past. This is known as Qs,t(a), where s is the state, a is the action, and t is the
number of times that the action has been taken before in this state. This will eventually
converge to the true prediction of the reward for that action. Based on the current average
reward predictions, there are three methods of choosing action a that are worth thinking
about for reinforcement learning. We’ve seen the first and third of them before:

Greedy Pick the action that has the highest value of Qs,t(a), so always choose to exploit
your current knowledge.

ε-greedy This is similar to the greedy algorithm, but with some small probability ε we
pick some other action at random. So nearly every time we take the greedy option,
but occasionally we try out an alternative in the hope of finding a better action. This
throws some exploration into the mix. ε-greedy selection finds better solutions over
time than the pure greedy algorithm, since it can explore and find better solutions.



238 � Machine Learning: An Algorithmic Perspective

Soft-max One refinement of ε-greedy is to think about which of the alternative actions to
select when the exploration happens. The ε-greedy algorithm chooses the alternatives
with uniform probability. Another possibility is to use the soft-max function (which
we’ve seen repeatedly, e.g., as Equation (4.12)) to make the selection:

P (Qs,t(a)) = exp(Qs,t(a)/τ)∑
b exp(Qs,t(b)/τ) . (11.2)

Here, there is a new parameter τ , which is known as the temperature because of the
link to simulated annealing, see Section 9.6. When τ is large, all actions have similar
probabilities, and when τ is small, the selection probabilities matter more. In soft-
max selection, the current best (greedy) action will be chosen most of the time, but
the others will be chosen proportional to their estimated reward, which is updated
whenever they are used.

11.2.5 Policy
We have just considered different action selection methods, such as ε-greedy and soft-max.
The aim of the action selection is to trade off exploration and exploitation in such a way as
to maximise the expected reward into the future. Instead, we can make an explicit decision
that we are going to always take the optimal choice at each stage, and not do exploration
any more. This choice of which action to take in each state in order to get optimal results
is known as the policy, π. The hope is that we can learn a better policy that is specific to
the current state st. This is the crux of the learning part of reinforcement learning—learn a
policy π from states to actions. There is at least one optimal policy that gives the maximum
reward, and that is what we want to find. In order to find a policy, there are a few things
that we need to worry about. The first is how much information we need to know regarding
how we got to the current state, and the second is how we ascribe a value to the current
state. The first one is important enough both for here and for Chapter 16 that we are going
to go into some detail now.

11.3 MARKOV DECISION PROCESSES
11.3.1 The Markov Property
Let’s go back to the example. Standing in the square labelled D you need to make a choice
of what action to take next. There are four possible options (see Figure 11.4): standing still,
or moving to one of B, C, or E. The question is whether or not that is enough information
for you to predict the reward accurately and so to choose the best possible action. Or do
you also need to know where you have been in the past? Let’s say that you know that
you came to D from B. In that case, maybe it does not make sense to move back to B,
since your reward won’t change. However, if you came to D from E then it does actually
make sense to go back there, since it moves you closer to F. So in this case, it appears
that knowing your previous action doesn’t actually help very much, because you don’t have
enough information to work out what was useful.

Another example where this is usually true is in a game of chess, where the current
situation of all the pieces on the board (the state) is enough to predict whether or not
the next move is a good one—it does not depend on precisely how each piece got to the
current location. Thus, the current state provides enough information. A state that has this
property, which is that the current state provides enough information for the reward to be



Reinforcement Learning � 239

FIGURE 11.5 A simple example of a Markov decision process to decide on the state of
your mind tomorrow given your state of mind today.

computed without looking at previous states, is known as a Markov state. The importance
of this can be seen from the following two equations, the first of which is what is required
when the Markov property is not true, while for the second one it is true. The equation is
the computation of the probability that the next reward is r′ and the next state is s′.

Pr(rt = r′, st+1 = s′|st, at, rt−1, st−1, at−1, . . . r1, s1, a1, r0, s0, a0), (11.3)

Pr(rt = r′, st+1 = s′|st, at). (11.4)

Clearly, Equation (11.4), which depends only on where you are now, and what you
choose to do now, is much simpler to compute, less likely to suffer from rounding errors,
and does not require that the whole history of the learner is stored. In fact, it makes
the computation possible, whereas the first is not possible for any interesting problem. A
reinforcement learning problem that follows Equation (11.4) (that is, that has the Markov
property) is known as a Markov Decision Process (MDP). It means that we can compute
the likely next reward, and what the next state will be, from only the current state and
action, based on previous experience. We can make decisions (predictions) about the likely
behaviour of the learner, and its expected rewards, using just the current state data.

11.3.2 Probabilities in Markov Decision Processes
We have now reduced our reinforcement learning problem to learning about Markov Decision
Processes. We will only talk about the case where the number of possible states and actions
is finite, because reasoning about the infinite case makes your head hurt. There is a very
simple example of an MDP in Figure 11.5, showing predictions for your state-of-mind while
preparing for an exam, together with the (transition probabilities) for moving between each
pair of states shown. This is known as a Markov chain. The diagram can be extended into
something called a transition diagram, which shows the dynamics of a finite Markov Decision
Process and usually includes information about the rewards.

We can make a transition diagram for our example, based on Figure 11.4. We’ll make
the situation a little bit more complicated now by adding in the assumption that you are
so tired that even though you are in state B and trying to get to state A, there is a small
probability that you will actually take the wrong street and end up in either C or D. We’ll



240 � Machine Learning: An Algorithmic Perspective

FIGURE 11.6 A small part of the transition diagram for the example. From state E there
are three possible actions, and the states in which they end up, together with the rewards,
are shown here.

make those probabilities be 0.1 for each extra exit that there is from each state, and we’ll
assume that you can stand in one place without fear of ending up elsewhere. A very tiny bit
of the transition diagram, centred on state E, is shown in Figure 11.6. There are three actions
that can be taken in state E (shown by the black circles), with associated probabilities and
expected rewards. Learning and using this transition diagram can be seen as the aim of any
reinforcement learner.

The Markov Decision Process formalism is a powerful one that can deal with additional
uncertainties. For example, it can be extended to deal with the case where the true states
are not known, only an observation of the state can be made, which is probabilistically
related to the state, and possibly the action. These are known as partially observable Markov
Decision Processes (POMDPs), and they are related to the Hidden Markov Models that we
will see in Section 16.3. POMDPs are commonly used for robotics, where the sensors of the
robots are usually far too inexact and noisy for places the robot visits to be identified with
any degree of success. Methods to deal with these problems maintain an estimate of belief
of their current state and use that in the reinforcement learning calculations. It is now time
to get back to the reinforcement learner and the concept of values.

11.4 VALUES
The reinforcement learner is trying to decide on what action to take in order to maximise the
expected reward into the future. This expected reward is known as the value. There are two
ways that we can compute a value. We can consider the current state, and average across all
of the actions that can be taken, leaving the policy to sort this out for itself (the state-value
function, V (s)), or we can consider the current state and each possible action that can be
taken separately, the action-value function, Q(s, a). In either case we are thinking about
what the expected reward would be if we started in state s (where E(·) is the statistical
expectation):



Reinforcement Learning � 241

V (s) = E(rt|st = s) = E

{ ∞∑
i=0

γirt+i+1|st = s

}
, (11.5)

Q(s, a) = E(rt|st = s, at = a) = E

{ ∞∑
i=0

γirt+i+1|st = s, at = a

}
. (11.6)

It should be fairly obvious that the second estimate is more accurate in the long run,
because we have more information: we know which action we are going to take. However,
because of that we need to collect a lot more data, and so it will take a long time to
learn. In other words, the action-value function is even more susceptible to the curse of
dimensionality than the state-value function. In situations where there are lots of states it
will not be possible to store either, and some other method, such as using a parameterised
solution space (i.e., having a set of parameters that are controlled by the learner, rather
than explicit solutions), will be needed. This is more complicated than we will consider here.

There are now two problems that we need to solve, predicting the value function, and
then selecting the optimal policy. We’ll think about the second one first. The optimal policy
is the one in which the value function is the greatest over all possible states. We label this
(not necessarily unique) policy with a star: π∗. The optimal state-value function is then
V ∗(s) = maxπ V π(s) for all possible states s, and the optimal action-value function is
Q∗(s, a) = maxπ Qπ(s, a) for all possible states s and actions a. We can link these two value
functions, because the first considers taking the optimal action in each case (since the policy
π∗ is optimal), while the second considers taking action a this time, and then following the
optimal policy from then on. Hence we only need to worry about the current reward and
the (discounted) estimate of the future rewards:

Q∗(s, a) = E(rt+1) + γmax
at+1

Q(st+1, at+1)

= E(rt+1) + γV ∗(st+1|st = s, at = a). (11.7)

Of course, there is no guarantee that we will ever manage to learn the optimal policy.
There is bound to be noise and other inaccuracies in the system, and the curse of dimension-
ality is liable to limit the amount of exploration that we do. However, it will be enough to
learn good approximations to the optimal policy. One thing that will work to our advantage
is that reinforcement learning operates on-line, in that the learner is exploring the different
states as it learns, which means that it is getting more chances to learn about the states
that are seen more often, and so will have a better chance of finding the optimal policy for
those states.

The question is how you actually update the value function (V (s) or Q(s, a)). The idea
is to make a look-up table of all the possible states or state-action pairs, and set them all to
zero to start with. Then we will use experience to fill them in. Returning to your foreign trip,
you wander around until eventually you stumble upon the backpacker’s. Gorging yourself on
the chips you remember that at the last timestep you were in square E (this remembering
is known as a backup). Now you can update the value for E (the reward is γ× 100). That is
all we do, since your memory is so shot that you can’t remember anything else. And there
we stop until the next night, when you wake up again and the same thing happens. Except
now, you have information about E, although not about any other state. However, when
you reach E now, say from D, then you can update the value for D to have reward γ2×100.
And so it continues, until all of the states (and possibly actions) have values attached.



242 � Machine Learning: An Algorithmic Perspective

The obvious problem with this approach is that we have to wait until we reach the
goal before we can update the values. Instead, we can use the same trick that we used in
Equation (11.7) and use the current reward and the discounted prediction instead, so that
the update equation looks like (where µ is the learning rate as usual):

V (st)← V (st) + µ(rt+1 + γV (st+1)− V (st)). (11.8)

The Q(s, a) version looks very similar, except that we have to include the action informa-
tion. In both cases we are using the difference between the current and previous estimates,
which is why these methods have the name of temporal difference (TD) methods. Suppose
that we knew rather more about where we had been. In that case, we could have updated
more states when we got to the backpacker’s, which would have been rather more efficient.
The trouble is that we don’t know if those states were useful or not—it might have been
chance that we visited them. The answer to this is similar to discounting: we introduce
another parameter 0 ≤ λ ≤ 1 that we apply to reduce the amount that being in that par-
ticular state matters. The way this works is known as an eligibility trace, where an eligible
state is one that you have visited recently, and it is computed by setting:

et(s′, a′) =
{

1 if s′ = s, a′ = s
γλet−1(s′, a′) otherwise. (11.9)

If λ = 0 then you only use the current state, which was the algorithm we had above. For
λ = 1 you retain all the knowledge of where you have been. It can be shown that the TD(0)
algorithm (i.e., the TD(λ)indexTD(λ) algorithm with λ = 0) is optimal, in the sense that it
converges to the correct value function V π for the current policy π. There are some provisos
on the values of the parameter µ, which are usually satisfied by incrementally reducing the
size of µ as learning progresses. The TD(0) algorithm for Q values is also known as the
Q-learning algorithm.

The Q-Learning Algorithm

• Initialisation

– set Q(s, a) to small random values for all s and a

• Repeat:

– initialise s
– repeat:

∗ select action a using ε-greedy or another policy
∗ take action a and receive reward r
∗ sample new state s′

∗ update Q(s, a)← Q(s, a) + µ(r + γmaxa′ Q(s′, a′)−Q(s, a))
∗ set s← s′

– For each step of the current episode

• Until there are no more episodes

Note that we can do exactly the same thing for V (s) values instead of Q(s, a) values.
There is one thing in this algorithm that is slightly odd, which is in the computation of



Reinforcement Learning � 243

Q(s′, a′). We do not use the policy to find the value of a′, but instead choose the one that
gives the highest value. This is known as an off-policy decision. Modifying the algorithm to
work on-policy is very easy. It gets an interesting name based on the fact that it uses the
set of values (st, at, rt+1, st+1, at+1), which reads ‘sarsa’:

The Sarsa Algorithm

• Initialisation

– set Q(s, a) to small random values for all s and a

• Repeat:

– initialise s
– choose action a using the current policy
– repeat:

∗ take action a and receive reward r
∗ sample new state s′

∗ choose action a′ using the current policy
∗ update Q(s, a)← Q(s, a) + µ(r + γQ(s′, a′)−Q(s, a))
∗ s← s′, a← a′

– for each step of the current episode

• Until there are no more episodes

The two algorithms are very similar. They are both bootstrap methods, because they start
from poor estimates of the correct answers and iteratively update them as the algorithm
progresses. The algorithms work on-line, with the values of Q being updated as soon as rt+1
and st+1 are known. In both cases, we are updating the estimates based only on the next
state and reward. We could delay our updating for longer, until we knew values of rt+n and
st+n, and then use a TD(λ) algorithm. The only difficulty with this is that there are many
different actions a that could be taken between st and st+n.

Once the details of the reward and transition matrices have been sorted out, the imple-
mentation of the algorithms doesn’t hold many surprises. For example, the central part of
the sarsa algorithm using the ε-greedy policy can be written in this form:

# Stop when the accepting state is reached
while inEpisode:

r = R[s,a]
# For this example, new state is the chosen action
sprime = a

# epsilon-greedy selection
if (np.random.rand()<epsilon):

indices = np.where(t[sprime,:]!=0)
pick = np.random.randint(np.shape(indices)[1])
aprime = indices[0][pick]

else:



244 � Machine Learning: An Algorithmic Perspective

aprime = np.argmax(Q[sprime,:])

Q[s,a] += mu * (r + gamma*Q[sprime,aprime] - Q[s,a])
s = sprime
a = aprime

# Check if accepting state reached
if s==5:
inEpisode = 0

11.5 BACK ON HOLIDAY: USING REINFORCEMENT LEARNING
As an example of how to use the reinforcement algorithms we will finish our example of
finding the way to the backpacker’s by using the ε-greedy policy. The specification of the
problem is set up in the reward matrix R and transition matrix t, so the first thing to do
is to work out how to describe those, neither of which is very difficult since they were given
in Section 11.2. It might not be obvious that t is there, but it is shown in Figure 11.4, and
can be written out as (where 1 means that there is a link, and 0 means that there is not):

Next State
Current State A B C D E F

A 1 1 0 0 0 0
B 1 1 1 1 0 0
C 0 1 1 1 0 1
D 0 1 1 1 1 0
E 0 0 0 1 1 1
F 0 0 1 0 1 1

It is then just a question of running the algorithm for parameter choices of γ, µ, ε, and
the number of iterations. A run with γ = 0.4, µ = 0.7, ε = 0.1, and 1,000 iterations (with
either sarsa or Q-learning produced the following Q matrix:

1.4 16.0 0 0 0 0
6.4 11.0 40.0 16.0 0 0
0 16.0 35.0 16.0 0 100.0
0 16.0 40.0 11.0 40.0 0
0 0 0 16.0 35.0 100.0
0 0 0 0 0 0

Note that NumPy has a useful np.inf value, so -np.inf can be used as rewards for
impossible actions. Some of the 0s can become -np.infs eventually. The question is how to
interpret and use this matrix, and the answer is to simply apply the policy at each point,
choosing the maximum available Q value for the current state most of the time until you
reach the goal state. So from A, the policy will direct you to move to B (Q = 16) then on
to C (Q = 40) and so to F. From D you can go to either C or E (Q = 40) and from either
of those, directly to F.



Reinforcement Learning � 245

FIGURE 11.7 The example environment.

11.6 THE DIFFERENCE BETWEEN SARSA AND Q-LEARNING
It might not be clear what the difference is between the two algorithms in practice. We’re
going to consider the little environment that is shown in Figure 11.7, where the agent has
to learn a route from the start location on the left to the final location on the right (the
example comes from Section 6.5 of Sutton and Barto’s book, which is in the readings at the
end of the chapter). The reward structure is that every move gets a reward of -1, except for
moves that end up on the cliff. These get a reward of -100, and the agent gets put back at
the start location. This is clearly an episodic problem, since there is a clear end state.

Both algorithms will start out with no information about the environment, and will
therefore explore randomly, using the ε-greedy policy. However, over time, the strategies
that the two algorithms produce are quite different. The main reason for the difference is
that Q-learning always attempts to follow the optimal path, which is the shortest one. This
takes it close to the cliff, and the ε-greedy part means that inevitably it will sometimes
fall over. By way of contrast, the sarsa algorithm will converge to a much safer route that
keeps it well away from the cliff, even though it takes longer. The two solutions are shown
in Figures 11.8 and 11.9. The sarsa algorithm produces the safe route because it includes
information about action selection in its estimates of Q, while Q-learning produces the
riskier, but shorter, route. The choice of which is better is up to you, and it depends on
how serious the effects of falling off the cliff are.

The reason for the difference between the algorithms is that Q-learning always assumes
that the policy will pick the optimal action, and while this is true most of the time, the
ε-greedy policy does occasionally choose a different action, which can cause problems here.
However, the algorithm ignores these dangers because it only focuses on the optimal solution.
Sarsa does not take this maximum, and so it will be biased against solutions that take it
close to the cliff, because these allow for cases where the agent fell off the cliff, and that
therefore have very large negative rewards.



246 � Machine Learning: An Algorithmic Perspective

FIGURE 11.8 The sarsa solution is
far from optimal, but it is safe.

FIGURE 11.9 The Q-learning solu-
tion is optimal, but occasionally the
random search will tip it over the
cliff.

11.7 USES OF REINFORCEMENT LEARNING
Reinforcement learning has been used successfully for many problems, and the results of
computer modelling of reinforcement learning have been of great interest to psychologists,
as well as computer scientists, because of the close links to biological learning. However, the
place where it has been most popular is in intelligent robotics, because of the fact that the
robot can be left to attempt to solve the task without human intervention.

For example, reinforcement learning has been used to get robots to learn to clear a room
by pushing boxes to the edges. This isn’t exactly the most exciting task in the world, but
the fact that the robot can learn to do it using reinforcement learning is impressive. Rein-
forcement learning has been used in other robotic applications, including robots learning to
follow each other, travel towards bright lights, and even navigate.

This is not to say that reinforcement learning does not have problems. Since it is, in
essence, a search strategy, reinforcement learning suffers from the same difficulties as the
search algorithms that we talked about in the last two chapters: it can become stuck in
local minima, and if the current search region is effectively flat, then the algorithm does not
find any better solution. There are several reports of researchers training robots having the
batteries run out before the robot has learnt anything, and even of the researchers giving up
and kicking the robot in the right direction to give it a start. In general, reinforcement learn-
ing is fairly slow, because it has to build up all of the information through exploration and
exploitation in order to find the better solutions. It is also very dependent upon a carefully
chosen reward function: get that wrong and the algorithm will do something completely
unexpected.

A famous example of reinforcement learning was TD-Gammon, which was produced by
Gerald Tesauro. His idea was that reinforcement learning should be very good at learning
to play games, because games were clearly episodic—you played until somebody won—and
there was a clear reward structure, with a positive reward for winning. There was another
benefit, which was that you could set the learner to play against itself. This is actually
very important, since the version of TD-Gammon that was actually bundled with the IBM
operating system OS/2 Warp had played 1,500,000 games against itself before it stopped
improving.



Reinforcement Learning � 247

FURTHER READING
A detailed book on reinforcement learning is:

• R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA, 1998.

An interesting article concerning the use of reinforcement learning is:

• G. Tesauro. Temporal difference learning and TD-gammon. Communications of the
ACM, 38(3):58–68, 1995.

Alternative treatments are:

• Chapter 13 of T. Mitchell. Machine Learning. McGraw-Hill, New York, USA, 1997.

• Chapter 18 of E. Alpaydin. Introduction to Machine Learning, 2nd edition, MIT
Press, Cambridge, MA, USA, 2009.

PRACTICE QUESTIONS
Problem 11.1 Work through the first few steps of the hill by hand for both sarsa and Q-

learning. Then modify the code to run on this example and ensure that they match.

Problem 11.2 Design a Q-learner for playing noughts-and-crosses (also known as Tic-
Tac-Toe). Run the algorithm by hand, describing the states, transitions, rewards, and
Q-values. Assume that the opponent picks a random (but valid) square for each move.
How would your learner change if the opponent played optimally? Would a TD learner
behave differently?

Problem 11.3 A robot has 8 range-finding sensors and 2 motors. The range sensors return
an integer between 0 and 127 inclusive that represents the distance in centimetres to
the nearest object. If the nearest object is further than 127 centimetres away, then 127
is returned. The motors receive an integer input between -100 (full speed backwards)
and 100 (full speed forwards).
You want to train the robot to follow the right-hand wall using reinforcement learning.
The robot should stay between 15 and 30 centimetres away from the right-hand wall,
and if it reaches corners should be able to turn to follow the wall.
Compute the state space, decide if this is a continuous or episodic problem, and then
design a suitable reinforcement learner of the problem, considering:

• Any quantisation of the input and output spaces.
• The reward system you choose.
• A description of your chosen learning algorithm.
• Any problems that you anticipate with the system, and what the final result of

the learning will be.

Problem 11.4 There are 5 lifts in a 10-storey office building. On each floor there are call
buttons for somebody wishing to go up or down, except for the top and bottom floors
where there is only 1 call button. When a lift arrives and somebody enters the lift
they press the number of the floor on which they wish to stop. Each lift stores the
numbers and travels up or down, stopping at each floor that is requested.



248 � Machine Learning: An Algorithmic Perspective

Calculate the state and action spaces for the system, and then describe a suitable
reinforcement learner for this system. You need to devise a reward function as well
as describe the learning method that you believe to be most appropriate. Should the
system use delayed rewards? A good reinforcement learning system provides a very
effective algorithm for this problem (as compared to standard naïve methods for lift
scheduling). Explain why this could be the case, and give possible problems with using
a reinforcement learner.

Problem 11.5 It is possible to write a learning Connect-4 player. In case you don’t re-
member Connect-4, the game is played on a grid board of 7 × 6. Two players take
it in turns to drop tokens into the grid where they fill the lowest available spot in
the chosen column. The aim is to get four of your coloured tokens in a row. In case
that doesn’t make sense, or just because you are feeling nostalgic, there are plenty of
versions of the game on the Internet.
The state space of Connect-4 is not easy to think about. There is 1 state with no
counters on it, 7 states with 1 counter in them (assuming that the same colour counter
always starts): one state for the counter being in each row, and 7 again for 2 counters
being on the board. However, from there the number of states mushrooms. In the case
where the game is a draw, so that all of the squares are full, there is something less
than 27×6 = 242 states. I say something less because this counts all the cases that
include a line of 4, and also ignores the fact that there are only 21 counters of each
colour. The fact remains that the state space is immense, so it is probably going to
take a long time to learn.
However, programming the game is relatively simple. There are two absorbing states:
when the board is full, and when somebody wins. In either of these cases a reward is
given. So you will have to decide on rewards, and write some code that detects when
one or the other state has happened. The choice that is made at each turn is simply
which column to add the new counter in, so there are only seven possible actions. You
need to represent the board, for which I’d recommend a 2D array with 0 meaning
empty, 1 meaning contains a red counter, and 2 meaning contains a yellow counter.
This should make it easy to detect the absorbing states.
Having set up that lot, you need to make a number of modifications to the Q-learning
code. Firstly, you are not going to pass in transition and reward matrices, since making
them would be crazy. You are probably going to give a reward of 0 to every move
except a win and a loss, so change the code to present those rewards. You then
need to change the ε-greedy search strategy to simply pick a random (but not full)
column, rather than look at the transition matrix. Then that’s it; set it running (and
be prepared to wait for a very long time. I trained the algorithm for 20,000 games
against a purely random player, and at the end of that the Q-learner was winning
about 80% of the games).



CHA PT E R 12

Learning with Trees

We are now going to consider a rather different approach to machine learning, starting with
one of the most common and powerful data structures in the whole of computer science:
the binary tree. The computational cost of making the tree is fairly low, but the cost of
using it is even lower: O(logN), where N is the number of datapoints. This is important for
machine learning, since querying the trained algorithm should be as fast as possible since it
happens more often, and the result is often wanted immediately. This is sufficient to make
trees seem attractive for machine learning. However, they do have other benefits, such as
the fact that they are easy to understand (following a tree to get a classification answer is
transparent, which makes people trust it more than getting an answer from a ‘black box’
neural network).

For these reasons, classification by decision trees has grown in popularity over recent
years. You are very likely to have been subjected to decision trees if you’ve ever phoned
a helpline, for example for computer faults. The phone operators are guided through the
decision tree by your answers to their questions.

The idea of a decision tree is that we break classification down into a set of choices about
each feature in turn, starting at the root (base) of the tree and progressing down to the
leaves, where we receive the classification decision. The trees are very easy to understand,
and can even be turned into a set of if-then rules, suitable for use in a rule induction system.

In terms of optimisation and search, decision trees use a greedy heuristic to perform
search, evaluating the possible options at the current stage of learning and making the one
that seems optimal at that point. This works well a surprisingly large amount of the time.

12.1 USING DECISION TREES
As a student it can be difficult to decide what to do in the evening. There are four things
that you actually quite enjoy doing, or have to do: going to the pub, watching TV, going
to a party, or even (gasp) studying. The choice is sometimes made for you—if you have an
assignment due the next day, then you need to study, if you are feeling lazy then the pub
isn’t for you, and if there isn’t a party then you can’t go to it. You are looking for a nice
algorithm that will let you decide what to do each evening without having to think about
it every night. Figure 12.1 provides just such an algorithm.

Each evening you start at the top (root) of the tree and check whether any of your
friends know about a party that night. If there is one, then you need to go, regardless. Only
if there is not a party do you worry about whether or not you have an assignment deadline
coming up. If there is a crucial deadline, then you have to study, but if there is nothing that
is urgent for the next few days, you think about how you feel. A sudden burst of energy

249



250 � Machine Learning: An Algorithmic Perspective

FIGURE 12.1 A simple decision tree to decide how you will spend the evening.

might make you study, but otherwise you’ll be slumped in front of the TV indulging your
secret love of Shortland Street (or other soap opera of your choice) rather than studying.
Of course, near the start of the semester when there are no assignments to do, and you are
feeling rich, you’ll be in the pub.

One of the reasons that decision trees are popular is that we can turn them into a set of
logical disjunctions (if ... then rules) that then go into program code very simply—the
first part of the tree above can be turned into:

• if there is a party then go to it
• if there is not a party and you have an urgent deadline then study
• etc.

That’s all that there is to using the decision tree. Compare it to the previous use of this
data, with the Naïve Bayes Classifier in Section 2.3.2. The far more interesting part is how
to construct the tree from data, and that is the focus of the next section.

12.2 CONSTRUCTING DECISION TREES
In the example above, the three features that we need for the algorithm are the state of
your energy level, the date of your nearest deadline, and whether or not there is a party
tonight. The question we need to ask is how, based on those features, we can construct the
tree. There are a few different decision tree algorithms, but they are almost all variants of
the same principle: the algorithms build the tree in a greedy manner starting at the root,
choosing the most informative feature at each step. We are going to start by focusing on
the most common: Quinlan’s ID3, although we’ll also mention its extension, known as C4.5,
and another known as CART.

There was an important word hidden in the sentence above about how the trees work,
which was informative. Choosing which feature to use next in the decision tree can be thought
of as playing the game ‘20 Questions’, where you try to elicit the item your opponent is
thinking about by asking questions about it. At each stage, you choose a question that
gives you the most information given what you know already. Thus, you would ask ‘Is it
an animal?’ before you ask ‘Is it a cat?’. The idea is to quantify this question of how much



Learning with Trees � 251

information is provided to you by knowing certain facts. Encoding this mathematically is
the task of information theory.

12.2.1 Quick Aside: Entropy in Information Theory
Information theory was ‘born’ in 1948 when Claude Shannon published a paper called
“A Mathematical Theory of Communication.” In that paper, he proposed the measure of
information entropy, which describes the amount of impurity in a set of features. The entropy
H of a set of probabilities pi is (for those who know some physics, the relation to physical
entropy should be clear):

Entropy(p) = −
∑
i

pi log2 pi, (12.1)

where the logarithm is base 2 because we are imagining that we encode everything using
binary digits (bits), and we define 0 log 0 = 0. A graph of the entropy is given in Figure 12.2.
Suppose that we have a set of positive and negative examples of some feature (where the
feature can only take 2 values: positive and negative). If all of the examples are positive,
then we don’t get any extra information from knowing the value of the feature for any
particular example, since whatever the value of the feature, the example will be positive.
Thus, the entropy of that feature is 0. However, if the feature separates the examples into
50% positive and 50% negative, then the amount of entropy is at a maximum, and knowing
about that feature is very useful to us. The basic concept is that it tells us how much extra
information we would get from knowing the value of that feature. A function for computing
the entropy is very simple, as here:

def calc_entropy(p):

if p!=0:
return -p * np.log2(p)

else:
return 0

For our decision tree, the best feature to pick as the one to classify on now is the one
that gives you the most information, i.e., the one with the highest entropy. After using that
feature, we re-evaluate the entropy of each feature and again pick the one with the highest
entropy.

Information theory is a very interesting subject. It is possible to download Shannon’s
1948 paper from the Internet, and also to find many resources showing where it has been
applied. There are now whole journals devoted to information theory because it is relevant
to so many areas such as computer and telecommunication networks, machine learning, and
data storage. Some further readings in the area are given at the end of the chapter.

12.2.2 ID3
Now that we have a suitable measure for choosing which feature to choose next, entropy,
we just have to work out how to apply it. The important idea is to work out how much
the entropy of the whole training set would decrease if we choose each particular feature
for the next classification step. This is known as the information gain, and it is defined as



252 � Machine Learning: An Algorithmic Perspective

FIGURE 12.2 A graph of entropy, detailing how much information is available from finding
out another piece of information given what you already know.

the entropy of the whole set minus the entropy when a particular feature is chosen. This
is defined by (where S is the set of examples, F is a possible feature out of the set of all
possible ones, and |Sf | is a count of the number of members of S that have value f for
feature F ):

Gain(S, F ) = Entropy(S)−
∑

f∈values(F )

|Sf |
|S|

Entropy(Sf ). (12.2)

As an example, suppose that we have data (with outcomes) S = {s1 = true, s2 =
false, s3 = false, s4 = false} and one feature F that can have values {f1, f2, f3}. In the
example, the feature value for s1 could be f2, for s2 it could be f2, for s3, f3 and for s4,
f1 then we can calculate the entropy of S as (where ⊕ means true, of which we have one
example, and 	 means false, of which we have three examples):

Entropy(S) = −p⊕ log2 p⊕ − p	 log2 p	

= −1
4 log2

1
4 −

3
4 log2

3
4

= 0.5 + 0.311 = 0.811. (12.3)

The function Entropy(Sf ) is similar, but only computed with the subset of data where
feature F has values f .

If you were trying to follow those calculations on a calculator, you might be wondering
how to compute log2 p. The answer is to use the identity log2 p = ln p/ ln(2), where ln is the
natural logarithm, which your calculator can produce. NumPy has the np.log2() function.

We now want to compute the information gain of F , so we now need to compute each
of the values inside the summation in Equation (12.2), |Sf ||S| Entropy(S) (in our example, the
features are ‘Deadline’, ‘Party’, and ‘Lazy’):



Learning with Trees � 253

|Sf1 |
|S|

Entropy(Sf1) = 1
4 ×

(
−0

1 log2
0
1 −

1
1 log2

1
1

)
= 0 (12.4)

|Sf2 |
|S|

Entropy(Sf2) = 2
4 ×

(
−1

2 log2
1
2 −

1
2 log2

1
2

)
= 1

2 (12.5)

|Sf3 |
|S|

Entropy(Sf3) = 1
4 ×

(
−0

1 log2
0
1 −

1
1 log2

1
1

)
= 0 (12.6)

The information gain from adding this feature is the entropy of S minus the sum of the
three values above:

Gain(S, F ) = 0.811− (0 + 0.5 + 0) = 0.311. (12.7)
This can be computed in an algorithm using the following function (where lots of the

code is to get the relevant data):

def calc_info_gain(data,classes,feature):
gain = 0
nData = len(data)
# List the values that feature can take
values = []
for datapoint in data:

if datapoint[feature] not in values:
values.append(datapoint[feature])

featureCounts = np.zeros(len(values))
entropy = np.zeros(len(values))
valueIndex = 0
# Find where those values appear in data[feature] and the corresponding '
class
for value in values:

dataIndex = 0
newClasses = []
for datapoint in data:

if datapoint[feature]==value:
featureCounts[valueIndex]+=1
newClasses.append(classes[dataIndex])

dataIndex += 1

# Get the values in newClasses
classValues = []
for aclass in newClasses:

if classValues.count(aclass)==0:
classValues.append(aclass)



254 � Machine Learning: An Algorithmic Perspective

classCounts = np.zeros(len(classValues))
classIndex = 0
for classValue in classValues:

for aclass in newClasses:
if aclass == classValue:

classCounts[classIndex]+=1
classIndex += 1

for classIndex in range(len(classValues)):
entropy[valueIndex] += calc_entropy(float(classCounts[classIndex])'
/sum(classCounts))

gain += float(featureCounts[valueIndex])/nData * entropy[valueIndex]
valueIndex += 1

return gain

The ID3 algorithm computes this information gain for each feature and chooses the
one that produces the highest value. In essence, that is all there is to the algorithm. It
searches the space of possible trees in a greedy way by choosing the feature with the highest
information gain at each stage. The output of the algorithm is the tree, i.e., a list of nodes,
edges, and leaves. As with any tree in computer science, it can be constructed recursively.
At each stage the best feature is selected and then removed from the dataset, and the
algorithm is recursively called on the rest. The recursion stops when either there is only
one class remaining in the data (in which case a leaf is added with that class as its label),
or there are no features left, when the most common label in the remaining data is used.

The ID3 Algorithm
• If all examples have the same label:

– return a leaf with that label

• Else if there are no features left to test:

– return a leaf with the most common label

• Else:

– choose the feature F̂ that maximises the information gain of S to be the next
node using Equation (12.2)

– add a branch from the node for each possible value f in F̂
– for each branch:

∗ calculate Sf by removing F̂ from the set of features
∗ recursively call the algorithm with Sf , to compute the gain relative to the
current set of examples

Owing to the focus on classification for real-world examples, trees are often used with text
features rather than numeric values. This makes it rather difficult to use NumPy, and so
the sample implementation is pretty well pure Python. It uses a feature of Python that is
uncommon in other languages, which is the dictionary in order to hold the tree, which uses the
braces {, }, and which is described next before we look at the decision tree implementation.



Learning with Trees � 255

12.2.3 Implementing Trees and Graphs in Python
Trees are really just a restricted version of graphs, since they both consist of nodes and
edges between the nodes. Graphs are a very useful data structure in many different areas
of computer science. There are two reasonable ways to represent a graph computationally.
One is as an N ×N matrix, where N is the number of nodes in the network. Each element
of the matrix is a 1 if there is a link between the two nodes, and a 0 otherwise. The benefit
of this approach is that it is easy to give weights to the links by changing the 1s to the
values of the weights. The alternative is to store a list of nodes, following each by a list of
nodes that it is linked to. Both are fairly natural in Python, with the second making use of
the dictionary, a basic data structure that we have not used much, except for very simply
in the decision tree (Chapter 12) that consists of a set of keys and values. For a graph, the
key to each dictionary entry is the name of the node, and its value is a list of the nodes
that it is connected to, as in this example:

graph = {’A’: [’B’, ’C’],’B’: [’C’, ’D’],’C’: [’D’],’D’: [’C’],’E’: [’F’],'
’F’: [’C’]}

That is all there is to it for creating the dictionary, and using it is not very different,
since there are built-in methods to get a list of keys (keys()) and check if a key is in a
dictionary (in). Code to find a path through the graph can then be written as a simple
recursive function:

def findPath(graph, start, end, pathSoFar):
pathSoFar = pathSoFar + [start]
if start == end:

return pathSoFar
if start not in graph:

return None
for node in graph[start]:

if node not in pathSoFar:
newpath = findPath(graph, node, end, pathSoFar)
return newpath

return None

Using those methods we can now look at a Python implementation of the decision tree,
which also has a recursive function call as its basis.

12.2.4 Implementation of the Decision Tree
The make_tree() function (which uses the calc_entropy() and calc_info_gain() func-
tions that were described previously) looks like:

def make_tree(data,classes,featureNames):
# Various initialisations suppressed



256 � Machine Learning: An Algorithmic Perspective

default = classes[np.argmax(frequency)]
if nData==0 or nFeatures == 0:

# Have reached an empty branch
return default

elif classes.count(classes[0]) == nData:
# Only 1 class remains
return classes[0]

else:
# Choose which feature is best
gain = np.zeros(nFeatures)
for feature in range(nFeatures):

g = calc_info_gain(data,classes,feature)
gain[feature] = totalEntropy - g

bestFeature = np.argmax(gain)
tree = {featureNames[bestFeature]:{}}
# Find the possible feature values
for value in values:

# Find the datapoints with each feature value
for datapoint in data:

if datapoint[bestFeature]==value:
if bestFeature==0:

datapoint = datapoint[1:]
newNames = featureNames[1:]

elif bestFeature==nFeatures:
datapoint = datapoint[:-1]
newNames = featureNames[:-1]

else:
datapoint = datapoint[:bestFeature]
datapoint.extend(datapoint[bestFeature+1:])
newNames = featureNames[:bestFeature]
newNames.extend(featureNames[bestFeature+1:])

newData.append(datapoint)
newClasses.append(classes[index])

index += 1
# Now recurse to the next level
subtree = make_tree(newData,newClasses,newNames)
# And on returning, add the subtree on to the tree
tree[featureNames[bestFeature]][value] = subtree

return tree

It is worth considering how ID3 generalises from training examples to the set of all
possible inputs. It uses a method known as the inductive bias. The choice of the next feature
to add into the tree is the one with the highest information gain, which biases the algorithm
towards smaller trees, since it tries to minimise the amount of information that is left. This
is consistent with a well-known principle that short solutions are usually better than longer
ones (not necessarily true, but simpler explanations are usually easier to remember and
understand). You might have heard of this principle as ‘Occam’s Razor’, although I prefer



Learning with Trees � 257

it as an acronym: KISS (Keep It Simple, Stupid). In fact, there is a sound information-
theoretic way to write down this principle. It is known as the Minimum Description Length
(MDL) and was proposed by Rissanen in 1989. In essence it says that the shortest description
of something, i.e., the most compressed one, is the best description.

Note that the algorithm can deal with noise in the dataset, because the labels are as-
signed to the most common value of the target attribute. Another benefit of decision trees is
that they can deal with missing data. Think what would happen if an example has a missing
feature. In that case, we can skip that node of the tree and carry on without it, summing
over all the possible values that that feature could have taken. This is virtually impossible
to do with neural networks: how do you represent missing data when the computation is
based on whether or not a neuron is firing? In the case of neural networks it is common to
either throw away any datapoints that have missing data, or guess (more technically impute
any missing values, either by identifying similar datapoints and using their value or by using
the mean or median of the data values for that feature). This assumes that the data that is
missing is randomly distributed within the dataset, not missing because of some unknown
process.

Saying that ID3 is biased towards short trees is only partly true. The algorithm uses all
of the features that are given to it, even if some of them are not necessary. This obviously
runs the risk of overfitting, indeed it makes it very likely. There are a few things that you
can do to avoid overfitting, the simplest one being to limit the size of the tree. You can also
use a variant of early stopping by using a validation set and measuring the performance of
the tree so far against it. However, the approach that is used in more advanced algorithms
(most notably C4.5, which Quinlan invented to improve on ID3) is pruning.

There are a few versions of pruning, all of which are based on computing the full tree and
reducing it, evaluating the error on a validation set. The most naïve version runs the decision
tree algorithm until all of the features are used, so that it is probably overfitted, and then
produces smaller trees by running over the tree, picking each node in turn, and replacing
the subtree beneath every node with a leaf labelled with the most common classification of
the subtree. The error of the pruned tree is evaluated on the validation set, and the pruned
tree is kept if the error is the same as or less than the original tree, and rejected otherwise.

C4.5 uses a different method called rule post-pruning. This consists of taking the tree
generated by ID3, converting it to a set of if-then rules, and then pruning each rule by
removing preconditions if the accuracy of the rule increases without it. The rules are then
sorted according to their accuracy on the training set and applied in order. The advantages
of dealing with rules are that they are easier to read and their order in the tree does not
matter, just their accuracy in the classification.

12.2.5 Dealing with Continuous Variables
One thing that we have not yet discussed is how to deal with continuous variables, we
have only considered those with discrete sets of feature values. The simplest solution is to
discretise the continuous variable. However, it is also possible to leave it continuous and
modify the algorithm. For a continuous variable there is not just one place to split it: the
variable can be broken between any pair of datapoints, as shown in Figure 12.3. It can,
of course, be split in any of the infinite locations along the line as well, but they are no
different to this smaller set of locations. Even this smaller set makes the algorithm more
expensive for continuous variables than it is for discrete ones, since as well as calculating the
information gain of each variable to pick the best one, the information gain of many points
within each variable has to be computed. In general, only one split is made to a continuous



258 � Machine Learning: An Algorithmic Perspective

FIGURE 12.3 Possible places to split the variable x1, between each of the datapoints as
the feature value increases.

variable, rather than allowing for threeway or higher splits, although these can be done if
necessary.

The trees that these algorithms make are all univariate trees, because they pick one
feature (dimension) at a time and split according to that one. There are also algorithms that
make multivariate trees by picking combinations of features. This can make for considerably
smaller trees if it is possible to find straight lines that separate the data well, but are not
parallel to any axis. However, univariate trees are simpler and tend to get good results, so
we won’t consider multivariate trees any further. This fact that one feature is chosen at a
time provides another useful way to visualise what the decision tree is doing. Figure 12.4
shows the idea. Given a dataset that contains three classes, the algorithm picks a feature
and value for that feature to split the remaining data into two. The final tree that results
from this is shown in Figure 12.5.

12.2.6 Computational Complexity
The computational cost of constructing binary trees is well known for the general case,
being O(N logN) for construction and O(logN) for returning a particular leaf, where N is
the number of nodes. However, these results are for balanced binary trees, and decision trees
are often not balanced; while the information measures attempt to keep the tree balanced
by finding splits that separate the data into two even parts (since that will have the largest
entropy), there is no guarantee of this. Nor are they necessarily binary, especially for ID3
and C4.5, as our example shows.



Learning with Trees � 259

FIGURE 12.4 The effect of decision tree choices. The two-dimensional dataset shown in
(a) is split first by choosing feature x1 (b) and then x2, (c) which separates out the three
classes. The final tree is shown in Figure 12.5.

FIGURE 12.5 The final tree created by the splits in Figure 12.4.



260 � Machine Learning: An Algorithmic Perspective

If we assume that the tree is approximately balanced, then the cost at each node consists
of searching through the d possible features (although this decreases by 1 at each level, that
doesn’t affect the complexity in the O(·) notation) and then computing the information
gain for the dataset for each split. This has cost O(dn logn), where n is the size of the
dataset at that node. For the root, n = N , and if the tree is balanced, then n is divided
by 2 at each stage down the tree. Summing this over the approximately logN levels in the
tree gives computational cost O(dN2 logN).

12.3 CLASSIFICATION AND REGRESSION TREES (CART)
There is another well-known tree-based algorithm, CART, whose name indicates that it can
be used for both classification and regression. Classification is not wildly different in CART,
although it is usually constrained to construct binary trees. This might seem odd at first,
but there are sound computer science reasons why binary trees are good, as suggested in
the computational cost discussion above, and it is not a real limation. Even in the example
that we started the chapter with, we can always turn questions into binary decisions by
splitting the question up a little. Thus, a question that has three answers (say the question
about when your nearest assignment deadline is, which is either ‘urgent’, ‘near’, or ‘none’)
can be split into two questions: first, ‘is the deadline urgent?’, and then if the answer to that
is ‘no’, second ‘is the deadline near?’ The only real difference with classification in CART
is that a different information measure is commonly used. This is discussed next, before we
look briefly at regression with trees.

12.3.1 Gini Impurity
The entropy that was used in ID3 as the information measure is not the only way to pick
features. Another possibility is something known as the Gini impurity. The ‘impurity’ in the
name suggests that the aim of the decision tree is to have each leaf node represent a set
of datapoints that are in the same class, so that there are no mismatches. This is known
as purity. If a leaf is pure then all of the training data within it have just one class. In
which case, if we count the number of datapoints at the node (or better, the fraction of
the number of datapoints) that belong to a class i (call it N(i)), then it should be 0 for all
except one value of i. So suppose that you want to decide on which feature to choose for a
split. The algorithm loops over the different features and checks how many points belong to
each class. If the node is pure, then N(i) = 0 for all values of i except one particular one.
So for any particular feature k you can compute:

Gk =
c∑
i=1

∑
j 6=i

N(i)N(j), (12.8)

where c is the number of classes. In fact, you can reduce the algorithmic effort required by
noticing that

∑
iN(i) = 1 (since there has to be some output class) and so

∑
j 6=iN(j) =

1−N(i). Then Equation (12.8) is equivalent to:

Gk = 1−
c∑
i=1

N(i)2. (12.9)

Either way, the Gini impurity is equivalent to computing the expected error rate if the
classification was picked according to the class distribution. The information gain can then
be measured in the same way, subtracting each value Gi from the total Gini impurity.



Learning with Trees � 261

The information measure can be changed in another way, which is to add a weight to
the misclassifications. The idea is to consider the cost of misclassifying an instance of class
i as class j (which we will call the risk in Section 2.3.1) and add a weight that says how
important each datapoint is. It is typically labelled as λij and is presented as a matrix, with
element λij representing the cost of misclassifying i as j. Using it is simple, modifying the
Gini impurity (Equation (12.8)) to be:

Gi =
∑
j 6=i

λijN(i)N(j). (12.10)

We will see in Section 13.1 that there is another benefit to using these weights, which
is to successively improve the classification ability by putting higher weight on datapoints
that the algorithm is getting wrong.

12.3.2 Regression in Trees
The new part about CART is its application in regression. While it might seem strange to
use trees for regression, it turns out to require only a simple modification to the algorithm.
Suppose that the outputs are continuous, so that a regression model is appropriate. None
of the node impurity measures that we have considered so far will work. Instead, we’ll go
back to our old favourite—the sum-of-squares error. To evaluate the choice of which feature
to use next, we also need to find the value at which to split the dataset according to that
feature. Remember that the output is a value at each leaf. In general, this is just a constant
value for the output, computed as the mean average of all the datapoints that are situated
in that leaf. This is the optimal choice in order to minimise the sum-of-squares error, but
it also means that we can choose the split point quickly for a given feature, by choosing
it to minimise the sum-of-squares error. We can then pick the feature that has the split
point that provides the best sum-of-squares error, and continue to use the algorithm as for
classification.

12.4 CLASSIFICATION EXAMPLE
We’ll work through an example using ID3 in this section. The data that we’ll use will be a
continuation of the one we started the chapter with, about what to do in the evening.

When we want to construct the decision tree to decide what to do in the evening, we
start by listing everything that we’ve done for the past few days to get a suitable dataset
(here, the last ten days):

Deadline? Is there a party? Lazy? Activity
Urgent Yes Yes Party
Urgent No Yes Study
Near Yes Yes Party
None Yes No Party
None No Yes Pub
None Yes No Party
Near No No Study
Near No Yes TV
Near Yes Yes Party
Urgent No No Study



262 � Machine Learning: An Algorithmic Perspective

To produce a decision tree for this problem, the first thing that we need to do is work
out which feature to use as the root node. We start by computing the entropy of S:

Entropy(S) = −pparty log2 pparty − pstudy log2 pstudy

− ppub log2 ppub − pTV log2 pTV

= − 5
10 log2

5
10 −

3
10 log2

3
10 −

1
10 log2

1
10 −

1
10 log2

1
10

= 0.5 + 0.5211 + 0.3322 + 0.3322 = 1.6855 (12.11)

and then find which feature has the maximal information gain:

Gain(S,Deadline) = 1.6855− |Surgent|
10 Entropy(Surgent)

− |Snear|
10 Entropy(Snear)−

|Snone|
10 Entropy(Snone)

= 1.6855− 3
10

(
−2

3 log2
2
3 −

1
3 log2

1
3

)
− 4

10

(
−2

4 log2
2
4 −

1
4 log2

1
4 −

1
4 log2

1
4

)
− 3

10

(
−1

3 log2
1
3 −

2
3 log2

2
3

)
= 1.6855− 0.2755− 0.6− 0.2755
= 0.5345 (12.12)

Gain(S,Party) = 1.6855− 5
10

(
−5

5 log2
5
5

)
− 5

10

(
−3

5 log2
3
5 −

1
5 log2

1
5 −

1
5 log2

1
5

)
= 1.6855− 0− 0.6855
= 1.0 (12.13)

Gain(S,Lazy) = 1.6855− 6
10

(
−3

6 log2
3
6 −

1
6 log2

1
6 −

1
6 log2

1
6 −

1
6 log2

1
6

)
− 4

10

(
−2

4 log2
2
4 −

2
4 log2

2
4

)
= 1.6855− 1.0755− 0.4
= 0.21 (12.14)

Therefore, the root node will be the party feature, which has two feature values (‘yes’
and ‘no’), so it will have two branches coming out of it (see Figure 12.6). When we look at
the ‘yes’ branch, we see that in all five cases where there was a party we went to it, so we
just put a leaf node there, saying ‘party’. For the ‘no’ branch, out of the five cases there are
three different outcomes, so now we need to choose another feature. The five cases we are
looking at are:



Learning with Trees � 263

FIGURE 12.6 The decision tree after one
step of the algorithm.

FIGURE 12.7 The tree after another
step.

Deadline? Is there a party? Lazy? Activity
Urgent No Yes Study
None No Yes Pub
Near No No Study
Near No Yes TV
Urgent No Yes Study

We’ve used the party feature, so we just need to calculate the information gain of the
other two over these five examples:

Gain(S,Deadline) = 1.371− 2
5

(
−2

2 log2
2
2

)
− 2

5

(
−1

2 log2
1
2 −

1
2 log2

1
2

)
− 1

5

(
−1

1 log2
1
1

)
= 1.371− 0− 0.4− 0
= 0.971 (12.15)

Gain(S,Lazy) = 1.371− 4
5

(
−2

4 log2
2
4 −

1
4 log2

1
4 −

1
4 log2

1
4

)
− 1

5

(
−1

1 log2
1
1

)
= 1.371− 1.2− 0
= 0.1710 (12.16)

This leads to the tree shown in Figure 12.7. From this point it is relatively simple to
complete the tree, leading to the one that was shown in Figure 12.1.

FURTHER READING
For more information about decision trees, the following two books are of interest:

• J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco, CA, USA, 1993.

• L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression
Trees. Chapman & Hall, New York, USA, 1993.



264 � Machine Learning: An Algorithmic Perspective

If you want to know more about information theory, then there are lots of books on the
topic, including:

• T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-Interscience,
New York, USA, 1991.

• F.M. Reza. An Introduction to Information Theory. McGraw-Hill, New York, USA,
1961.

The original paper that started the field is:

• C.E. Shannon. A mathematical theory of information. The Bell System Technical
Journal, 27(3):379–423 and 623–656, 1948.

A book that covers information theory and machine learning is:

• D.J.C. MacKay. Information Thoery, Inference and Learning Algorithms. Cambridge
University Press, Cambridge, UK, 2003.

Other machine learning textbooks that cover decision trees include:

• Sections 8.2–8.4 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

• Chapter 7 of B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, UK, 1996.

• Chapter 3 of T. Mitchell. Machine Learning. McGraw-Hill, New York, USA, 1997.

PRACTICE QUESTIONS
Problem 12.1 Suppose that the probability of five events are P(first) = 0.5, and P(second)

= P(third) = P(fourth) = P(fifth) = 0.125. Calculate the entropy. Write down in words
what this means.

Problem 12.2 Make a decision tree that computes the logical AND function. How does it
compare to the Perceptron solution?

Problem 12.3 Turn this politically incorrect data from Quinlan into a decision tree to
classify which attributes make a person attractive, and then extract the rules.

Height Hair Eyes Attractive?
Small Blonde Brown No
Tall Dark Brown No
Tall Blonde Blue Yes
Tall Dark Blue No
Small Dark Blue No
Tall Red Blue Yes
Tall Blonde Brown No
Small Blonde Blue Yes



Learning with Trees � 265

Problem 12.4 When you arrive at the pub, your five friends already have their drinks on
the table. Jim has a job and buys the round half of the time. Jane buys the round a
quarter of the time, and Sarah and Simon buy a round one eighth of the time. John
hasn’t got his wallet out since you met him three years ago.
Compute the entropy of each of them buying the round and work out how many
questions you need to ask (on average) to find out who bought the round.
Two more friends now arrive and everybody spontaneously decides that it is your turn
to buy a round (for all eight of you). Your friends set you the challenge of deciding
who is drinking beer and who is drinking vodka according to their gender, whether or
not they are students, and whether they went to the pub last night. Use ID3 to work
it out, and then see if you can prune the tree.

Drink Gender Student Pub last night
Beer T T T
Beer T F T
Vodka T F F
Vodka T F F
Vodka F T T
Vodka F F F
Vodka F T T
Vodka F T T

Problem 12.5 Use the naïve Bayes classifier from Section 2.3.2 on the datasets that you
used for the decision tree (this will involve some effort in turning the textual data into
probabilities) and compare the results.

Problem 12.6 The CPU dataset in the UCI repository is a very good regression problem
for a decision tree. You will need to modify the decision tree code so that it does
regression, as discussed in Section 12.3.2. You will also have to work out the Gini
impurity for multiple classes.

Problem 12.7 Modify the implementation to deal with continuous variables, as discussed
in Section 12.2.5.

Problem 12.8 The misclassification impurity is:

N(i) = 1−max
j
P (wj). (12.17)

Add this into the code and test the new version on some of the datasets above.





CHA PT E R 13

Decision by Committee:
Ensemble Learning

The old saying has it that two heads are better than one. Which naturally leads to the idea
that even more heads are better than that, and ends up with decision by committee, which
is famously useless for human activities (as in the old joke that a camel is a horse designed
by a committee). For machine learning methods the results are rather more impressive, as
we’ll see in this chapter.

The basic idea is that by having lots of learners that each get slightly different results
on a dataset—some learning certain things well and some learning others—and putting
them together, the results that are generated will be significantly better than any one of
them on its own (provided that you put them together well... otherwise the results could be
significantly worse). One analogy that might prove useful is to think about how your doctor
goes about performing a diagnosis of some complaint that you visit her with. If she cannot
find the problem directly, then she will ask for a variety of tests to be performed, e.g., scans,
blood tests, consultations with experts. She will then aggregate all of these opinions in order
to perform a diagnosis. Each of the individual tests will suggest a diagnosis, but only by
putting them together can an informed decision be reached.

Figure 13.1 shows the basic idea of ensemble learning, as these methods are collectively
called. Given a relatively simple binary classification problem and some learner that puts
an ellipse around a subset of the data, combining the ellipses can provide a considerably
more complex decision boundary.

There are then only a couple of questions to ask: which learners should we use, how
should we ensure that they learn different things, and how should we combine their results?
The methods that we are investigating in this chapter can use any classifier at all. Although
in general they only use one type of classifier at a time, they do not have to. A common
choice of classifier is the decision tree (see Chapter 12).

Ensuring that the learners see different things can be performed in different ways, and
it is the primary difference between the algorithms that we shall see. However, it can also
come about naturally depending upon the application area. Suppose that you have lots and
lots of data. In that case you could simply randomly partition the data and give different
sets of data to different classifiers. Even here there are choices: do you make the partitions
separate, or include overlaps? If there is no overlap, then it could be difficult to work out
how to combine the classifiers, or it might be very simple: if your doctor always asks for
opinions from two colleagues, one specialising in heart problems and one in sports injuries,

267



268 � Machine Learning: An Algorithmic Perspective

FIGURE 13.1 By combining lots of simple classifiers (here that simply put an elliptical
decision boundary onto the data), the decision boundary can be made much more com-
plicated, enabling the difficult separation of the pluses from the circles.

then upon discovering that your leg started hurting after you went for a run she would likely
accord more weight to the diagnosis of the sports injury expert.

Interestingly, ensemble methods do very well when there is very little data as well as
when there is too much. To see why, think cross-validation (Section 2.2.2). We used cross-
validation when there was not enough data to go around, and trained lots of neural networks
on different subsets of the data. Then we threw away most of them. With an ensemble
method we keep them all, and combine their results in some way. One very simple way to
combine the results is to use majority voting — if it’s good enough for electing governments
in elections, it’s good enough for machine learning. Majority voting has the interesting
property that for binary classification, the combined classifier will only get the answer
wrong if more than half of the classifiers were wrong. Hopefully, this isn’t going to happen
too often (although you might be able to think of government elections where this has been
the case in your view). There are alternative ways to combine the results, as we’ll discuss.
These things will become clearer as we look at the algorithms, so let’s get started.

13.1 BOOSTING
At first sight the claim of the most popular ensemble method, boosting, seems amazing. If
we take a collection of very poor (weak in the jargon) learners, each performing only just
better than chance, then by putting them together it is possible to make an ensemble learner
that can perform arbitrarily well. So we just need lots of low-quality learners, and a way to
put them together usefully, and we can make a learner that will do very well.

The principal algorithm of boosting is named AdaBoost, and is described in Sec-
tion 13.1.1. The algorithm was first described in the mid-1990s by Freund and Shapiro,
and while it has had many variations derived from it, the principal algorithm is still one
of the most widely used. The algorithm was proposed as an improvement on the original
1990 boosting algorithm, which was rather data hungry. In that algorithm, the training
set was split into three. A classifier was trained on the first third, and then tested on the
second third. All of the data that was misclassified during that testing was used to form a
new dataset, along with an equally sized random selection of the data that was correctly
classified. A second classifier was trained on this new dataset, and then both of the classi-
fiers were tested on the final third of the dataset. If they both produced the same output,
then that datapoint was ignored, otherwise the datapoint was added to yet another new



Decision by Committee: Ensemble Learning � 269

FIGURE 13.2 As points are misclassified, so their weights increase in boosting (shown by
the datapoint getting larger), which makes the importance of those datapoints increase,
making the classifiers pay more attention to them.

dataset, which formed the training set for a third classifer. Rather than looking further at
this version, we will look at the more common algorithm.

13.1.1 AdaBoost
The innovation that AdaBoost (which stands for adaptive boosting) uses is to give weights
to each datapoint according to how difficult previous classifiers have found to get it correct.
These weights are given to the classifier as part of the input when it is trained.

The AdaBoost algorithm is conceptually very simple. At each iteration a new classifier
is trained on the training set, with the weights that are applied to the training set for each
datapoint being modified at each iteration according to how successfully that datapoint has
been classified in the past. The weights are initially all set to the same value, 1/N , where
N is the number of datapoints in the training set. Then, at each iteration, the error (ε) is
computed as the sum of the weights of the misclassified points, and the weights for incorrect
examples are updated by being multiplied by α = (1 − ε)/ε. Weights for correct examples
are left alone, and then the whole set is normalised so that it sums to 1 (which is effectively
a reduction in the importance of the correctly classified datapoints). Training terminates
after a set number of iterations, or when either all of the datapoints are classified correctly,
or one point contains more than half of the available weight.

Figure 13.2 shows the effect of weighting incorrectly classified examples as training
proceeds, with the size of each datapoint being a measure of its importance. As an algorithm
this looks like (where I(yn 6= ht(xn)) is an indicator function that returns 1 if the target and
output are not equal, and 0 if they are):



270 � Machine Learning: An Algorithmic Perspective

AdaBoost Algorithm

• Initialise all weights to 1/N , where N is the number of datapoints

• While 0 < εt <
1
2 (and t < T , some maximum number of iterations):

– train classifier on {S,w(t)}, getting hypotheses ht(xn) for datapoints xn

– compute training error εt =
N∑
n=1

w
(t)
n I(yn 6= ht(xn))

– set αt = log
(

1−εt
εt

)
– update weights using:

w(t+1)
n = w(t)

n exp(αtI(yn 6= ht(xn))/Zt, (13.1)

where Zt is a normalisation constant

• Output f(x) = sign
(

T∑
t=1

αtht(x)
)

There is nothing too difficult to the implementation, either, as can be seen from the
main loop here:

for t in range(T):
classifiers[:,t] = train(data,classes,w[:,t])
outputs,errors = classify(data,classifiers[0,t],classifiers[1,t])

index[:,t] = errors
print "index: ", index[:,t]
e[t] = np.sum(w[:,t]*index[:,t])/np.sum(w[:,t])

if t>0 and (e[t]==0 or e[t]>=0.5):
T=t
alpha = alpha[:t]
index = index[:,:t]
w = w[:,:t]
break

alpha[t] = np.log((1-e[t])/e[t])
w[:,t+1] = w[:,t]* np.exp(alpha[t]*index[:,t])
w[:,t+1] = w[:,t+1]/np.sum(w[:,t+1])

Most of the work of the algorithm is done by the classification algorithm, which is given
new weights at each iteration. In this respect, boosting is not quite a stand-alone algorithm:
the classifiers need to consider the weights when they perform their classifications. It is
not always obvious how to do this for a particular classifier, but we have seen methods
of doing it for a few classifiers. For the decision tree we saw a method in Section 12.3.1,



Decision by Committee: Ensemble Learning � 271

FIGURE 13.3 Boosting learns this simple dataset very successfully, producing an ensemble
classifier that is rather more complicated than the simple horizontal or vertical line clas-
sifier that the algorithm boosts. On the independent test set shown here, the algorithm
gets only 1 datapoint wrong, and that is one that is coincidentally close to one that was
misclassified to simulate noise in the training data.

when we looked at the Gini impurity. There, we allowed for a λ matrix that encoded the
risks associated with misclassification, and these are a perfect place in which to introduce
weights. Modification of the decision tree algorithm to deal with these weights is suggested
as an exercise for this chapter. A similar argument can be used for the Bayes’ classifier; this
was discussed in Section 2.3.1.

As a very simple example showing how boosting works, a very simple classifier was
created that can only separate data by fitting one either horizontal or vertical line, with it
choosing which to fit at the current iteration at random. A two-dimensional dataset was
created with data in the top right-hand corner being in one class, and the rest in another,
plus a couple of the datapoints were randomly mislabelled to simulate noise. Clearly, this
dataset cannot be separated by a single horizontal or vertical decision boundary. However,
Figure 13.3 shows the output of the classifier on an independent test set, where the algorithm
gets only one datapoint wrong, and that is one that is coincidentally close to one of the
‘noisy’ datapoints in the training data. Figure 13.4 shows the training data, the error curve
on both the training and testing sets, and the first few iterations of the classifier, which can
only put in one horizontal or linear classification line.

Clearly, such impressive results require some explanation and understanding. The key to
this understanding is to compute the loss function, which is simply the measure of the error
that is applied (we have been using a sum-of-squares loss function for many algorithms in
the book). The loss function for AdaBoost has the form

Gt(α) =
N∑
n=1

exp (−yn(αht(xn) + ft−1(xn))) , (13.2)

where ft−1(xn) is the sum of the hypotheses of that datapoint from the previous iterations:

ft−1(xn) =
t−1∑
τ=0

ατhτ (xn). (13.3)

Exponential loss functions are well behaved and robust to outliers. The weights w(t)



272 � Machine Learning: An Algorithmic Perspective

FIGURE 13.4 Top: the training data and the error curve. Middle and bottom: The first
few iterations of the classifier; each plot shows the output of one of the weak classifiers
that are boosted by the algorithm.



Decision by Committee: Ensemble Learning � 273

in the algorithm are nothing more than the second term in Equation (13.2), which can
therefore be rewritten as:

Gt(α) =
N∑
n=1

w(t) exp (−ynαht(xn)) . (13.4)

Deriving the rest of the algorithm from here requires substituting in for the hypotheses
h and then solving for α, which produces the full algorithm. Interestingly, this is not the
way that AdaBoost was created; this understanding of why it works so well came later. It is
possible to choose other loss functions, and providing that they are differentiable they will
provide useful boosting-like algorithms, which are collectively known as arcing algorithms
(for adaptive reweighting and combining).

AdaBoost can be modified to perform regression rather than classification (known as
real adaboost, or sometimes adaboost.R). There is another variant on boosting (also called
AdaBoost, confusingly) that uses the weights to sample from the full dataset, training on
a sample of the data rather than the full weighted set, with more difficult examples more
likely to be in the training sample. This is more in line with the original boosting algorithm,
and is obviously faster, since each training run has fewer data to learn about.

13.1.2 Stumping
There is a very extreme form of boosting that is applied to trees. It goes by the descriptive
name of stumping. The stump of a tree is the tiny piece that is left over when you chop off
the rest, and the same is true here: stumping consists of simply taking the root of the tree
and using that as the decision maker. So for each classifier you use the very first question
that makes up the root of the tree, and that is it. Often, this is worse than chance on the
whole dataset, but by using the weights to sort out when that classifier should be used, and
to what extent, as opposed to the other ones, the overall output of stumping can be very
successful. In fact, it is pretty much exactly what the simple example that we saw consisted
of.

13.2 BAGGING
The simplest method of combining classifiers is known as bagging, which stands for boot-
strap aggregating, the statistical description of the method. This is fine if you know what a
bootstrap is, but fairly useless if you don’t. A bootstrap sample is a sample taken from the
original dataset with replacement, so that we may get some data several times and others
not at all. The bootstrap sample is the same size as the original, and lots and lots of these
samples are taken: B of them, where B is at least 50, and could even be in the thousands.
The name bootstrap is more popular in computer science than anywhere else, since there is
also a bootstrap loader, which is the first program to run when a computer is turned on. It
comes from the nonsensical idea of ‘picking yourself up by your bootstraps,’ which means
lifting yourself up by your shoelaces, and is meant to imply starting from nothing.

Bootstrap sampling seems like a very strange thing to do. We’ve taken a perfectly good
dataset, mucked it up by sampling from it, which might be good if we had made a smaller
dataset (since it would be faster), but we still ended up with a dataset the same size. Worse,
we’ve done it lots of times. Surely this is just a way to burn up computer time without
gaining anything. The benefit of it is that we will get lots of learners that perform slightly
differently, which is exactly what we want for an ensemble method. Another benefit is that
estimates of the accuracy of the classification function can be made without complicated



274 � Machine Learning: An Algorithmic Perspective

analytic work, by throwing computer resources at the problem (technically, bagging is a
variance reducing algorithm; the meaning of this will become clearer when we talk about
bias and variance in Section 2.5). This is a standard technique in modern statistics; we’ll
see another example in Chapter 15 when we look at Markov Chain Monte Carlo methods.
It is sufficiently common to have inspired the comment that “statistics is defined as the
discipline where those that think don’t count and those that count don’t think.”

Having taken a set of bootstrap samples, the bagging method simply requires that we fit
a model to each dataset, and then combine them by taking the output to be the majority
vote of all the classifiers. A NumPy implementation is shown next, and then we will look
at a simple example.

# Compute bootstrap samples
samplePoints = np.random.randint(0,nPoints,(nPoints,nSamples))
classifiers = []

for i in range(nSamples):
sample = []
sampleTarget = []
for j in range(nPoints):
sample.append(data[samplePoints[j,i]])
sampleTarget.append(targets[samplePoints[j,i]])

# Train classifiers
classifiers.append(self.tree.make_tree(sample,sampleTarget,features))

The example consists of taking the party data that was used in Section 12.4 to demon-
strate the decision tree, and restricting the trees to stumps, so that they can make a classifi-
cation based on just one variable. The output of a decision tree that uses the whole dataset
for this is not surprising: it takes the two largest classes, and separates them. However,
using just stumps of trees and 20 samples, bagging can separate the data perfectly, as this
output shows:

Tree Stump Prediction
[’Party’, ’Party’, ’Party’, ’Party’, ’Pub’, ’Party’, ’Study’, ’Study’, '
’Party’, ’Study’]
Correct Classes
[’Party’, ’Study’, ’Party’, ’Party’, ’Pub’, ’Party’, ’Study’, ’TV’, ’Party’, '
’Study’]
Bagged Results
[’Party’, ’Study’, ’Party’, ’Party’, ’Pub’, ’Party’, ’Study’, ’TV’, ’Party’, '
’Study’]

13.2.1 Subagging
For some reason, ensemble methods often have good names, such as boosting and bagging
(and we will see my choice for best-named, bragging, in Section 13.4). However, the method
of subagging wins the prize for the oddest sounding word. It is a combination of ‘subsample’



Decision by Committee: Ensemble Learning � 275

and ‘bagging,’ and it is the fairly obvious idea that you don’t need to produce samples that
are the same size as the original data. If you make smaller datasets, then it makes sense to
sample without replacement, but otherwise the implementation is only very slightly different
from the bagging one, except that in NumPy you use np.random.shuffle() to produce
the samples. It is common to use a dataset size that is half that of the original data, and
the results of this can often be comparable to a full bagging simulation.

13.3 RANDOM FORESTS
If there is one method in machine learning that has grown in popularity over the last few
years, then it is the idea of random forests. The concept has been around for longer than
that, with several different people inventing variations, but the name that is most strongly
attached to it is that of Breiman, who also described the CART algorithm that was discussed
in Section 12.2, and also gave bagging its name.

The idea is largely that if one tree is good, then many trees (a forest) should be better,
provided that there is enough variety between them. The most interesting thing about a
random forest is the ways that it creates randomness from a standard dataset. The first of
the methods that it uses is the one that we have just seen: bagging. If we wish to create
a forest then we can make the trees different by training them on slightly different data,
so we take bootstrap samples from the dataset for each tree. However, this isn’t enough
randomness yet. The other obvious place where it is possible to add randomness is to limit
the choices that the decision tree can make. At each node, a random subset of the features
is given to the tree, and it can only pick from that subset rather than from the whole set.

As well as increasing the randomness in the training of each tree, it also speeds up
the training, since there are fewer features to search over at each stage. Of course, it does
introduce a new parameter (how many features to consider), but the random forest does not
seem to be very sensitive to this parameter; in practice, a subset size that is the square root
of the number of features seems to be common. The effect of these two forms of randomness
is to reduce the variance without effecting the bias. Another benefit of this is that there is
no need to prune the trees. There is another parameter that we don’t know how to choose
yet, which is the number of trees to put into the forest. However, this is fairly easy to pick
if we want optimal results: we can keep on building trees until the error stops decreasing.

Once the set of trees are trained, the output of the forest is the majority vote for
classification, as with the other committee methods that we have seen, or the mean response
for regression. And those are pretty much the main features needed for creating a random
forest. The algorithm is given next before we see some results of using the random forest.

The Basic Random Forest Training Algorithm

• For each of N trees:

– create a new bootstrap sample of the training set
– use this bootstrap sample to train a decision tree
– at each node of the decision tree, randomly select m features, and compute the

information gain (or Gini impurity) only on that set of features, selecting the
optimal one

– repeat until the tree is complete



276 � Machine Learning: An Algorithmic Perspective

The implementation of this is very easy: we modify the decision to take an extra pa-
rameter, which is m, the number of features that should be used in the selection set at each
stage. We will look at an example of using it shortly as a comparison to boosting.

Looking at the algorithm you might be able to see that it is a very unusual machine
learning method because it is embarrassingly parallel: since the trees do not depend upon
each other, you can both create and get decisions from different trees on different individ-
ual processors if you have them. This means that the random forest can run on as many
processors as you have available with nearly linear speedup.

There is one more nice thing to mention about random forests, which is that with a
little bit of programming effort they come with built-in test data: the bootstrap sample will
miss out about 35% of the data on average, the so-called out-of-bootstrap examples. If we
keep track of these datapoints then they can be used as novel samples for that particular
tree, giving an estimated test error that we get without having to use any extra datapoints.
This avoids the need for cross-validation.

As a brief example of using the random forest, we start by demonstrating that the
random forest gets the correct results on the Party example that has been used in both this
and the previous chapters, based on 10 trees, each trained on 7 samples, and with just two
levels allowed in each tree:

RF prediction
[’Party’, ’Study’, ’Party’, ’Party’, ’Pub’, ’Party’, ’Study’, ’TV’, ’Party’, '
’Study’]

As a rather more involved example, the car evaluation dataset in the UCI Repository
contains 1,728 examples aiming to classify whether or not a car is a good purchase based on
six attributes. The following results compare a single decision tree, bagging, and a random
forest with 50 trees, each based on 100 samples, and with a maximum depth of five for each
tree. It can be seen that the random forest is the most accurate of the three methods.

Tree
Number correctly predicted 777.0
Number of testpoints 864
Percentage Accuracy 89.9305555556

Number of cars rated as good or very good 39.0
Number correctly identified as good or very good 18.0
Percentage Accuracy 46.1538461538
-----
Bagger
Number correctly predicted 678.0
Number of testpoints 864
Percentage Accuracy 78.4722222222

Number of cars rated as good or very good 39.0
Number correctly identified as good or very good 0.0
Percentage Accuracy 0.0
-----



Decision by Committee: Ensemble Learning � 277

Forest
Number correctly predicted 793.0
Number of testpoints 864
Percentage Accuracy 91.7824074074

Number of cars rated as good or very good 39.0
Number correctly identified as good or very good 20.0
Percentage Accuracy 51.28205128

13.3.1 Comparison with Boosting
There are some obvious similarities to boosting (Section 13.1), but it is the differences that
are most telling. The most general thing is that boosting is exhaustive, in that it searches
over the whole set of features at each stage, and each stage depends on the previous one.
This means that boosting has to run sequentially, and the individual steps can be expensive
to run. By way of contrast, the parallelism of the random forest and the fact that it only
searches over a fairly small set of features at each stage speed the algorithm up a lot.

Since the algorithm only searches a small subset of the data at each stage, it cannot be
expected to be as good as boosting for the same number of trees. However, since the trees
are cheaper to train, we can make more of them in the same computational time, and often
the results are amazingly good even on very large and complicated datasets.

In fact, the most amazing thing about random forests is that they seem to deal very well
with really big datasets. It is fairly clear that they should do well computationally, since
both the reduced number of features to search over and the ability to parallelise should help
there. However, they seem to also produce good outputs based on surprisingly small parts
of the problem space seen by each tree.

13.4 DIFFERENT WAYS TO COMBINE CLASSIFIERS
Bagging puts most of its effort into ensuring that the different classifiers see different data,
since they see different samples of the data. This is different than boosting, where the data
stays the same, but the importance of each datapoint changes for the different classifiers,
since they each get different weights according to how well the previous classifiers have
performed. Just as important for an ensemble method, though, is how it combines the
outputs of the different classifiers. Both boosting and bagging take a vote from amongst
the classifiers, although they do it in different ways: boosting takes a weighted vote, while
bagging simple takes the majority vote. There are other alternatives to these methods, as
well.

In fact, even majority voting is not necessarily simple. Some classification systems will
only produce an output where all the classifiers agree, or more than half of them agree,
whereas others simply take the most common output, which is what we usually mean
by majority voting. The idea of not always producing an output is to ensure that the
ensemble does not produce outputs that are contentious, because they are probably difficult
datapoints. If the number of classifiers is odd and the classifiers are each independent of each
other, then majority voting will return the correct label if more than half of the classifiers
agree. Assuming that each individual classifier has a success rate of p, the probability of the
ensemble getting the correct answer is a binomial distribution of the form:



278 � Machine Learning: An Algorithmic Perspective

FIGURE 13.5 The Hierarchical Mixture of Networks network, consisting of a set of classi-
fiers (experts) with gating systems that also use the inputs to decide which classifiers to
trust.

T∑
k=T/2+1

(
T
k

)
pk(1− p)T−k, (13.5)

where T is the number of classifiers. If p > 0.5, then this sum approaches 1 as T →∞. This
is a lot of the power behind ensemble methods: even if each classifier only gets about half
the answers right, if we use a decent number of classifiers (maybe 100), then the probability
of the ensemble being correct gets close to 1. In fact, even with less than 50% chance of
success for each individual classifier, the ensemble can often do very well indeed.

For regression problems, rather than taking the majority vote, it is common to take the
mean of the outputs. However, the mean is heavily affected by outliers, with the result that
the median is a more common average to use. It is the use of the median that produces the
bragging algorithm, which is meant to imply ‘robust bagging’.

There is one more thing that can be done to combine classifiers, and that is to learn how
to do it. There is an algorithm that does precisely this, known as the mixture of experts.
Inputs are presented to the network, and each individual classifier makes an assessment.
These outputs from the classifiers are then weighted by the relevant gate, which produces
a weight w using the current inputs, and this is propagated further up the hierarchy. The
most common version of the mixture of experts works as follows:



Decision by Committee: Ensemble Learning � 279

The Mixture of Experts Algorithm

• For each expert:

– calculate the probability of the input belonging to each possible class by com-
puting (where the wi are the weights for that classifier):

oi(x,wi) = 1
1 + exp(−wi · x) . (13.6)

• For each gating network up the tree:

– compute:
gi(x,vi) = exp(vix)∑

l exp(vlx) . (13.7)

• Pass as input to the next level gates (where the sum is over the relevant inputs to
that gate): ∑

k

ojgj . (13.8)

The most common way to train this network is using an EM algorithm. This is a general
statistical approximation algorithm that is discussed in Section 7.1.1. It is also possible to
use gradient descent on the parameters.

There are a couple of other ways to view these mixture of experts methods. One is to
regard them as trees, except that the splits are not the hard splits that we performed in
Chapter 12, but rather soft, because they are based on probability. The other is to compare
them with radial basis function (RBF) networks (see Section 5.2). Each RBF gave a constant
output within its receptive field. If, instead, each node were to give a linear approximation
to the data, then the result would be the mixture of experts network.

FURTHER READING
Three papers that cover the three main ensemble methods described in this section are:

• R.E. Schapire. The boosting approach to machine learning: An overview. In D. D.
Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, editors, Nonlinear Esti-
mation and Classification, Springer, Berlin, Germany, 2003.

• L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140, 1996.

• M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6(2):181–214, 1994.

An overview of the whole area is provided by:

• L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, New York, USA, 2004.

For an alternative viewpoint, see:

• Sections 17.4 and 17.6–17.7 of E. Alpaydin. Introduction to Machine Learning, 2nd
edition, MIT Press, Cambridge, MA, USA, 2009.



280 � Machine Learning: An Algorithmic Perspective

• Section 9.5 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

The original paper on Random Forests is still a very useful resource:
Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

PRACTICE QUESTIONS
Problem 13.1 Modify the decision tree implementation to use weights in the computation

of the Gini impurity. This is not trivial, since you have to modify the total value of
the Gini impurity, too. Once you have done it, use stump trees on the party data.

Problem 13.2 Implement the alternative form of boosting that uses the weights to sample
the dataset. Does this make any difference to the outputs?

Problem 13.3 Stumping picks out the single most informative feature in the dataset and
uses this. For a binary classification problem this will typically get at least half of the
dataset correct. Why? How does this statement generalise to multiple classes?

Problem 13.4 Compare and contrast bagging and cross-validation.

Problem 13.5 The Breastcancer dataset in the UCI Machine Learning repository gives
ten features and asks for a classification of breast tumours into benign and malignant.
It is a difficult dataset, and provides a good comparison of the standard decision tree
with boosted and bagged versions. Use all of the methods, using stumping and more
advanced trees and see which work better.

Problem 13.6 The Mixture of Experts algorithm works with any kind of expert. Suppose
that the experts were each MLPs. Implement this algorithm and see how well it does
on the Breastcancer dataset above.

Problem 13.7 In Section 13.3 on the random forest, it was mentioned that there exists
out-of-bootstrap data that can be used for validation and testing. Modify the code to
keep track of this data.

Problem 13.8 Use the boosting code from Problem 13.2 above and compare it with the
random forest on the cars dataset from the UCI Repository.



CHA PT E R 14

Unsupervised Learning

Many of the learning algorithms that we have seen to date have made use of a training
set that consists of a collection of labelled target data, or at least (for evolutionary and
reinforcement learning) some scoring system that identifies whether or not a prediction is
good or not. Targets are obviously useful, since they enable us to show the algorithm the
correct answer to possible inputs, but in many circumstances they are difficult to obtain—
they could, for instance, involve somebody labelling each instance by hand. In addition, it
doesn’t seem to be very biologically plausible: most of the time when we are learning, we
don’t get told exactly what the right answer should be. In this chapter we will consider
exactly the opposite case, where there is no information about the correct outputs available
at all, and the algorithm is left to spot some similarity between different inputs for itself.

Unsupervised learning is a conceptually different problem to supervised learning. Ob-
viously, we can’t hope to perform regression: we don’t know the outputs for any points,
so we can’t guess what the function is. Can we hope to do classification then? The aim of
classification is to identify similarities between inputs that belong to the same class. There
isn’t any information about the correct classes, but if the algorithm can exploit similarities
between inputs in order to cluster inputs that are similar together, this might perform clas-
sification automatically. So the aim of unsupervised learning is to find clusters of similar
inputs in the data without being explicitly told that these datapoints belong to one class
and those to a different class. Instead, the algorithm has to discover the similarities for
itself. We have already seen some unsupervised learning algorithms in Chapter 6, where the
focus was on dimensionality reduction, and hence clustering of similar datapoints together.

The supervised learning algorithms that we have discussed so far have aimed to minimise
some external error criterion—mostly the sum-of-squares error—based on the difference
between the targets and the outputs. Calculating and minimising this error was possible
because we had target data to calculate it from, which is not true for unsupervised learning.
This means that we need to find something else to drive the learning. The problem is more
general than sum-of-squares error: we can’t use any error criterion that relies on targets or
other outside information (an external error criterion), we need to find something internal
to the algorithm. This means that the measure has to be independent of the task, because
we can’t keep on changing the whole algorithm every time a new task is introduced. In
supervised learning the error criterion was task-specific, because it was based on the target
data that we provided.

To see how to work out a general error criterion that we can use, we need to go back to
some of the important concepts that were discussed in Section 2.1.1: input space and weight
space. If two inputs are close together then it means that their vectors are similar, and so
the distance between them is small (distance measures were discussed in Section 7.2.3, but

281



282 � Machine Learning: An Algorithmic Perspective

here we will stick to Euclidean distance). Then inputs that are close together are identified
as being similar, so that they can be clustered, while inputs that are far apart are not
clustered together. We can extend this to the nodes of a network by aligning weight space
with input space. Now if the weight values of a node are similar to the elements of an input
vector then that node should be a good match for the input, and any other inputs that
are similar. In order to start to see these ideas in practice we’ll look at a simple clustering
algorithm, the k-Means Algorithm, which has been around in statistics for a long time.

14.1 THE K-MEANS ALGORITHM
If you have ever watched a group of tourists with a couple of tour guides who hold umbrellas
up so that everybody can see them and follow them, then you have seen a dynamic version
of the k-means algorithm. Our version is simpler, because the data (playing the part of the
tourists) does not move, only the tour guides.

Suppose that we want to divide our input data into k categories, where we know the
value of k (for example, we have a set of medical test results from lots of people for three
diseases, and we want to see how well the tests identify the three diseases). We allocate
k cluster centres to our input space, and we would like to position these centres so that
there is one cluster centre in the middle of each cluster. However, we don’t know where the
clusters are, let alone where their ‘middle’ is, so we need an algorithm that will find them.
Learning algorithms generally try to minimise some sort of error, so we need to think of an
error criterion that describes this aim. The idea of the ‘middle’ is the first thing that we
need to think about. How do we define the middle of a set of points? There are actually
two things that we need to define:

A distance measure In order to talk about distances between points, we need some way
to measure distances. It is often the normal Euclidean distance, but there are other
alternatives; we’ve covered some other alternatives in Section 7.2.3.

The mean average Once we have a distance measure, we can compute the central point
of a set of datapoints, which is the mean average (if you aren’t convinced, think what
the mean of two numbers is, it is the point halfway along the line between them).
Actually, this is only true in Euclidean space, which is the one you are used to, where
everything is nice and flat. Everything becomes a lot trickier if we have to think about
curved spaces; when we have to worry about curvature, the Euclidean distance metric
isn’t the right one, and there are at least two different definitions of the mean. So we
aren’t going to worry about any of these things, and we’ll assume that space is flat.
This is what statisticians do all the time.

We can now think about a suitable way of positioning the cluster centres: we compute
the mean point of each cluster, µc(i), and put the cluster centre there. This is equivalent
to minimising the Euclidean distance (which is the sum-of-squares error again) from each
datapoint to its cluster centre.

How do we decide which points belong to which clusters? It is important to decide, since
we will use that to position the cluster centres. The obvious thing is to associate each point
with the cluster centre that it is closest too. This might change as the algorithm iterates,
but that’s fine.

We start by positioning the cluster centres randomly through the input space, since we
don’t know where to put them, and then we update their positions according to the data.
We decide which cluster each datapoint belongs to by computing the distance between each



Unsupervised Learning � 283

datapoint and all of the cluster centres, and assigning it to the cluster that is the closest.
Note that we can reduce the computational cost of this procedure by using the KD-Tree
algorithm that was described in Section 7.2.2. For all of the points that are assigned to
a cluster, we then compute the mean of them, and move the cluster centre to that place.
We iterate the algorithm until the cluster centres stop moving. Here is the algorithmic
description:

The k-Means Algorithm

• Initialisation

– choose a value for k
– choose k random positions in the input space
– assign the cluster centres µj to those positions

• Learning

– repeat
∗ for each datapoint xi:

· compute the distance to each cluster centre
· assign the datapoint to the nearest cluster centre with distance

di = min
j
d(xi,µj). (14.1)

∗ for each cluster centre:
· move the position of the centre to the mean of the points in that cluster

(Nj is the number of points in cluster j):

µj = 1
Nj

Nj∑
i=1

xi (14.2)

– until the cluster centres stop moving

• Usage

– for each test point:
∗ compute the distance to each cluster centre
∗ assign the datapoint to the nearest cluster centre with distance

di = min
j
d(xi,µj). (14.3)

The NumPy implementation follows these steps almost exactly, and we can take advan-
tage of the np.argmin() function, which returns the index of the minimum value, to find
the closest cluster. The code that computes the distances, finds the nearest cluster centre,
and updates them can then be written as:



284 � Machine Learning: An Algorithmic Perspective

FIGURE 14.1 Left: A two-dimensional dataset. Right: Three possible ways to position 4
centres (drawn as faces) using the k-means algorithm, which is clearly susceptible to local
minima.

# Compute distances
distances = np.ones((1,self.nData))*np.sum((data-self.centres[0,:])**2,'
axis=1)
for j in range(self.k-1):

distances = np.append(distances,np.ones((1,self.nData))*np.sum((data-'
self.centres[j+1,:])**2,axis=1),axis=0)

# Identify the closest cluster
cluster = distances.argmin(axis=0)
cluster = np.transpose(cluster*np.ones((1,self.nData)))

# Update the cluster centres
for j in range(self.k):

thisCluster = np.where(cluster==j,1,0)
if sum(thisCluster)>0:

self.centres[j,:] = np.sum(data*thisCluster,axis=0)/np.sum('
thisCluster)

To see how this works in practice, Figures 14.1 and 14.2 show some data and some
different ways to cluster that data computed by the k-means algorithm. It should be clear
that the algorithm is susceptible to local minima: depending upon where the centres are
initially positioned in the space, you can get very different solutions, and many of them look
very unlikely to our eyes. Figure 14.2 shows examples of what happens when you choose the
number of centres wrongly. There are certainly cases where we don’t know in advance how
many clusters we will see in the data, but the k-means algorithm doesn’t deal with this at
all well.

At the cost of significant extra computational expense, we can get around both of these
problems by running the algorithm many different times. To find a good local optimum (or
even the global one) we use many different initial centre locations, and the solution that
minimises the overall sum-of-squares error is likely to be the best one.

By running the algorithm with lots of different values of k, we can see which values give
us the best solution. Of course, we need to be careful with this. If we still just measure
the sum-of-squares error between each datapoint and its nearest cluster centre, then when



Unsupervised Learning � 285

FIGURE 14.2 Left: A solution with only 2 classes, which does not match the data well.
Right: A solution with 11 classes, showing severe overfitting.

we set k to be equal to the number of datapoints, we can position one centre on every
datapoint, and the sum-of-squares error will be zero (in fact, this won’t happen, since the
random initialisation will mean that several clusters will end up coinciding). However, there
is no generalisation in this solution: it is a case of serious overfitting. However, by computing
the error on a validation set and multiplying the error by k we can see something about the
benefit of adding each extra cluster centre.

14.1.1 Dealing with Noise
There are lots of reasons for performing clustering, but one of the more common ones is
to deal with noisy data readings. These might be slightly corrupted, or occasionally just
plain wrong. If we can choose the clusters correctly, then we have effectively removed the
noise, because we replace each noisy datapoint by the cluster centre (we will use this way
of representing datapoints for other purposes in Section 14.2). Unfortunately, the mean
average, which is central to the k-means algorithm, is very susceptible to outliers, i.e., very
noisy measurements. One way to avoid the problem is to replace the mean average with
the median, which is what is known as a robust statistic, meaning that it is not affected by
outliers (the mean of (1, 2, 1, 2, 100) is 21.2, while the median is 2). The only change that is
needed to the algorithm is to replace the computation of the mean with the computation
of the median. This is computationally more expensive, as we’ve discussed previously, but
it does remove noise effectively.

14.1.2 The k-Means Neural Network
The k-means algorithm clearly works, despite its problems with noise and the difficulty with
choosing the number of clusters. Interestingly, while it might seem a long way from neural
networks, it isn’t. If we think about the cluster centres that we optimise the positions of
as locations in weight space, then we could position neurons in those places and use neural
network training. The computation that happened in the k-means algorithm was that each
input decided which cluster centre it was closest to by calculating the distance to all of
the centres. We could do this inside a neural network, too: the location of each neuron is
its position in weight space, which matches the values of its weights. So for each input, we



286 � Machine Learning: An Algorithmic Perspective

FIGURE 14.3 A single-layer neural network can implement the k-means solution.

just make the activation of a node be the distance between that node in weight space and
the current input, as we did for Radial Basis Functions in Chapter 5. Then training is just
moving the position of the node, which means adjusting the weights.

So, we can implement the k-means algorithm using a set of neurons. We will use just
one layer of neurons, together with some input nodes, and no bias node. The first layer will
be the inputs, which don’t do any computation, as usual, and the second layer will be a
layer of competitive neurons, that is, neurons that ‘compete’ to fire, with only one of them
actually succeeding. Only one cluster centre can represent a particular input vector, and
so we will choose the neuron with the highest activation h to be the one that fires. This
is known as winner-takes-all activation, and it is an example of competitive learning, since
the set of neurons compete with each other to fire, with the winner being the one that best
matches (i.e., is closest to) the input. Competitive learning is sometimes said to lead to
grandmother cells, because each neuron in the network will learn to recognise one particular
feature, and will fire only when that input is seen. You would then have a specific neuron
that was trained to recognise your grandmother (and others for anybody else/anything else
that you see often).

We will choose k neurons (for hopefully obvious reasons) and fully connect the inputs
to the neurons, as usual. There is a picture of this network in Figure 14.3. We will use
neurons with a linear transfer function, computing the activation of the neurons as simply
the product of the weights and inputs:

hi =
∑
j

wijxj . (14.4)

Providing that the inputs are normalised so that their absolute size is the same (a point
that we’ll come back to in Section 14.1.3), this effectively measures the distance between
the input vector and the cluster centre represented by that neuron, with larger numbers
(higher activations) meaning that the two points are closer together.

So the winning neuron is the one that is closest to the current input. The question is
how can we then change the position of that neuron in weight space, that is, how do we
update its weights? In the k-means algorithm that was described earlier it was easy: we
just set the cluster centre to be the mean of all the datapoints that were assigned to that



Unsupervised Learning � 287

FIGURE 14.4 A set of neurons positioned on the unit sphere in 3D.

centre. However, when we do neural network training, we often feed in just one input vector
at a time and change the weights (that is, we use the algorithm on-line, rather than batch).
We therefore do not know the mean because we don’t know about all the datapoints, just
the current one. So we approximate it by moving the winning neuron closer to the current
input, making that centre even more likely to be the best match next time that input is
seen. This corresponds to:

∆wij = ηxj . (14.5)

However, this is not good enough. To see why not, let’s get back to that question of
normalisation. This is important enough to need its own subsection.

14.1.3 Normalisation
Suppose that the weights of all the neurons are small (maybe less than 1) except for those
to one particular neuron. We’ll make those weights be 10 for the example. If an input vector
with values (0.2, 0.2,−0.1) is presented, and it happens to be an exact match for one of the
neurons, then the activation of that neuron will be 0.2×0.2+0.2×0.2+−0.1×−0.1 = 0.09.
The other neurons are not perfect matches, so their activations should all be less. However,
consider the neuron with large weights. Its activation will be 10×0.2+10×0.2+10×−0.1 = 3,
and so it will be the winner. Thus, we can only compare activations if we know that the
weights for all of the neurons are the same size. We do this by insisting that the weight vector
is normalised so that the distance between the vector and the origin (the point (0, 0, . . . 0))
is one. This means that all of the neurons are positioned on the unit hypersphere, which we
described in Section 2.1.2 when we talked about the curse of dimensionality: it is the set of
all points that are distance one from the origin, so it is a circle in 2D, a sphere in 3D (as
shown in Figure 14.4), and a hypersphere in higher dimensions.

Computing this normalisation in NumPy takes a little bit of care because we are normal-
ising the total Euclidean distance from the origin, and the sum and division are row-wise
rather than column-wise, which means that the matrix has to be transposed before and
after the division:



288 � Machine Learning: An Algorithmic Perspective

normalisers = np.sqrt(np.sum(data**2,axis=1))*np.ones((1,shape(data)[0]))
data = np.transpose(np.transpose(data)/normalisers)

The neuronal activation (Equation (14.4)) can be written as:

hi = WT
i · x, (14.6)

where, as usual, · refers to the inner product or scalar product between the two vectors, and
WT

i is the transpose of the ith row of W . The inner product computes ‖Wi‖‖x‖ cos θ,
where θ is the angle between the two vectors and ‖ · ‖ is the magnitude of the vector. So
if the magnitude of all the vectors is one, then only the angle θ affects the size of the dot
product, and this tells us about the difference between the vector directions, since the more
they point in the same direction, the larger the activation will be.

14.1.4 A Better Weight Update Rule
The weight update rule given in Equation (14.5) lets the weights grow without any bound,
so that they do not lie on the unit hypersphere any more. If we normalise the inputs as
well, which certainly seems reasonable, then we can use the following weight update rule:

∆wij = η(xj − wij), (14.7)

which has the effect of moving the weight wij directly towards the current input. Remember
that the only weights that we are updating are those of the winning unit:

for i in range(self.nEpochs):
for j in range(self.nData):

activation = np.sum(self.weights*np.transpose(data[j:j+1,:]),axis=0)
winner = np.argmax(activation)
self.weights[:,winner] += self.eta * data[j,:] - self.weights[:,'
winner]

For many of our supervised learning algorithms we minimised the sum-of-squares differ-
ence between the output and the target. This was a global error criterion that affected all
of the weights together. Now we are minimising a function that is effectively independent
in each weight. So the minimisation that we are doing is actually more complicated, even
though it doesn’t look it. This makes it very difficult to analyse the behaviour of the al-
gorithm, which is a general problem for competitive learning algorithms. However, they do
tend to work well.

Now that we have a weight update rule that works, we can consider the entire algorithm
for the on-line k-means network:



Unsupervised Learning � 289

The On-Line k-Means Algorithm

• Initialisation

– choose a value for k, which corresponds to the number of output nodes
– initialise the weights to have small random values

• Learning

– normalise the data so that all the points lie on the unit sphere
– repeat:

∗ for each datapoint:
· compute the activations of all the nodes
· pick the winner as the node with the highest activation
· update the weights using Equation (14.7)

∗ until number of iterations is above a threshold

• Usage

– for each test point:
∗ compute the activations of all the nodes
∗ pick the winner as the node with the highest activation

14.1.5 Example: The Iris Dataset Again
Now that we have a method of training the k-means algorithm we can use it to learn about
data. Except we need to think about how to understand the results. If there aren’t any
labels in the data, then we can’t really do much to analyse the results, since we don’t have
anything to compare them with. However, we might use unsupervised learning methods
to cluster data where we know at least some of the labels. For example, we can use the
algorithm on the iris dataset that we looked at in Section 4.4.3, where we classified three
types of iris flowers using the MLP. All we need to do is to give some of the data to the
algorithm and train it, and then use some more to test the output. However, the output of
the algorithm isn’t as clear now, because we don’t use the labels that come with the data,
since we aren’t doing supervised learning anymore. To get around that, we need to work
out some way of turning the results from the algorithm, which is the index of the cluster
that best matches it, into a classification output that we can compare with the labels. This
is relatively easy if we used three clusters in the algorithm, since there should hopefully be
a one-to-one correspondence between them, but it might turn out that using more clusters
gets better results, although this will make the analysis more difficult. You can do this
by hand if there are relatively small numbers of datapoints, or you could use a supervised
learning algorithm to do it for you, as is discussed next.

To see how the k-means algorithm is used, we can see how it is used on the iris dataset:



290 � Machine Learning: An Algorithmic Perspective

import kmeansnet
net = kmeansnet.kmeans(3,train)
net.kmeanstrain(train)
cluster = net.kmeansfwd(test)
print cluster
print iris[3::4,4]

The output that is produced by this in an example run is (where the top line is the
output of the algorithm and the bottom line is the classes from the dataset):

[ 0. 0. 0. 0. 0. 1. 1. 1. 1. 2. 1. 2. 2. 2. 0. 1. 2. 1. 0.
1. 2. 2. 2. 1. 1. 2. 0. 0. 1. 0. 0. 0. 0. 2. 0. 2. 1.]

[ 1. 1. 1. 1. 1. 2. 2. 2. 1. 0. 2. 0. 0. 0. 1. 1. 0. 2. 2.
2. 0. 0. 0. 2. 2. 0. 1. 2. 1. 1. 1. 1. 1. 0. 1. 0. 2.]

and then we can see that cluster 0 corresponds to label 1 and cluster 1 to label 2, in which
case the algorithm gets 1 of cluster 0 wrong, 2 of cluster 1, and none of cluster 2.

14.1.6 Using Competitive Learning for Clustering
Deciding which cluster any datapoint belongs to is now an easy task: we present it to
the trained algorithm and look what is activated. If we don’t have any target data, then
the problem is finished. However, for many problems we might want to interpret the best-
matching cluster as a class label (alternatively, a set of cluster centres could all correspond
to one class). This is fine, since if we have target data we can match the output classes to
the targets, provided that we are a bit careful: there is no reason why the order of the nodes
in the network should match the order in the data, since the algorithm knows nothing about
that order. For that reason, when assigning class labels to the outputs, you need to check
which numbers match up carefully, or the results will look a lot worse than they actually
are.

There is an alternative solution to this problem of assigning labels, and it is one that
we have seen before. In Chapter 5 we considered using the k-means network in order to
train the positions of the RBF nodes. It is now possible to see how this works. The k-means
part positions the RBFs in the input space, so that they represent the input data well. A
Perceptron is then used on top of this in order to provide the match to the outputs in the
supervised learning part of the network. Since this is now supervised learning, it ensures
that the output categories match the target data classes. It also means that you can use
lots of clusters in the k-means network without having to work out which datapoints belong
to which cluster, since the Perceptron will do this for you.

We are now going to look at another major algorithm in competitive learning, the Self-
Organising Feature Map. As motivation for it, we are going to consider a sample problem for
competitive learning, which is a problem in data compression called vector quantisation.



Unsupervised Learning � 291

14.2 VECTOR QUANTISATION
We’ve already discussed using competitive learning for removing noise. There is a related
application, data compression, which is used both for storing data and for the transmission
of speech and image data. The reason that the applications are related is that both replace
the current input by the cluster centre that it belongs to. For noise reduction we do this to
replace the noisy input with a cleaner one, while for data compression we do it to reduce
the number of datapoints that we send.

Both of these things can be understood by considering them as examples of data com-
munication. Suppose that I want to send data to you, but that I have to pay for each data
bit I transmit, so I want to keep the amount of data that I send to a minimum. I notice
that there are lots of repeated datapoints, so I decide to encode my data before I send it, so
that instead of sending the entire set, we agree on a codebook of prototype vectors together.
Now, instead of transmitting the actual data, I can transmit the index of that datapoint
in the codebook, which is shorter. All you have to do is take the indices I send you and
look them up, and you have the data. We can actually make the code even more efficient
by using shorter indices for the datapoints that are more common. This is an important
problem in information theory, and every kind of sound and image compression algorithm
has a different method of solving it.

There is one problem with the scenario so far, which is that the codebook won’t contain
every possible datapoint. What happens when I want to send a datapoint and it isn’t in the
codebook? In that case we need to accept that our data will not look exactly the same, and
I send you the index of the prototype vector that is closest to it (this is known as vector
quantisation, and is the way that lossy compression works).

Figure 14.5 shows an interpretation of prototype vectors in two dimensions. The dots at
the centre of each cell are the prototype vectors, and any datapoint that lies within a cell
is represented by the dot. The name for each cell is the Voronoi set of a particular proto-
type. Together, they produce the Voronoi tesselation of the space. If you connect together
every pair of points that share an edge, as is shown by the dotted lines, then you get the
Delaunay triangulation, which is the optimal way to organise the space to perform function
approximation.

The question is how to choose the prototype vectors, and this is where competitive
learning comes in. We need to choose prototype vectors that are as close as possible to all of
the possible inputs that we might see. This application is called learning vector quantisation
because we are learning an efficient vector quantisation. The k-means algorithm can be used
to solve the problem if we know how large we want our codebook to be. However, another
algorithm turns out to be more useful, the Self-Organising Feature Map, which is described
next.

14.3 THE SELF-ORGANISING FEATURE MAP
By far the most commonly used competitive learning algorithm is the Self-Organising Feature
Map (often abbreviated to SOM), which was proposed by Teuvo Kohonen in 1988. Kohonen
was considering the question of how sensory signals get mapped into the cerebral cortex of
the brain with an order. For example, in the auditory cortex, which deals with the sounds
that we hear, neurons that are excited (i.e., that are caused to fire) by similar sounds are
positioned closely together, whereas two neurons that are excited by very different sounds
will be far apart.

There are two novel departures in this for us: firstly, the relative locations of the neu-
rons in the network matters (this property is known as feature mapping—nearby neurons



292 � Machine Learning: An Algorithmic Perspective

FIGURE 14.5 The Voronoi tesselation of space that performs vector quantisation. Any
datapoint is represented by the dot within its cell, which is the prototype vector.

correspond to similar input patterns), and secondly, the neurons are arranged in a grid with
connections between the neurons, rather than in layers with connections only between the
different layers. In the auditory cortex there appears to be sheets of neurons arranged in
2D, and that is the typical arrangement of neurons for the SOM: a grid of neurons arranged
in 2D, as can be seen in Figure 14.6. A 1D line of neurons is also sometimes used. In math-
ematical terms, the SOM demonstrates relative ordering preservation, which is sometimes
known as topology preservation. The relative ordering of the inputs should be preserved by
the ordering in the neurons, so that neurons that are close together represent inputs that
are close together, while neurons that are far apart represent inputs that are far apart.

This topology preservation is not necessarily possible, because the SOM typically uses a
1D or 2D array of neurons, and most of our input spaces are of much higher dimensionality
than that. This means that the ordering cannot be preserved. We have seen this in Figure 1.2,
where one view of some wind turbines made it look like they are on top of each other, when
they clearly are not, because we used a two-dimensional representation of three-dimensional
reality. You’ve probably seen the same thing in other photos, where trees appear to be
growing out of somebody’s head. A different way to see the same thing is given in Figure 14.7,
where mismatches between the topology of the input space and map lead to changes in the
relative ordering. The best that can be said is that SOM is perfectly topology-preserving,
which means that if the dimensionality of the input and the map correspond, then the
topology of the input space will be preserved. We are going to look at other methods of
performing dimensionality reduction in Chapter 6.

The question, then, is how we can implement feature mapping in an unsupervised learn-
ing algorithm. The first thing to recognise is that we need some interaction between the
neurons in the network, so that when one neuron fires, it affects what happens to those
around it. We have seen something like this before, for example, between different layers of
the MLP, but now we are thinking about neurons that are within a layer. These are known
as lateral connections (i.e., within the layer of the network). How should this interaction
work? We are trying to introduce feature mapping, so neurons that are close together in
the map should represent similar features. This means that the winning neuron should pull
other neurons that are close to it in the network closer to itself in weight space, which means
that we need positive connections. Likewise, neurons that are further away should represent
different features, and so should be a long way off in weight space, so the winning neuron
‘repels’ them, by using negative connections to push them away. Neurons that are very far
away in the network should already represent different features, so we just ignore them.



Unsupervised Learning � 293

FIGURE 14.6 The Self-Organising Map network. As usual, input nodes (on the left) do
no computation, and the weights are modified to change the activations of the neurons
(weights are only shown to two nodes for clarity). However, the nodes within the SOM
affect each other in that the winning node also changes the weights of neurons that are
close to it. Connections are shown in the figure to the eight closest nodes, but this is a
parameter of the network.

FIGURE 14.7 When inputs in 1D (a straight line), a 2D grid, and a 3D cube are represented
by a 2D grid of neurons, the relative ordering is not perfectly preserved. The 1D line is
bent, which means that points that used to be a long way apart (such as the first and
sixth on the line) are now close together, while the cube becomes very complicated. The
lines in the bottom part of the figure represent connections that are meant to be close.



294 � Machine Learning: An Algorithmic Perspective

FIGURE 14.8 Graph of the strength of lateral connections for a feature mapping algorithm
known as the ‘Mexican Hat’.

This is known as the ‘Mexican Hat’ form of lateral connections, for reasons that should be
clear from the picture in Figure 14.8. We can then just use ordinary competitive learning,
just like we did for the k-means network in Section 14.1.2. The Self-Organising Map does
pretty much exactly this.

14.3.1 The SOM Algorithm
Using the full Mexican hat lateral interactions between neurons is fine, but it isn’t essential.
In Kohonen’s SOM algorithm, the weight update rule is modified instead, so that informa-
tion about neighbouring neurons is included in the learning rule, which makes the algorithm
simpler. The algorithm is a competitive learning algorithm, so that one neuron is chosen as
the winner, but when its weights are updated, so are those of its neighbours, although to a
lesser extent. Neurons that are not within the neighbourhood are ignored, not repelled.

We will now look at the SOM algorithm before examining some of the details further.

The Self-Organising Feature Map Algorithm

• Initialisation

– choose a size (number of neurons) and number of dimensions d for the map
– either:

∗ choose random values for the weight vectors so that they are all different OR
∗ set the weight values to increase in the direction of the first d principal
components of the dataset

• Learning

– repeat:
∗ for each datapoint:

· select the best-matching neuron nb using the minimum Euclidean dis-
tance between the weights and the input,

nb = min
j
‖x−wT

j ‖. (14.8)

∗ update the weight vector of the best-matching node using:

wT
j ← wT

j + η(t)(x−wT
j ), (14.9)



Unsupervised Learning � 295

where η(t) is the learning rate.
∗ update the weight vector of all other neurons using:

wT
j ← wT

j + ηn(t)h(nb, t)(x−wT
j ), (14.10)

where ηn(t) is the learning rate for neighbourhood nodes, and h(nb, t) is the
neighbourhood function, which decides whether each neuron should be in-
cluded in the neighbourhood of the winning neuron (so h = 1 for neighbours
and h = 0 for non-neighbours)

∗ reduce the learning rates and adjust the neighbourhood function, typically
by η(t+1) = αη(t)k/kmax where 0 ≤ α ≤ 1 decides how fast the size decreases,
k is the number of iterations the algorithm has been running for, and kmax
is when you want the learning to stop. The same equation is used for both
learning rates (η, ηn) and the neighbourhood function h(nb, t).

– until the map stops changing or some maximum number of iterations is exceeded

• Usage

– for each test point:
∗ select the best-matching neuron nb using the minimum Euclidean distance
between the weights and the input:

nb = min
j
‖x−wT

j ‖ (14.11)

14.3.2 Neighbourhood Connections
The size of the neighbourhood is thus another parameter that we need to control. How
large should the neighbourhood of a neuron be? If we start our network off with random
weights, as we did for the MLP, then at the beginning of learning, the network is pretty well
unordered (as the weights are random, two nodes that are very close in weight space could be
on opposite sides of the map, and vice versa) and so it makes sense that the neighbourhoods
should be large, so that we get the rough ordering of the network correct. However, once
the network has been learning for a while, the rough ordering has already been created, and
the algorithm starts to fine-tune the individual local regions of the network. At this stage,
the neighbourhoods should be small, as is shown in Figure 14.9. It therefore makes sense to
reduce the size of the neighbourhood as the network adapts. These two phases of learning
are also known as ordering and convergence. Typically, we reduce the neighbourhood size
by a small amount at each iteration of the algorithm. We control the learning rate η in
exactly the same way, so that it starts off large and decreases over time, as is shown in the
algorithm below.

The fact that the size of the neighbourhood changes as the algorithm runs has conse-
quences for an implementation. There is no point using actual connections between nodes,
since the number of these will change as the algorithm runs. We therefore set up a matrix
that measures the distances between nodes in the network and choose the nodes in the
neighbourhood of a particular node as those within a neighbourhood radius that shrinks as
the algorithm runs.



296 � Machine Learning: An Algorithmic Perspective

FIGURE 14.9 Top: Initially, similar input vectors excite neurons that are far apart, so that
the neighbourhood (shown as a circle) needs to be large. Bottom: Later on during training
the neighbourhood can be smaller, because similar input vectors excite neurons that are
close together.



Unsupervised Learning � 297

# Set up the map distance matrix
mapDist = np.zeros((self.x*self.y,self.x*self.y))
for i in range(self.x*self.y):

for j in range(i+1,self.x*self.y):
mapDist[i,j] = np.sqrt((self.map[0,i] - self.map[0,j])**2 + (self.'
map[1,i] - self.map[1,j])**2)

mapDist[j,i] = mapDist[i,j]

# Within the loop, select the neighbours
# Find the neighbours and update their weights
neighbours = np.where(mapDist[best[i]]<=self.nSize,1,0)
neighbours[best[i]] = 0
self.weights += self.eta_n * neighbours*np.transpose((inputs[i,:] - np.'
transpose(self.weights)))

There is another way to initialise the weights in the network, which is to use Principal
Components Analysis (which is described in Section 6.2) to find the two (assuming that
the map is two-dimensional) largest directions of variation in the data and to initialise the
weights so that they increase along these two directions:

dummy1,dummy2,evals,evecs = pca.pca(inputs,2)
self.weights = np.zeros((self.nDim,x*y))
for i in range(x*y):

for j in range(self.mapDim):
self.weights[:,i] += (self.map[j,i]-0.5)*2*evecs[:,j]

This means that the ordering part of the training has already been done in the initiali-
sation, and so the algorithm can be trained with small neighbourhood size from the start.
Obviously, this is only possible if the training of the algorithm is in batch mode, so that
you have all of the data available for training right from the start. This should be true for
the SOM anyway—it is not designed for on-line learning. This can be a bit of a limitation,
because there are many cases where we would like to do unsupervised on-line learning.

There are a couple of different things that we can do. One is to ignore that constraint
and use the SOM anyway. This is fairly common. However, the size of the map really starts
to matter, and there is no guarantee that the SOM will converge to a solution unless batch
learning is applied. The alternative is to use one of a variety of networks that are designed
to deal with exactly this situation. There are a fair number of these, but Fritzke’s “Growing
Neural Gas” and Marsland’s “Grow When Required” Network are two of the more common
ones.

14.3.3 Self-Organisation
You might be wondering what the self-organisation in the name of the SOM is. A particularly
interesting aspect of feature mapping is that we get a global ordering of the neurons in the
network, despite the fact that the interactions are all local, since neurons that are very far
apart do not interact with each other. We thus get a global ordering of the space using



298 � Machine Learning: An Algorithmic Perspective

only a set of local interactions, which is amazing. This is known as self-organisation, and
it appears everywhere. It is part of the growing science of complexity. To see how common
self-organisation is, consider a flock of birds flying in formation. The birds cannot possibly
know exactly where each other are, so how do they keep in formation? In fact, simulations
have shown that if each bird just tries to stay diagonally behind the bird to its right, and
fly at the same speed, then they form perfect flocks, no matter how they start off and what
objects are placed in their way. So the global ordering of the whole flock can arise from the
local interactions of each bird looking to the one on its right (or left).

14.3.4 Network Dimensionality and Boundary Conditions
We typically think about applying the SOM algorithm to a 2D rectangular array of neurons
(as shown in Figure 14.6), but there is nothing in the algorithm to force this. There are
cases where a line of neurons (1D) works better, or where three dimensions are needed. It
depends on the dimensionality of the inputs (actually on the intrinsic dimensionality, the
number of dimensions that you actually need to represent the data), not the number that
it is embedded in. As an example, consider a set of inputs spread through the room you are
in, but all on the plane that connects the bottom of the wall to your left with the top of the
wall to your right. These points have intrinsic dimensionality two since they are all on the
plane, but they are embedded in your three-dimensional room. Noise and other inaccuracies
in data often lead to it being represented in more dimensions than are actually required,
and so finding the intrinsic dimensionality can help to reduce the noise.

We also need to consider the boundaries of the network. In some cases, it makes sense
that the edges of the map of neurons is strictly defined — for example, if we are arranging
sounds from low pitch to high pitch, then the lowest and highest pitches we can hear are
obvious endpoints. However, it is not always the case that such boundaries are clearly
defined. In this case we might want to remove the boundary conditions. We can do this by
removing the boundary by tying the ends together. In 1D this means that we turn a line
into a circle, while in 2D we turn a rectangle into a torus. To see this, try taking a piece of
paper and bend it so that the top and bottom edges line up. You’ve now got a tube. If you
bend the tube round so that the two open ends meet up you have a circle of tube known
as a torus. Pictures of these effects are shown in Figure 14.10. In effect, it means that there
are no neurons on the edge of the feature map. The choice of the number of dimensions and
the boundary conditions depends on the problem that we are considering, but it is usually
the case that the torus works better than the rectangle, although it is not always clear why.

The one cost that this has is that the map distances get more complicated to calculate,
since we now need to calculate the distances allowing for the wrap around. This can be
done using modulo arithmetic, but it is easier to think about taking copies of the map and
putting them around the map, so that the original map has copies of itself all around: one
above, one below, to the right and left, and also diagonally above and below, as is shown in
Figure 14.11. Now we keep one of the points in the original map, and the distance to the
second node is the smallest of the distances between the first node and the copies of the
second node in the different maps (including the original). By treating the distances in x
and y separately, the number of distances that has to be computed can be reduced.

As with the competitive learning algorithm that we considered earlier, the size of the
SOM is defined before we start learning. The size of the network (that is, the number of
neurons that we put into it) decides how fine-grained the learning is. If there are very
few neurons, then the best that the network can do is to find gross generalisations that
link the data. However, if there are very large numbers of neurons, then the network can



Unsupervised Learning � 299

FIGURE 14.10 Using circular boundary conditions in 1D turns a line into a circle, while in
2D it turns a rectangle into a torus.

FIGURE 14.11 One way to compute distances between points without any boundary on
the map is to imagine copies of the entire map being placed around the original, and
picking the shortest of the distances between a node and any of the copies of the other
node.



300 � Machine Learning: An Algorithmic Perspective

represent every input without ever needing to generalise at all. This is yet another example
of overfitting. Clearly, then, choosing the correct size of network is important. The common
approach is to test out several different sizes of network, such as 5× 5 and 10× 10 and see
how well the network learns.

14.3.5 Examples of Using the SOM
As a first example of using the SOM, and one that shows the topological ordering of the
network, consider training the network on a set of two-dimensional data drawn at random
from a uniform distribution in [−1, 1] in both directions. If the network weights are started
off randomly, then initially the network is completely disordered (as shown in the top-
left picture in Figure 14.12), but after 10 iterations of training the network is ordered so
that neighbouring nodes map to data that is close together (bottom-left). Using PCA to
initialise the map is not especially useful for this dataset, but it does speed things up: only
five iterations through the dataset produce the output shown on the bottom-right of the
figure, where it started from the version on the top-right.

For two examples of using the SOM on non-random data, where we can expect to see
some actual learning, we will first look at the iris data that we used with the k-means
algorithm earlier in this chapter. Figure 14.13 shows a plot of which node of a 5 × 5 Self-
Organising Map was the best match on a set of test data after training for 100 iterations.
The three different classes are shown as different shapes (squares, plus triangles pointing
up and down), but remember that the network did not receive any information about these
target classes. It can be seen that the examples in each of the three classes form different
clusters in the map. Looking at the figure, you might be wondering if it is possible to use
the plot to identify the different classes by assuming that they are separated in the map.
This has been investigated—often by using methods similar to those of Linear Discriminant
Analysis that are described in Section 6.1—with some success, and a reference is provided
at the end of the chapter.

A more difficult problem is shown in Figure 14.14. The data are the ecoli dataset from
the UCI Machine Learning repository, and the class is the localisation site of the protein,
based on a set of protein measurements. The results with this dataset when testing are not
as clearly impressive (but note that the MLP gets about 50% accuracy on this dataset,
and that has the target data, which the SOM doesn’t). However, the clusters can still be
seen to some extent, and they are very clear in the training data. Note that the boundary
conditions can make things a little more complicated, since the cluster does not necessarily
respect the edges of the map.

FURTHER READING
There is a book by Kohonen, the inventor of the SOM, that provides a very good overview
(if rather dated, now) of the area:

• T. Kohonen. Self-Organisation and Associative Memory, 3rd edition, Springer, Berlin,
Germany, 1989.

The two on-line self-organising networks that were mentioned in the chapter were:

• B. Fritzke. A growing neural gas network learns topologies. In Gerald Tesauro,
David S. Touretzky, and Todd K. Leen, editors, Advances in Neural Information Pro-
cessing Systems, volume 7, MIT Press, Cambridge, MA, USA, 1995.



Unsupervised Learning � 301

FIGURE 14.12 Training the SOM on a set of uniformly randomly sampled two-dimensional
data in the range [−1, 1] in both dimensions. Top: Initialisation of the map using left:
random weights and right: PCA (the randomness in the data means that the directions
of variation are not necessarily along the obvious directions). Bottom: The output after
just 10 iterations of training on the left, and 5 on the right, both with typical parameter
values.



302 � Machine Learning: An Algorithmic Perspective

FIGURE 14.13 Plot showing which nodes are the best match according to class, with the
three shapes corresponding to three different classes in the iris dataset. The small dots
represent nodes that did not fire.

FIGURE 14.14 Plots showing which nodes are the best match according to class, with the
three shapes corresponding to three different classes in the E. coli dataset, tested on left:
the training set and right: a separate test set. The small dots represent nodes that did
not fire.



Unsupervised Learning � 303

• S. Marsland, J.S. Shapiro, and U. Nehmzow. A self-organising network that grows
when required. Neural Networks, 15(8-9):1041–1058, 2002.

A possible reference on processing the data in the map in order to identify clusters is:

• S. Wu and T.W.S. Chow. Self-organizing-map based clustering using a local clustering
validity index. Neural Processing Letters, 17(3):253–271, 2003.

Books that cover the area include:

• Section 10.14 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

• Chapter 9 of S. Haykin. Neural Networks: A Comprehensive Foundation, 2nd edition,
Prentice-Hall, New Jersey, USA, 1999.

• Section 9.3 of B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, UK, 1996.

PRACTICE QUESTIONS
Problem 14.1 What is the purpose of the neighbourhood function in the SOM? How does

it change the learning?

Problem 14.2 A simplistic intruder detection system for a computer network consists of
an attempt to categorise users according to (i) the time of day they log in, (ii) the
length of time they log in for, (iii) the types of programs they run while logged in, (iv)
the number of programs they run while logged in. Suggest how you would train a SOM
and the naïve Bayes’ classifier to perform the categorisation. What preprocessing of
the data would you do, how much data would you need, and how large would you
make the SOM? Do you think that such a system would work for intruder detection?

Problem 14.3 The Music Genome Project (http://www.pandora.com) does not work by
using a SOM. But it could. Describe how you would implement it.

Problem 14.4 A bank wants to detect fraudulent credit card transactions. They have data
for lots and lots of transactions (each transaction is an amount of money, a shop, and
the time and date) and some information about when credit cards were stolen, and
the transactions that were performed on the stolen card. Describe how you could use
a competitive learning method to cluster people’s transactions together to identify
patterns, so that stolen cards can be detected as changes in pattern. How well do you
think this would work? There is much more data of transactions when cards are not
stolen, compared to stolen transactions. How does this affect the learning, and what
can you do about it?

Problem 14.5 It is possible to use any competitive learning method to position the basis
functions of a Radial Basis Function network. The example code used k-means. Modify
it to use the SOM instead and compare the results on the wine and yeast datasets.

Problem 14.6 For the wine dataset, experiment with different sizes of map, and boundary
conditions. How much difference does it make? Can you use the principal components
in order to set the size automatically?





CHA PT E R 15

Markov Chain Monte Carlo
(MCMC) Methods

In this chapter we are going to look at a method that has revolutionised statistical computing
and statistical physics over the past 20 years. The principal algorithm has been around since
1953, but only when computers became fast enough to be able to perform the computations
on real-world examples in hours instead of weeks did the methods become really well known.
However, this algorithm has now been cited as one of the most influential ever created.

There are two basic problems that can be solved using these methods, and they are
the two that we have been wrestling with for pretty much the entire book: we may want
to compute the optimum solution to some objective function, or compute the posterior
distribution of a statistical learning problem. In either case the state space may well be
very large, and we are only interested in finding the best possible answer—the steps that
we go through along the way are not important. We’ve seen several methods of solving these
types of problems during the book, and here we are going to look at one more. We will see
a place where MCMC methods are very useful in Section 16.1.

The idea behind everything that we are going to talk about in this chapter is that as we
explore the state space, we can also construct samples as we go along in such a way that
the samples are likely to come from the most probable parts of the state space. In order
to see what this means, we will discuss what Monte Carlo sampling is, and look at Markov
chains.

15.1 SAMPLING
We have produced samples from probability distributions in almost all of the algorithms
we have looked at, for example, for initialisation of weights. In many cases, the probability
distribution we have used has been the uniform one on [0, 1), and we have done it using the
np.random.rand() function in NumPy, although we have also seen sampling from Gaussian
distributions using np.random.normal().

15.1.1 Random Numbers
The basis of all of these sampling methods is in the generation of random numbers, and this
is something that computers are not really capable of doing. However, there are plenty of
algorithms that produce pseudo-random numbers, the simplest of which is the linear congru-
ential generator. This is a very simple function that is defined by a recurrence relation (i.e.,

305



306 � Machine Learning: An Algorithmic Perspective

you put one number in to get the second number, and then feed that back in to get the
third, and then repeat the cycle):

xn+1 = (axn + c) mod m, (15.1)

where a, c, and m are parameters that have to be chosen carefully. All of them, and the
initial input x0 (which is known as the seed), are integers, and so are all of the outputs.
The modulus function means that the largest number that can be produced is m, and so
there are at most m numbers that can be produced by the algorithm. Once one number
appears a second time, the whole pattern will repeat again since the equation only uses the
current output as input. The length of the sequence between repeats is the period, and it
should obviously be as long as possible, since it is the most obvious non-randomness in the
algorithm. There has been a lot of investigation of choices of the parameters so that the
period is length m, so that every integer between 0 and m is produced before the pattern
cycles. There are various choices of the parameters that have been selected to work well,
including m = 232; a = 1, 664, 525; and c = 1, 013, 904, 223. Clearly, just picking numbers
at random isn’t going to be that useful.

There has been a lot of effort put into different random number generators, since they
are important not just for statistical computing, but also cryptography and security. The
industry-standard algorithm for generating random samples is the Mersenne Twister, which
is based on Mersenne prime numbers. It is the random number generator used in NumPy. No
matter what algorithm generates the numbers, though, it is important to remember that
they are not genuinely random, and to genuflect to the wisdom of John von Neumann, one
of the fathers of modern computing, who stated:

Anyone who considers arithmetic methods of producing random digits is, of
course, in a state of sin.

The other troublesome thing about random numbers is that it is not actually possible
to prove that a sequence of numbers is truly random. There are several tests that can
be made of a sequence of numbers to see if they seem to be random. Examples include
calculating the entropy of the sequence (entropy was described in Section 12.2.1), using a
compression algorithm on the sequence (since compression algorithms exploit redundancy,
i.e., predictability, in the input, if the compression algorithms fail to make the input smaller,
then it might be because they are random), and just checking how many numbers are odd
compared to even. However, you can never guarantee that a sequence is random, just that
it hasn’t failed most of the tests yet (but just because it fails one or two of them at some
point in the sequence doesn’t mean that the sequence isn’t random; truly random numbers
can look deterministic for a long time... this is part of the joy of randomness!). I’ll leave the
last word on this to von Neumann again:

In my experience it was more trouble to test random sequences than to manu-
facture them.

15.1.2 Gaussian Random Numbers
The Mersenne twister produces uniform random numbers. However, often we might want
to produce samples from other distributions, e.g., Gaussian. The usual method of doing
this is the Box–Muller scheme, which uses a pair of uniformly randomly distributed numbers
in order to make two independent Gaussian-distributed numbers with zero mean and unit
variance. Let’s see how it works.



Markov Chain Monte Carlo (MCMC) Methods � 307

Suppose that we had two independent zero mean, unit variance normals. Then their
product is:

f(x, y) = 1√
2π
e−x

2/2 1√
2π
e−y

2/2 = 1
2π e

−(x2+y2)/2. (15.2)

If we use polar coordinates instead (so x = r sin(θ) and y = r cos(θ)) then we would
have r2 = x2 + y2 and θ = tan−1(y/x). Both of these are uniformly distributed random
variables (0 ≤ r ≤ 1 and 0 ≤ θ < 2π). In other words, θ = 2πU1 where U1 is a uniformly
distributed random variable. Now we just need a similar expression for r.

We can write that:

P (r ≤ R) =
∫ R

r′=0

∫ 2π

θ=0

1
2π e

−r′2r′dr′dθ =
∫ r

r′=0
e−r′2r′dr′. (15.3)

If we use the change of variables 1
2r
′2 = s (so that r′dr′ = ds) then:

P (r ≤ R) =
∫ r2/2

s=0
e−sds = 1− e−r

2/2. (15.4)

So to sample r we just need to solve 1−e(−r2/2) = 1−U2 where U2 is another uniformly
distributed random variable, and which has solution r =

√
−2 ln(U2). So one algorithm to

generate the Gaussian variables is:

The Box–Muller Scheme

• Pick two uniformly distributed random numbers 0 ≤ U1, U2 ≤ 1

• Set θ = 2πU1 and r =
√

(− 2 ln(U2))

• Then x = r cos(θ) and y = r sin(θ) are independent Gaussian-distributed variables
with zero mean and unit variance

An alternative approach to computing these random variables is to pick the two uniform
random values and scale them to lie between -1 and 1, and to interpret them as describing
a point in the plane. If this point is outside the unit circle (so if the variables are U1 and
U2 as above then if w2 = U2

1 +U2
2 > 1) then it is discarded, and another point picked until

it is within the circle. Then the transformation x = U1

(
−2 lnw2

w2

) 1
2 and similarly for y with

U2 also provides the variables.
The difference between the methods is that one requires the computation of sin(θ), while

the other requires that some points are sampled and discarded. Which is faster depends upon
the programming language and computer architecture.

A plot of 1,000 samples created by the Box–Muller scheme along with the zero mean,
unit variance Gaussian line is shown in Figure 15.1. There is a more efficient algorithm
for computing Gaussian-distributed random numbers known as the Ziggurat algorithm that
should be investigated further if you require lower computational cost.

There may well be many other distributions that we want to sample from. For common
statistical distributions people have worked out schemes like the Box–Muller scheme, but
we might want to sample from distributions that we can’t describe in those terms. We will
see examples of this in Chapter 16. We would like a general method of sampling from any
distribution that doesn’t have to be tailored to the distribution. There is one important



308 � Machine Learning: An Algorithmic Perspective

FIGURE 15.1 Histogram of 1,000 Gaussian samples created by the Box–Muller scheme.
The line gives the Gaussian distribution with zero mean and unit variance.

concept that can be seen in the Box–Muller scheme, and that is the idea of rejection. When
the original samples were not inside the unit circle they were rejected and another one
computed to replace them. This is a bit like simulated annealing as we saw it in Section 9.6:
we constructed a possible solution and then decided whether or not to use it. Rejection
adds computational cost to the procedure, since if we were unlucky this algorithm could
run for a long time before it found a pair of numbers that satisfied the criteria. However,
it also means that we find samples that satisfy our requirements without having to design
any tricky code, and it is generally faster as well, since the computational cost of generating
some random numbers is rather less than the cost of doing the complicated transform.

We are going to see rejection used a lot more in this chapter, but before we get there,
we should set the idea of sampling onto a proper theoretical footing.

15.2 MONTE CARLO OR BUST
Monte Carlo, a tiny principality on the Mediterranean coast between France and Italy, is
famous mostly for its casino and Grand Prix race. As the rich and famous flock to lose
money there, they are unlikely to know that the principality also has the dubious honour
of having an important statistical principle named after it. The Monte Carlo principle states
that if you take independent and identically distributed (i.e., well-behaved) samples x(i)

from an unknown high-dimensional distribution p(x), then as the number of samples gets
larger the sample distribution will converge to the true distribution. In other words, sampling
works. Written mathematically, this says:



Markov Chain Monte Carlo (MCMC) Methods � 309

pN (x) = 1
N

N∑
i=1

δ(x(i) = x)

→ lim
N→∞

pN (x) = p(x), (15.5)

where δ(xi = x) is the Dirac delta function that is 0 everywhere except at the point xi
and has

∫
δ(x)dx = 1. This can be used to compute the expectation as well (where f(x) is

some function and x has discrete values, and the superscript ·(i) represents the index of the
sample):

EN (f) = 1
N

N∑
i=1

f(x(i))

→ lim
N→∞

EN (f) =
∑

x
f(x)p(x). (15.6)

The fact that the sample distribution becomes more and more like the true one as we
take more and more samples tells us that samples are more likely to be drawn from parts of
the distribution that have high probability. This is very useful, since places where there are
more samples will allow us to approximate the function well in those regions, and we only
really care about the appearance of the function in those places—if the probability is small,
then it doesn’t matter that the number of samples is small (the area is sparsely covered)
since the probability is low there anyway. If we use methods that don’t know anything about
the probability (such as sampling based on a uniform grid and using splines or something
similar), then we have to treat all areas of the space as equally likely, which means that
there is going to be a lot of computational resources wasted. There is another benefit, too. In
addition to using the samples to approximate the expectation, we can also find a maximum,
that is, the most likely outcome, from the samples:

x̂ = arg max
x(i)

p
(
x(i)
)
. (15.7)

Allegedly, the idea of Monte Carlo sampling (and the reason that it got its name) first
came about when Stan Ulam was considering the probabilities of particular hands of cards.
In fact, the whole of probability theory was originally developed by some of the great French
mathematicians, such as Fermat, in order to reason about games of chance, so Monte Carlo
sampling is in pretty good company. Suppose that you want to do something relatively
simple, such as to predict how many times you should expect to win at the patience game
that came free with your computer. All you need to do is work out the rules for when you
win based on the initial setup, and then look at how many of these setups there are. In a
standard deck there are 52 cards, so there are 52! (≈ 8× 1067) different ways in which the
cards can be distributed. So even before we start thinking about the specific rules for the
game, we know that the number of different layouts is so large it is basically impossible to
think about. Despairing of working it out, you might decide to play a couple of hands of
patience and see how well you do. In fact, the Monte Carlo principle tells you that that is
exactly what you should be doing. Suppose that you play ten games of patience and six of
them come out. You might be able to argue that approximately 60% of the patience games
will do well. To believe this, you will have to play far more than ten games with the same
success rate, or course; and even then it assumes that you are a good patience player, and
don’t cheat.



310 � Machine Learning: An Algorithmic Perspective

FIGURE 15.2 The proposal distribution method.

15.3 THE PROPOSAL DISTRIBUTION
We now have everything that we need if the distribution p(x) that we are sampling from
is easy (that is, not computationally expensive) to sample from. Unfortunately, this is very
rarely the case, but fortunately there is a way to get around this problem, which is to cheat
by inventing a simpler distribution q(x) that we can sample from easily, and picking samples
from there. Obviously we can’t just pick any distribution q(x), there has to be some relation
between them. So we assume that even though we don’t know p(x), we can evaluate some
related distribution p̃(x) for a given x, where:

p(x) = 1
Zp
p̃(x), (15.8)

where Zp is some normalisation constant that we don’t know. This is not usually an unrea-
sonable assumption; we are not saying that we do not know p(x), just that we can’t sample
from it easily. Now we can pick a number M so that p̃(x) ≤Mq(x) for all values of x. We
generate a random number x∗ from q(x), and we want this to look like a sample from p(x).
We therefore turn to the idea of rejection again, looking at how likely it is that the sample
comes from p(x), and discarding it if it turns out to be unlikely.

We make the decision of whether or not to accept the sample by picking a uniformly
distributed random number u between 0 and Mq(x∗). If this random number is less than
p̃(x∗), then we accept x∗, otherwise we reject it. The reason why this works is known as the
envelope principle: the pair (x∗, u) is uniformly distributed under Mq(x∗), and the rejection
part throws away samples that don’t match the uniform distribution on p(x∗), so Mq(x)
forms an envelope on p(x). Figure 15.2 shows the idea: we sample from Mq(x) and reject
any sample that lies in the grey area. The smaller M is, the more samples we get to keep,
but we need to ensure that p̃(x) ≤Mq(x). This method is known as rejection sampling, and
the algorithm can be written as:

The Rejection Sampling Algorithm

• Sample x∗ from q(x) (e.g., using the Box–Muller scheme if q(x) is Gaussian)

• Sample u from uniform(0,x∗)

• If u < p(x∗)/Mq(x∗):
– add x∗ to the set of samples

• Else:
– reject x and pick another sample



Markov Chain Monte Carlo (MCMC) Methods � 311

FIGURE 15.3 The histogram shows samples of a mixture of two Gaussians (given by the
solid line) as sampled from the uniform box shown as a dotted line by using rejection
sampling.

As an example of using rejection sampling, Figure 15.3 shows the results of using it to
sample from the mixture of two Gaussians by using the uniform distribution shown by the
dotted line. Using M = 0.8, as shown in the figure, the algorithm rejects about half of
the samples. Using M = 2 the algorithm rejects about 85% of samples. So with rejection
sampling, you have to throw away samples, and if you don’t pick M properly, you will
have to reject a lot of them. The curse of dimensionality makes the problem even worse.
There are two things that we can do to get over this problem. One is to develop some more
sophisticated methods of understanding the space that we are sampling, and the other is to
try to ensure that the samples are taken from areas of the space that have high probability.

The reason why we are using these methods at all is that we can’t sample from the
actual distribution we want, since that is too difficult and/or expensive, but it might be
possible to understand it in other ways. In Section 15.4.1 we will look at methods that allow
us to travel around within the space by using simple local moves. Before we get to that
we will look at a method that tries to ensure that the samples come from regions of high
probability. The method is known as importance sampling, because it attaches a weight that
says how important each sample is.

Suppose that we want to compute the expectation of a function f(x) for a continuous
random variable x distributed according to unknown distribution p(x). Starting from the
expression of the expectation that we wrote out earlier, we can introduce another distribu-
tion q(x):



312 � Machine Learning: An Algorithmic Perspective

E(f) =
∫
p (x) f (x) dx

=
∫
p(x)f(x)q(x)

q(x)dx

≈ 1
N

N∑
i=1

p
(
x(i))

q
(
x(i)
)f (x(i)

)
, (15.9)

where we have used the fact that q(x) is the density of a random variable, and so if we per-
form

∫
q(x)dx over all values of x, then it must equal 1. The ratio w(x(i)) = p(x(i))/q(x(i)) is

called the importance weight, and it corrects for sampling from the grey region in Figure 15.2
without having to reject samples. While this can be used to estimate the expectation di-
rectly, the real benefit of computing the importance weights is that they can be used in
order to resample the data. This leads to an algorithm known descriptively as Sampling-
Importance-Resampling. In the words of the advert, it ‘does exactly what it says on the
tin’:

The Sampling-Importance-Resampling Algorithm

• Produce N samples x(i), i = 1 . . . N from q(x)

• Compute normalised importance weights

w(i) = p(x(i))/q(x(i))∑
j p(x(j))/q(x(j))

(15.10)

• Resample from the distribution {x(i)} with probabilities given by the weights w(i)

An implementation of this in Python is shown next, and the results of using sampling-
importance-resampling on the example in Figure 15.3 are given in Figure 15.4. Note that
this method does not reject any samples, but it does involve two separate sampling steps
and a relatively expensive loop. Like the other algorithms we have seen, it is sensitive to
the quality of the match between the proposal distribution q(x) and the actual distribution
p(x).

# Sample from q
sample1 = np.random.rand(n)*4

# Compute weights
w = p(sample1)/q(sample1)
w /= np.sum(w)

# Sample from sample1 according to w
cumw = np.zeros(n)
cumw[0] = w[0]
for i in range(1,n):

cumw[i] = cumw[i-1]+w[i]



Markov Chain Monte Carlo (MCMC) Methods � 313

FIGURE 15.4 The histogram shows samples created using sampling-importance-resampling
from a mixture of two Gaussians (given by the solid line) as sampled from the uniform
box shown as a dotted line.

u = np.random.rand(n)

index = 0
for i in range(n):

indices = np.where(u<cumw[i])
sample2[index:index+size(indices)] = sample1[i]
index += np.size(indices)
u[indices]=2

In Section 16.4.2 we will see a method that uses sampling-importance-resampling in an
on-line application, known as a particle filter or sequential Monte Carlo method. However, we
will first turn our attention to how we can find out more about the sample space. The basic
idea is to keep track of the sequence of samples and modify the proposal distribution to
take advantage of this, for which we will have to use some more complicated machinery.

15.4 MARKOV CHAIN MONTE CARLO
15.4.1 Markov Chains
In probabilistic terms a chain is a sequence of possible states, where the probability of being
in state s at time t is a function of the previous states. A Markov chain is a chain with
the Markov property, i.e., the probability at time t depends only on the state at t − 1,



314 � Machine Learning: An Algorithmic Perspective

as discussed in Section 11.3. The set of possible states are linked together by transition
probabilities that say how likely it is that you move from the current state to each of the
others, and they are generally written as a matrix T . They might be constant, or functions
of some other variables, but here we will assume that they are constant. Note that, unlike
the Markov Decision Processes that we saw in Section 11.3, there is no action here that
affects the probability of moving into a particular state.

Given a chain, we can perform a random walk on the chain by choosing a start state and
randomly choosing each successive state according to the transition probabilities. The link
to sampling that we need is that if the transition probabilities reflect the distribution that
we wish to sample from, then a random walk will explore that distribution. One problem
with this is that random walks are very inefficient at exploring space, since they move back
towards the start as often as they move away, which means the distance they move from
the start scales as

√
t, where t is the number of samples. We therefore want to explore more

efficiently than just using a random walk.
We do this by setting up our Markov chain so that it reflects the distribution we wish

to sample from, and we want the distribution p(x(i)) to converge to the actual distribution
p(x) no matter what state we start from. Since we can start from any state, this tells us that
every state is reachable from every other state, which means that the chain is irreducible so
that the transition matrix can’t be cut up into smaller matrices. The chain also has to be
ergodic, which means that we will revisit every state, so that the probability of visiting any
particular state in the future never goes to zero, but is not periodic, which means that we
can visit at any time, not just every k iterations for some constant k.

We also want the distribution p(x) to be invariant to the Markov chain, which means
that the transition probabilities don’t change the distribution:

p(x) =
∑

y
T (y,x)p(y). (15.11)

Finding the transition probabilities to make this true requires that we can move back-
wards and forwards along the chain with equal probability, so that the chain is reversible.
This says that the probability of being in an unlikely state s (sampling datapoint x), but
heading for a likely state s′ (datapoint x′) should be the same as being in the likely state
s′ and heading for the unlikely state s, so that:

p(x)T (x,x′) = p(x′)T (x′,x). (15.12)

This is known as the detailed balance condition and the fact that it leaves the distribution
p(x) alone is fairly obvious with a little calculation. If the chain satisfies the detailed balance
condition, then it must be ergodic, since

∑
y T (x,y) = 1, since you must have come from

some state, and so: ∑
y
p(y)T (y,x) = p(x), (15.13)

which means that p(x) must be an invariant distribution of T . So if we can work out how to
construct a Markov chain with detailed balance we can sample from it in order to sample
from our distribution. This is known as Markov Chain Monte Carlo (MCMC) sampling, and
the most popular algorithm that is used for MCMC is the Metropolis–Hastings algorithm
after the two people who were directly involved in its creation.



Markov Chain Monte Carlo (MCMC) Methods � 315

15.4.2 The Metropolis–Hastings Algorithm
We assume that we have a proposal distribution of the form q(x(i)|x(i−1)) that we can
sample from. The idea of Metropolis–Hastings is similar to that of rejection sampling: we
take a sample x∗ and choose whether or not to keep it. Except, unlike rejection sampling,
rather than picking another sample if we reject the current one, instead we add another copy
of the previous accepted sample. Here, the probability of keeping the sample is u(x∗|x(i−1)):

u(x∗|x(i)) = min
(

1, p̃(x
∗)q(x(i)|x∗)

p̃(x(i))q(x∗|x(i))

)
. (15.14)

The Metropolis–Hastings Algorithm

• Given an initial value x0

• Repeat

– sample x∗ from q(xi|xi−1)
– sample u from the uniform distribution
– if u < Equation (15.14):

∗ set x[i+ 1] = x∗

– otherwise:
∗ set x[i+ 1] = x[i]

• Until you have enough samples

So why does this algorithm work? Each step involves using the current value to sample
from the proposal distribution. These values are accepted if they move the Markov chain
towards more likely states, and because the Markov chain is reversible (since it satisfies
the detailed balance condition) the algorithm explores states that are proportional to the
difficult distribution p(x).

The Python implementation is still very simple:

u = np.random.rand(N)
y = np.zeros(N)
y[0] = np.random.normal(mu,sigma)
for i in range(N-1):

ynew = np.random.normal(mu,sigma)
alpha = min(1,p(ynew)*q(y[i])/(p(y[i])*q(ynew)))
if u[i] < alpha:

y[i+1] = ynew
else:

y[i+1] = y[i]

The Metropolis–Hastings (and variants of it) are by far the most commonly used MCMC
methods, and it is also the most general. It requires that you choose the proposal distri-
bution q(x∗|x) carefully, but it is a very simple algorithm to use. Figure 15.5 shows 5,000



316 � Machine Learning: An Algorithmic Perspective

FIGURE 15.5 The results of the Metropolis–Hastings algorithm when the true distribution
is a mixture of two Gaussians (shown by the solid line) and the proposal distribution is a
single Gaussian (the dotted line).

samples computed using the algorithm on a mixture of two Gaussians based on a proposal
distribution that is a single Gaussian.

Note that if the proposal distribution is symmetric, then it drops out of the test in
Equation (15.14). This is the original Metropolis algorithm, and it is much closer to the
pure random walk. The results of using this algorithm on the same data can be seen in
Figure 15.6.

There are other choices of proposal distribution, and they lead to variants on the
Metropolis–Hastings algorithm. We will consider the two most common choices next.

15.4.3 Simulated Annealing (Again)
There are lots of times when we might just want to find the maximum of a distribution rather
than approximate the distribution itself. We can do this in calculating arg maxx(i) p(x(i))
(that is, the x(i) with the largest probability), but while doing this we will have computed
samples from many parts of the space, not just around the maximal region. A possible
solution is to use simulated annealing as we did in Section 9.6. This changes the Markov
chain so that its invariant distribution is not p(x), but rather p1/Ti(x), where Ti → 0 as
i → ∞. We need an annealing schedule that cools the system down over time so that we
are progressively less likely to accept solutions that are worse over time.

There are only two modifications needed to the Metropolis–Hastings algorithm, and
both are trivial: we extend the acceptance criterion to include the temperature and add a
line into the loop to include the annealing schedule. The results of using simulated annealing
on the example where the true distribution is a mixture of two Gaussians and the proposal
distribution is just one is shown in Figure 15.7.



Markov Chain Monte Carlo (MCMC) Methods � 317

FIGURE 15.6 The results of the Metropolis algorithm when the true distribution is a
mixture of two Gaussians (shown by the solid line) and the proposal distribution is a
single Gaussian (the dotted line).

FIGURE 15.7 Using simulated annealing gives the maximum rather than an approximation
to the distribution, as is shown here for the same example as in Figures 15.5 and 15.6.



318 � Machine Learning: An Algorithmic Perspective

15.4.4 Gibbs Sampling
Another variation on the Metropolis–Hastings algorithm comes when we already know
the full conditional probability p(xj |x1, . . . xj−1, xj+1, . . . xn) (which is often written as
p(xj |x−j) for convenience). We are going to see some examples of this in the next chapter:
Bayesian networks. In Section 16.1.2 we will deal with a set of probabilities from a network
that looks like:

p(x) =
∏
j

p(xj |xαj), (15.15)

where xαj is the parents of xj (as will become clear in that section).
Given that we know p(xj |xαj)

∏
k∈β(j) p(xk|xα(k)) (which is p(xj |x−j)), maybe we should

try using it as the proposal distribution, giving:

q(x∗|x(i)) =
{

p
(
x∗j , x

(i)
−j

)
if x∗−j = x

(i)
−j

0 otherwise.
(15.16)

If we then use Metropolis–Hastings, we find that the acceptance probability Pa is:

Pa = min
{

1,
p(x∗)p(x(i)

j |x
(i)
−j)

p(x(i))p(x∗j |x∗−j)

}
, (15.17)

and looking carefully at this and expanding out the conditional probabilities we get:

Pa = min
{

1,
p(x∗)p(x(i)

j , x
(i)
−j)p(x

(i)
−j)

p(x(i))p(x∗j , x∗−j)p(x∗−j)

}
. (15.18)

Since p(x∗j , x∗−j) = p(x∗), and similarily for p(i), we only have to worry about p(x(i))
p(x∗−j)

.

From the definition of the proposal distribution we know that x∗−j = x
(i)
−j , and so the

computation is actually min 1, 1 = 1. So we always accept the proposal, which makes things
much simpler.

The total algorithm is given by choosing each variable and sampling from its conditional
distribution. That’s it! The only option that you have is whether to go through the variables
in order, or whether to update them in a random order. Rather than running up to some
maximum value N , it is not uncommon to run until the joint distribution stops changing.
This algorithm is known as the Gibbs sampler and it forms the basis of the software package
BUGS (Bayesian Updating with Gibbs Sampling) that is commonly used in statistics. It is also
a very useful algorithm for Bayesian networks, as we shall see in the next chapter.

The Gibbs Sampler

• For each variable xj :

– initialise x(0)
j

• Repeat

– for each variable xj :

∗ sample x(i+1)
1 from p(x1|x(i)

2 , . . . x
(i)
n )

∗ sample x(i+1)
2 from p(x2|x(i+1)

1 , x
(i)
3 , . . . x

(i)
n )



Markov Chain Monte Carlo (MCMC) Methods � 319

FIGURE 15.8 The Gibbs sampler output for the beta-binomial distribution.

∗ ...
∗ sample x(i+1)

n from p(xn|x(i+1)
1 , . . . x

(i+1)
n−1 )

• Until you have enough samples

As an example, suppose that we have a distribution that is made up of two different
distributions, a binomial one in x and a beta in y. If you don’t know what these distributions
are, the combined distribution can be written as:

p(x, y, n) =
(

n!
x!(n− x)!

)
yx+α−1 + (1− y)n−x+β−1. (15.19)

The important point is that the overall distribution is a product of two separate ones
that can be sampled from separately. Figure 15.8 shows the output of the sampling using
the Gibbs sampler, with the line being the correct distribution as usual. There is another
example of Gibbs sampling in Section 16.1.2.

FURTHER READING
The historical perspective in this area is provided by:

• N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

Since MCMC is a very useful, but fairly difficult area, there is a good number of review
and tutorial articles available. Some that you may find helpful are:

• W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors. Markov Chain Monte
Carlo in Practice. Chapman & Hall, London, UK, 1996.



320 � Machine Learning: An Algorithmic Perspective

• C. Andrieu, C. de Freitas, A. Doucet, and M. Jordan. An introduction to MCMC for
machine learning. Machine Learning, 50:5–43, 2003.

• G. Casella and E.I. George. Explaining the Gibbs sampler. The American Statistician,
46(3):167–174, 1992.

• Chib. S. and E. Greenberg. Understanding the Metropolis-Hastings algorithm. The
American Statistician, 49(4):327–335, 1995.

There is also a more complete treatment of sampling methods in:

• Chapter 11 of C.M. Bishop. Pattern Recognition and Machine Learning. Springer,
Berlin, Germany, 2006.

PRACTICE QUESTIONS
Problem 15.1 Implement the alternative algorithm for the Box–Muller scheme and com-

pare their times on your computer.

Problem 15.2 Use rejection sampling and importance sampling to sample from a Gaussian
distribution using a uniform distribution as the proposal distribution. How many
samples do you have to reject with the rejection sampler?

Problem 15.3 The Gibbs sampler can be used in place of the EM algorithm in order to
fit the mixtures of a Gaussian Mixture Model (Section 7.1). The idea is to use the
samples to introduce the mixing variable π as we did then, and to use the Gibbs
sampler to sample from the current estimates of the Gaussians. The algorithm will
then look something like:

The Gibbs Sampler for Gaussian Mixtures

• Given some estimates of µ1, µ2

• Repeat until the distribution stops changing:
– for i = 1 to N:

∗ sample π according to the E-step of the EM algorithmEM algorithm
∗ update:

µ̂i =
∑N
i=1(1− π(t)

i )xi∑N
i=1(1− π(t)

i )
. (15.20)

∗ sample from the Gaussians with these estimates in order to produce new
estimates of the means

Implement this and compare the results to using the EM algorithm.

Problem 15.4 Show that the Gibbs sampler satisfies the detailed balance equation.

Problem 15.5 Modify the Metropolis–Hastings algorithm in order to resample when it
rejects the current sample. How does it affect the results? Explain the result in terms
of the effect on the Markov chain.



CHA PT E R 16

Graphical Models

Throughout this book we have seen that machine learning brings together computer sci-
ence and statistics. Nowhere is this more clearly shown than in one of the most popular
areas of current research in machine learning: graphical models (or more completely, proba-
bilistic graphical models), which use graph theory with all its underlying computational and
mathematical machinery in order to explain probabilistic models.

The graphs used in graphical models are the exact ones that are taught in basic al-
gorithms classes: a set of nodes, together with links between them, which can be either
directed (i.e., have arrows on them so that you can only go one way along them) or not.
There are two basic types of graphical models, depending upon whether or not the edges
are directed. We will focus primarily on directed graphs, but the undirected kind (known
as Markov Random Fields) are described in Section 16.2. For such a simple data structure,
graphs have turned out to be incredibly powerful in many different parts of computer sci-
ence, from constructing compilers to managing computer networks. For this reason, there
are lots of readily available algorithms for finding shortest paths (Floyd’s and Djiksta’s algo-
rithms, which we’ve already discussed briefly in Section 6.6), determining cycles, etc. Any
good book on algorithms will give details of these and many other graph algorithms.

For our part, we are interested in using graphs to encode probability distributions and
so we need to decide what nodes and links are in this context. The nodes are fairly obvious.
We generate a node for each random variable, and label it accordingly. In this book, we
will only consider discrete variables, so that there is a finite number of possible values that
the random variable can take. Given a continuous variable we will discretise it into a finite
set. While this loses information, it makes the problem much simpler. The alternative is to
specify the variable by a probability density function, which can be done, but makes the
whole thing harder to describe and understand.

The question is what to make the links represent. Perhaps the best way to think about
this is to ask what it means if two nodes are not linked. In this case we are saying that
there is no connection between those two variables, which is the same as saying that they
are independent. Except it isn’t quite as simple as that, because two nodes could be linked
through a third node. Have a look at the right of Figure 16.1, where C is not directly linked
to B, but there is a link through A. For this reason we have to be careful and talk about
conditional independence: C is conditionally independent of B, given A.

We use directed links because these relationships are not symmetrical (unless the vari-
ables are independent, in which case there is no link). What does the simplest connected
graph that we can make, the one on the left of Figure 16.1, mean? There is a rather loose
interpretation of the link, which is to say that ‘A’ causes ‘B’ (but note that this isn’t quite
the same semantic usage that we normally have for ‘causes’, since there may be several

321



322 � Machine Learning: An Algorithmic Perspective

FIGURE 16.1 Two simple graphical models. The arrows denote causal relationships be-
tween nodes that represent features.

variables that are all involved in causing B). This is a useful intuition to have, but it is not
really correct. More properly, the graph tells us that the probability of A and B is the same
as the probability of A times the probability of B conditioned on A: P (a, b) = P (b|a)P (a).
If there is no direct link between two nodes then they are conditionally independent of each
other.

There is a third thing that we need in order to specify the problem properly, which is
the conditional probability table for each variable. This specifies what the probabilities are
for each of the nodes, conditioned on any nodes that are its parents.

If we wanted to work out a value for P (a, b), then we would need a distribution table for
P (a) and one for P (b|a). The nodes are separated into those where we can see their values
directly—observed nodes—and hidden or latent nodes, whose values we hope to infer, and
which may not have clear meanings in all cases.

The basic concept of the graphical model is very simple, which makes it all the more
amazing that it produces a powerful set of tools for understanding and creating machine
learning algorithms. We will start by looking at the most general model, the Bayesian Belief
Network or more simply, Bayesian Network, and see how they are represented, and the dif-
ficulties involved in dealing with them. Following this, we will identify a few places where
these difficulties can be overcome, resulting in some very important algorithms that solve
a variety of different tasks. In particular, we will look at Markov Random Fields (MRFs),
Hidden Markov Models (HMMs), the Kalman Filter, and particle filter.

16.1 BAYESIAN NETWORKS
To start with, we will consider directed graphs, and make one restriction to them, namely
that they must not contain cycles, that is, there cannot be any loops in the graphs. These
graphs go by the rather unlovely name of DAGs: directed, acyclic graphs, but for graphi-
cal models, when they are paired with the conditional probability tables, they are called
Bayesian networks. In order to see what we can do with such a network, we need an example.



Graphical Models � 323

FIGURE 16.2 The sample graphical model. ‘B’ denotes a node stating whether the exam
was boring, ‘R’ whether or not you revised, ‘A’ whether or not you attended lectures, and
‘S’ whether or not you will be scared before the exam.

16.1.1 Example: Exam Fear
Figure 16.2 shows a graph with a full set of distribution tables specified. It is a handy guide
to whether or not you will be scared before an exam based on whether or not the course was
boring (‘B’), which was the key factor you used to decide whether or not to attend lectures
(‘A’) and revise (‘R’). We can use it to perform inference in order to decide the likelihood
of you being scared before the exam (‘S’). There are two kinds of inferences, depending on
whether the observations that are made come from the top of the graph or the bottom. If
we have a set of observations that can be used to predict an unknown outcome, then we are
doing top-down inference or prediction, whereas if the outcome is known, but the causes are
hidden, then we are doing bottom-up inference or diagnosis. Either way, we are working out
the values of the hidden (unknown) nodes given information about the observed nodes. For
the example in Figure 16.2 we will start by predicting whether or not you will be scared
before the exam, so it is the outcome that is hidden.

In order to compute the probability of being scared, we need to compute P (b, r, a, s),
where the lower-case letters indicate particular values that the upper-case variables can
take. The wonderful thing about the graphical model is that we can read the conditional
probabilities from the graph—if there is no direct link, then variables are conditionally
independent given a node that is already included, so those variables are not needed. For
this reason, the computation we need for Figure 16.2 is:

P (s) =
∑
b,r,a

P (b, r, a, s)

=
∑
b,r,a

P (b)× P (r|b)× P (a|b)× P (s|r, a)

=
∑
b

P (b)×
∑
r,a

P (r|b)× P (a|b)× P (s|r, a). (16.1)

If we know particular values for the three observable nodes, then we can plug them in
and work out the probability. In fact, the conditional independence gives us even more: if I
know both whether or not you attended lectures and whether or not you revised, then I don’t



324 � Machine Learning: An Algorithmic Perspective

need to know if the course was boring, since there is no direct connection between ‘B’ and
‘S’. Suppose that you didn’t attend lectures, but did revise. In that case, the probability
of you being scared can be read off the final distribution table as 0.8. The power of the
graphical model is when you don’t have full information. It is possible to marginalise over
any of those variables by summing up the values. So suppose that you know that the course
was boring, and want to work out how likely it is that you will be scared before the exam.
In that case you can ignore the P (b) terms, and just need to sum up the probabilities for r
and a using Equation (16.1):

P (s) = 0.3× 0.1× 0 + 0.3× 0.9× 0.8 + 0.7× 0.1× 0.6 + 0.7× 0.9× 1
= 0.328. (16.2)

The backwards inference, or diagnosis, can also be useful. Suppose that I see you looking
very scared outside the exam. You look vaguely familiar, but I’m not sure whether or not
you came to the lectures. I might want to work out why you are scared—was it because
you didn’t come to the lectures, or because you didn’t revise? To perform this calculation
I need to use Bayes’ rule to turn the conditional probabilities around, just as was done for
the Bayes’ classifier in Chapter 7. So the computations that I need are (where P (s) is the
normalising constant found by summing over all values of r, a, and b, i.e., Equation (16.2)):

P (r|s) = P (s|r)P (r)
P (s)

=
∑
b,a P (b, a, r, s)

P (s)

= 0.5 · (0.3 · 0.1 · 0 + 0.3 · 0.9 · 0.8) + 0.5 · (0.8 · 0.5 · 0 + 0.8 · 0.5 · 0.8)
P (s)

= 0.268
0.684 = 0.3918. (16.3)

P (a|s) = P (s|a)P (a)
P (s)

= 0.144
0.684 = 0.2105. (16.4)

This use of Bayes’ rule is the reason why this type of graphical model is known as a
Bayesian network. Even in this very simple example, the inference was not trivial, since
there were a lot of calculations to do. However, the problem is actually rather worse than
that. The computational cost of the simple algorithm we used (start at the root, and follow
each link through the graph to perform the computation) is O(2N ) for a graph with N
nodes where each node can be either true or false. In general the problem of exact inference
on Bayesian networks is NP-hard (technically, it is actually #P-hard, which is even worse).
However, for so-called polytrees where there is at most one path between any two nodes,
the computational cost is much smaller—linear in the size of the network.

Unfortunately, it is rare to find such polytrees in real examples, so we can either try
to turn other networks into polytrees, or consider only approximate inference, which is
the most common solution to the problem, and the method that we’ll consider next. We
can speed things up a little by getting things into the form of Equation (16.1), where the
summations were carefully placed as far to the right as possible, so that program loops can
be minimised. By doing this the algorithm is as efficient as possible, but it is still NP-hard.



Graphical Models � 325

This is sometimes known as the variable elimination algorithm, which is a variation on the
bucket elimination algorithm. The idea is to convert the conditional probability tables into
what are called λ tables, which simply list all of the possible values for all variables, and
which initially contain the conditional probabilities. For example, the λ table for the ‘S’
variable in Figure 16.2 is:

R A S λ
T T T 0
T T F 1
T F T 0.8
T F F 0.2
F T T 0.6
F T F 0.4
F F T 1
F F F 0

If I see you looking scared outside the exam (so that S is true), then I can eliminate it from
the graph by removing from each table all rows that have S false in them, and deleting the S
column. This simplifies things a little, but I have to do rather more in order to compute the
probability of you having attended lectures. I don’t know whether you revised or not, and
I don’t know if you found the lectures boring, so I have to marginalise over these variables.
The order in which we marginalise doesn’t change the correctness (although more advanced
algorithms can improve the speed by taking advantage of conditional independence) so we’ll
pick R first. To eliminate it from the graph, we have to find all of the λ tables that contain
it (there will be two of them containing R: the one for R itself and the one that we have
just modified to remove S). To remove R, we have to add together the products of the λ
values that correspond to places where the other values match. So to complete the entry
where B is true and A is false, we have to multiply together the values where B, A, R are
respectively true, false, true in the two tables and then add to that the product of where
B, A, R are respectively true, false, false. In other words:


B R λ
T T 0.3
T F 0.7
F T 0.8
F F 0.2

×


R A λ
T T 0
T F 0.8
F T 0.6
F F 1

⇒


B A λ
T T 0.3 · 0 + 0.7 · 0.6 = 0.42
T F 0.3 · 0.8 + 0.7 · 1 = 0.94
F T 0.8 · 0 + 0.2 · 0.6 = 0.12
F F 0.8 · 0.8 + 0.2 · 1 = 0.84

 (16.5)

We can do the same thing in order to eliminate B, which involves all three of the tables,
and this will enable the computation of the conditional probability of you attending lectures
given that I saw you looking scared before the exam. The benefit of doing things this way
is that the whole thing can be written as a general algorithm:

The Variable Elimination Algorithm

• Create the λ tables:

– for each variable v:
∗ make a new table
∗ for all possible true assignments x of the parent variables:

· add rows for P (v|x) and 1− P (v|x) to the table
∗ add this table to the set of tables



326 � Machine Learning: An Algorithmic Perspective

FIGURE 16.3 Adding just one extra node (‘F’, information about whether or not this is
your final year) makes the conditional probability tables significantly more complicated.

• Eliminate known variables v:

– for each table:
∗ remove rows where v is incorrect
∗ remove column for v from table

• Eliminate other variables (where x is the variable to keep):

– for each variable v to be eliminated:
∗ create a new table t′

∗ for each table t containing v:
· vtrue,t = vtrue,t × P (v|x)
· vfalse,t = vfalse,t × P (¬v|x)

∗ vtrue,t′ =
∑
t(vtrue,t)

∗ vfalse,t′ =
∑
t(vfalse,t)

– replace tables t with the new one t′

• Calculate conditional probability:

– for each table:
∗ xtrue = xtrue × P (x)
∗ xfalse = xfalse × P (¬x)
∗ probability is xtrue/(xtrue + xfalse)

To see that these algorithms do not scale well, consider Figure 16.3, which shows a very
simple development of the example in Figure 16.2 by adding just one extra node to the
network: whether or not this is your final year (‘F’). This makes the network significantly
more complicated, since we need another table and extra entries in two of the other tables,
and therefore the variable elimination algorithm will take rather longer to run.



Graphical Models � 327

16.1.2 Approximate Inference
Since the variable elimination algorithm will only take you so far, for reasonably sized
Bayesian networks there is no choice but to perform approximate inference. Fortunately, we
have already seen a set of algorithms that are ideally suited to the problem: the Markov
Chain Monte Carlo methods that we saw in Chapter 15. There are two other methods of
doing approximate inference (loopy belief propagation and mean field approximation), but we
will not consider them further; there are references to descriptions of these methods at the
end of the chapter.

The basic idea of using MCMC methods in Bayesian networks is to sample from the hid-
den variables, and then (depending upon the MCMC algorithm employed) weight the sam-
ples by their likelihoods. Creating the samples is very easy: for prediction, we start at the top
of the graph and sample from each of the known probability distributions. Using Figure 16.2
again, we generate a sample from P (b), and then use that value in the conditional proba-
bility tables for ‘R’ and ‘A’ to compute P (r|b = sample value) and P (a|b = sample value).
These three values are then used to sample from P (p|b, a, r). We can take as many samples
as we like in this way, and expect that as the number of samples gets large, so the frequency
of specific samples will converge to their expected values.

In this sampling method, we have to work through the graph from top to bottom and
select rows from the conditional probability table that match the previous case. This is not
what we would do if we were constructing the table by hand. Suppose that you wanted
to know how many courses you did not attend the lectures for because the course was
boring. You would simply look back through your courses and count the number of bor-
ing courses where you didn’t go to lectures, ignoring all the interesting courses. We can
use exactly this idea if we use rejection sampling (see Section 15.3). The method samples
from the unconditional distribution and simply rejects any samples that don’t have the cor-
rect prior probability. It means that we can sample from each distribution independently,
and then throw away any samples that don’t match the other variables. This is obviously
computationally easier, but we might have to reject a lot of samples.

The solution to this problem is to work out what evidence we already have and use
this evidence to assign likelihoods to the other variables that are sampled. Suppose that we
sample from P (b) and get value ‘true’. If we already know that we did revise, then we weight
the observation P (r|b) by the appropriate probability, which is 0.3. We continue through
the other variables, sampling where there is no evidence and using the tables to find the
probability if we do have evidence. However, we can do rather better than this by using the
full MCMC framework. We start by setting values for all of the possible probabilities, based
on either evidence or random choices. This gives us an initial state for a Markov chain. Now
Gibbs sampling (Section 15.4.4) will find us the maxima of our probability distribution
given enough samples.

The probabilities in the network are:

p(x) =
∏
j

p(xj |xαj), (16.6)

where xαj are the parent nodes of xj . In a Bayesian network, any given variable is indepen-
dent of any node that is not their child, given their parents. So we can write:

p(xj |x−j) = p(xj |xαj)
∏

k∈β(j)

p(xk|xα(k)), (16.7)

where β(j) is the set of children of node xj and x−j signifies all values of xi except xj . For



328 � Machine Learning: An Algorithmic Perspective

FIGURE 16.4 The Markov blanket of a node is the set of nodes (shaded light grey) that
are either parents or children of the node, or other parents of its children (shaded dark
grey).

any node we only need to consider its parents, its children, and the other parents of the
children, as shown in Figure 16.4. This set is known as the Markov blanket of a node.

Given these calculations, computing the inference on any real Bayesian network gener-
ally consists of using Gibbs sampling in order to approximate the inference. For the exam
fear example, the algorithm to perform the Gibbs sampling consists of computing the prob-
ability distributions (possibly by using parts of the variable elimination algorithm) and then
sampling from it:

for i in range(nsamples):
# values contain current samples of b, r, a, s
values = np.where(np.random.rand(4)<0.5,0,1)
for j in range(nsteps):

values=pb_ras(values)
values=pr_bas(values)
values=pa_brp(values)
values=ps_bra(values)

distribution[values[0]+2*values[1]+4*values[2]+8*values[3]] += 1
distribution /= nsamples

For the example, a sample distribution (based on 500 samples, with 10 iterations of each
chain) is:

b r a s: dist
1 1 1 1 0.0
1 1 1 0 0.086
1 1 0 1 0.038
1 1 0 0 0.052
1 0 1 1 0.048



Graphical Models � 329

1 0 1 0 0.116
1 0 0 1 0.274
1 0 0 0 0.0
0 1 1 1 0.0
0 1 1 0 0.088
0 1 0 1 0.068
0 1 0 0 0.114
0 0 1 1 0.03
0 0 1 0 0.076
0 0 0 1 0.01
0 0 0 0 0.0

16.1.3 Making Bayesian Networks
If we are given the structure and conditional probability tables of the Bayesian network,
then we can perform inference on it by using Gibbs sampling or, if the network is simple
enough, exactly. However, this raises the important question about where the Bayesian
network itself comes from. Unfortunately, the news in this area isn’t particularly good: the
computational costs of searching over trees are immense, as we shall see. It is not uncommon
for people to create the entire network by hand, and only then to use algorithms in order
to perform inference on the network. Constructing Bayesian networks by hand is obviously
very boring to do, and unless it is based on real data, then it is subjective: putting a whole
lot of effort into inference is a waste of time if the data you are inferring about bears no
resemblance to reality!

So why is it so difficult to construct Bayesian networks? First, we have already seen that
the problem of exact inference on Bayesian networks was NP-hard, which is why we had to
use approximate inference. Now let’s think about the structure of the graph a little. If there
are N nodes (i.e., N random variables in the graph), then how many different graphs are
there? For just three nodes (‘A’, ‘B’, ‘C’) we can leave the three unconnected, connect ‘A’
to ‘B’ and leave ‘C’ alone, connect ‘B’ to ‘A’ and leave ‘C’ alone (remember that the links
are directional) and lots of variations of that, so that there are seven possible graphs before
we have even connected all three nodes to each other. For ten nodes there are O(1018)
possible graphs, so we are not going to be searching over all of them. Further, we might
want our algorithm to be able to include latent variables, i.e., hidden nodes, which might
be a sensible thing to do in terms of explaining the data, but it does make the problem of
search even worse.

We’ve talked about search before: Chapters 9 and 10 are full of search methods. So can we
use those methods to solve this problem? The answer is a cautious yes, once we have worked
out an objective function to maximise. We want to reward graphs that explain the data well,
but we also want to appeal to Occam’s razor (which we saw in Section 12.2.2) to ensure that
the graphs are as simple as possible. Typical methods are to use an objective function based
on theMinimum Description Length (MDL) (which is based on the argument that the solution
with the shortest description, i.e., fewest parameters that explains the data, is the best one)
or related information-theoretic measures. Then hill climbing or similar algorithms are used
to perform local search around a set of random starting graphs. As usual for optimisation
problems, getting the scoring function right is critical. You might be wondering why it is
not possible to use a genetic algorithm. It is, but given the number of iterations of the GA,



330 � Machine Learning: An Algorithmic Perspective

each of which would involve constructing hundreds of possible networks, testing them by
performing inference, and then combining them, the computational expense rules it out as
a practical possibility. As it is such an important problem, there has been a lot of very
advanced work on it, which is beyond our scope here. However, there are references at the
end of the chapter that contain more information should you want it.

Given that we cannot make the entire graph, we will consider the compromise situation,
where we try to compute the conditional probability tables for a known graph based on
data. This is quite a sensible compromise: you assume that some expert can put together
a network that shows how variables relate to each other, effectively a ‘cartoon’ of the data
generating process, and then you use data in order to compute the conditional probability
tables. However, it is still difficult. The idea is to choose the probability distributions to
maximise the likelihood of the training data. If there are no hidden nodes, then it is possible
to compute the likelihood directly:

L = 1
M

log
N∏
m=1

P (Dm|G)

= 1
M

N∑
n=1

M∑
m=1

logP (Xn|parents(Xn), Dm), (16.8)

where M is the number of training data examples Dm, and Xn is one of the N nodes in
graph G. Equation (16.8) has broken everything into sums over each node individually,
which means that we can compute each separate conditional probability table. To compute
the values of the table, you just need to count how often you have been scared before
an exam given each of the possible values for having revised and attended lectures, and
normalise it to make it into a probability. The danger with this is that with small amounts
of data there could be examples that have not happened in training, and that will therefore
have probability 0, although this can be dealt with by including prior probabilities and
using Bayes’ rule to update the estimates using the real data.

Obviously, this doesn’t work if there are hidden nodes, since we don’t know values for
them in the data. Surprisingly, getting around this problem isn’t as difficult as might be
expected. The key is to see that if we did have values for them, then Equation (16.8) could
be used. We can estimate values for them by inference, and then we can iterate these two
steps: an estimation step using inference followed by a maximisation step, making this an
EM algorithm (Section 7.1.1).

There is lots more work on Bayesian networks, and the references at the end of the
chapter include entire books on the topic for anybody wishing to explore more in this area.
We will now turn our attention to some other types of graphical models, starting with the
variation where the edges are undirected.

16.2 MARKOV RANDOM FIELDS
Bayesian networks are inherently asymmetric, since each edge had an arrow on it. If we
remove this constraint, then there is no longer any idea of children and parent nodes. It also
makes the idea of conditional independence that we saw for the Bayesian network easier:
two nodes in a Markov Random Field (MRF) are conditionally independent of each other,
given a third node, if there is no path between the two nodes that doesn’t pass through the
third node. This is actually a variation on the Markov property, which is how the networks
got their name: the state of a particular node is a function only of the states of its immediate



Graphical Models � 331

neighbours, since all other nodes are conditionally independent given its neighbours. You
might think that this fact would make inference on MRFs simpler, but unfortunately it
doesn’t; in general it is still a #P-hard problem. However, there are particular applications
where MRF methods have turned out to be particularly useful, often for images.

The most well-known example is image denoising, something that we have already seen
in Section 4.4.5 when we talked about auto-associative learning in the MLP. Suppose that
we have a binary image I with pixel values Ixi,xj ∈ {−1, 1}. This image is a representation of
an ‘ideal’ image I ′xi,xj that has no noise in it, which is what we want to recover. If we assume
that the amount of noise is small, then there should be a good correlation between the values
of each pixel in the two images, so Ixi,xj and I ′xi,xj should be correlated. We also assume
that within a small ‘patch’ or region in an image, there is good correlation between pixels (so
Ixi,xj should correlate well with Ixi+1,xj and its other neighbouring pixels (Ixi,xj−1, etc.).
This assumption says that there are lots of places in the image where all of the pixels are
of the same value, and this is (at least approximately) true for most images, and says that
the pixels are correlated (and that other pixels in the image are conditionally independent
of Ixi,xj given the neighbours of that pixel, which is the MRF bit).

The original theory of MRFs was worked out by physicists, initially by looking at the
Ising model, which is a statistic description of a set of atoms connected in a chain, where
each can spin up (+1) or down (-1) and whose spin affects those connected to it in the
chain. Physicists tend to think of the energy of such systems, and argue that stable states
are those with the lowest energy, since the system needs to get extra energy if it wants
to move out of this state. For this reason, the jargon of MRFs is in terms of energies,
and we therefore want the energy of our pair of images to be low when the pixels match,
and higher when they do not. So we write the energy of the same pixel in two images as
−ηIxi,xjI ′xi,xj , where η is a positive constant. Note that if the two pixels have the same sign
then the energy is negative, while if they have opposite signs then the energy is positive
and therefore larger. The energy of two neighbouring pixels is −ζIxi,xjIxi+1,xj , and we can
just add these components together to get the total energy:

E(I, I ′) = −ζ
N∑
i,j

Ixi,xjIxi±1,xj±1 − η
N∑

i,j=1
Ixi,xjI

′
xi,xj , (16.9)

where the index of the pixels is assumed to run from 1 to N in both the x and y directions in
both images and we are only interested in locally flat patches of the image we are changing,
which is I.

There is now a simple iterative update algorithm, which is to start with noisy image
I and ideal I ′, and update I so that at each step the energy calculation is lower. So you
pick one pixel Ixi,xj for some values of xi, xj at a time, and compute the energies with this
pixel being set to -1 and 1, picking the lower one. In probabilistic terms, we are making the
probability p(I, I ′) higher. The algorithm then moves on to another pixel, either choosing a
random pixel at each step or moving through them in some pre-determined order, running
through the set of pixels until their values stop changing. Figure 16.5 shows an original
black and white image, a version corrupted with 10% noise, and the MRF-reconstructed
version using parameters η = 2.0, ζ = 1.5. This reduces the error from 10% to less than 1%,
although it also removes my home country of New Zealand from the map!



332 � Machine Learning: An Algorithmic Perspective

FIGURE 16.5 Using the MRF image denoising algorithm with η = 2.1, ζ = 1.5 on a map
of the world (top left) corrupted by 10% uniformly distributed random noise (top right)
gives the image below which has about 1% error, although it has smoothed out the edges
of all the continents.



Graphical Models � 333

FIGURE 16.6 The Hidden Markov Model is an example of a dynamic Bayesian network.
The figure shows the first three states and the related observations unrolled as time
progresses.

The Markov Random Field Image Denoising Algorithm

• Given a noisy image I and an original image I ′, together with parameters η, ζ:

• Loop over the pixels of image I:

– compute the energies with the current pixel being -1 and 1
– pick the one with lower energy and set its value in I accordingly

We will now focus on a type of graphical model that is in very common use, and that
has computationally tractable algorithms for doing exact inference on it.

16.3 HIDDEN MARKOV MODELS (HMMS)
The Hidden Markov Model is one of the most popular graphical models. It is used in speech
processing and in a lot of statistical work. The HMM generally works on a set of temporal
data. At each clock tick the system moves into a new state, which can be the same as the
previous one. Its power comes from the fact that it deals with situations where you have
a Markov model, but you do not know exactly which state of the Markov model you are
in—instead, you see observations that do not uniquely identify the state. This is where the
hidden in the title comes from. Performing inference on the HMM is not that computation-
ally expensive, which is a big improvement over the more general Bayesian network. The
applications that it is most commonly applied to are temporal: a set of measurements made
at regular time intervals, which comprise the observations of the state. In fact, the HMM is
the simplest dynamic Bayesian network, a Bayesian network that deals with sequential (often
time-series) data. Figure 16.6 shows the HMM as a graphical model.

The example that we will use is this: As a caring teacher I want to know whether or
not you are actually working towards the exam. I know from Chapter 12 that there are
four things that you do in the evenings (go to the pub, watch TV, go to a party, study)
and I want to work out whether or not you are studying. However, I can’t just ask you,
because you would probably lie to me. So all I can do is try to make observations about your
behaviour and appearance. Specifically, I can probably work out if you look tired, hungover,
scared, or fine. I want to use these observations to try to work out what you did last night.
The problem is that I don’t know why you look the way you do, but I can guess by assigning
probabilities to those things. So if you look hungover, then I might give probability 0.5 to
the guess that you went to the pub last night, 0.25 to the guess that you went to a party, 0.2
to watching TV, and 0.05 to studying. In fact, we will use these the other way round, using



334 � Machine Learning: An Algorithmic Perspective

the probability that you look hungover given what you did last night. These are known as
observation or emission probabilities.

I don’t have access to the other information that was used in Chapter 12, such as what
parties are on and what other assignments you have (one of the worst things about stopping
being a student is that the number of parties you get invited to drops off), but based on
my own experience of being a student I can guess how likely parties are, etc., and knowing
what student finances are, I can guess things like the probability of you going to the pub
tonight if you went to the pub last night. So now it is just a question of putting these things
into a form where I can work with them, and I can prepare my lectures according to how
well you are working.

Each day that I see you in lectures I make an observation of your appearance, o(t), and
I want to use that observation to guess the state ω(t). This requires me to build up some
kind of probabilities P (ok(t)|ωj(t)), which is the probability that I see observation ok (e.g.,
you are tired) given that you were in state ωj (e.g., you went to a party) last night. These
are usually labelled as bj(ok). The other information that I have, or think I have, is the
transition probability, which tells me how likely you are to be in state ωj tonight given that
you were in state ωi last night. So if I think you were at the pub last night I will probably
guess that the probability of you being there again tonight is small because your student
loan won’t be able to handle it. This is written as P (ωj(t+ 1)|ωi(t)) and is usually labelled
as ai,j .

I can add one more constraint to each of the probability distributions ai,j and bi. I
know that you did something last night, so

∑
j ai,j = 1 and I know that I will make

some observation (since if you aren’t in the lecture I’ll assume you were too tired), so∑
k bj(ok) = 1. There is one other thing that is generally assumed, which is that the Markov

chain is ergodic, something that we saw in Section 15.4.1: it means that there is a non-zero
probability of reaching every state eventually, no matter what the starting state.

After a couple of weeks of the course I have made observations about you, and I am
ready to sort out my HMM. There are three things that I might want to do with the data:

• see how well the sequence of observations that I’ve made match my current HMM
(Section 16.3.1)

• work out the most probable sequence of states that you’ve been in based on my
observations (Section 16.3.2)

• given several sets of observations (for example, by watching several students) generate
a good HMM for the data (Section 16.3.3)

We will start by assuming that I invent a model and want to see how good it is. So I use
my own knowledge of being a student to work out the probability distributions and then
I can test the observations I make of you against my model. At this point I will probably
find out that my student life was different to yours, or things have changed since I was a
student, and I will have to generate a new model to match current data. I can then use
this improved model to work out what you’ve been doing each evening. These problems are
dealt with in the next three sections.

The HMM itself is made up of the transition probabilities ai,j and the observation
probabilities bj(ok), and the probability of starting in each of the states, πi. So these are
the things that I need to specify for myself, starting with the transition probabilities (which
are also shown in Figure 16.7):



Graphical Models � 335

FIGURE 16.7 The example HMM with transition and observation probabilities shown.

Previous night
TV Pub Party Study

TV 0.4 0.6 0.7 0.3
Pub 0.3 0.05 0.05 0.4
Party 0.1 0.1 0.05 0.25
Study 0.2 0.25 0.2 0.05

and then the observation probabilities:

TV Pub Party Study
Tired 0.2 0.4 0.3 0.3
Hungover 0.1 0.2 0.4 0.05
Scared 0.2 0.1 0.2 0.3
Fine 0.5 0.3 0.1 0.35

16.3.1 The Forward Algorithm
Suppose that I see the following observations: O = (tired, tired, fine, hungover, hungover,
scared, hungover, fine) and I want to work out the likely run of states that generated it.
The probability that my observations O = {o(1), . . . , o(T )} come from the model can be
computed using simple conditional probability. I know you were doing something last night,
so for an observation o(t) =tired (say) I just need to compute the probability that I made
that observation given you were in a particular state (say watching TV) and multiply it by
the probability that you were in that state given the state I thought you were in the night
before (say partying). So for the example, I compute the probability that you were tired
given that you were watching TV, which is 0.2, and then multiply it by the probability that
you spent last night watching TV given that I thought you were partying the night before,
which is 0.1. So this yields probability 0.02 for this particular state change. There is one
extra thing that we need which is to decide which state you actually start in. I don’t know
this, so I assign probability 0.25 to each state.



336 � Machine Learning: An Algorithmic Perspective

Now I need to do this over every possible sequence of states to find out the most likely
one based on what I actually saw. Note that I have used O to denote the whole sequence of
observations that I made. In the same way, Ω is an entire sequence of possible states (this
is a change in notation from the rest of the methods we have looked at, but it is consistent
with the way that other authors describe HMMs). This can be written as:

P (O) =
R∑
r=1

P (O|Ωr)P (Ωr). (16.10)

The r index here describes a possible sequence of states, so Ω1 is one sequence, Ω2
another, and so on. We’ll consider this in a minute, but first we will use the Markov property
to write:

P (Ωr) =
T∏
t=1

P (ωj(t)|ωi(t− 1)) =
T∏
t=1

ai,j , (16.11)

and

P (O|Ωr) =
T∏
t=1

P (ok(t)|ωj(t)) =
T∏
t=1

bj(ok). (16.12)

So Equation (16.10) can be written as:

P (O) =
R∑
r=1

T∏
t=1

P (ok(t)|ωj(t))P (ωj(t)|ωi(t− 1))

=
R∑
r=1

T∏
t=1

bj(ok)ai,j . (16.13)

This looks fairly easy now. The only problem is in that sum over r, which runs over all
possible sequences of hidden states. If there are N hidden states then there are NT possible
sequences, and for each one we have to compute a product of T probabilities. Not only will
these probabilities be incredibly small, but the computational cost of getting them will be
astronomical: O(NTT ).

Fortunately, the Markov property comes to our rescue again. Since the probability of
each state only depends on the data at the current and previous timestep (o(t), ω(t), ω(t−1))
we can build up our computation of P (O) one timestep at a time. This is known as the
forward trellis by some people, since it looks like a garden trellis in Figure 16.8. To construct
the trellis we introduce a new variable αi(t) that describes the probability that at time t
the state is ωi and that the first (t− 1) steps all matched the observations o(t):

αj(t) =

 0 t = 0, j 6= initial state
1 t = 0, j = initial state∑

i αi(t− 1)ai,jbj(ot) otherwise.
(16.14)

where bj(ot) means the particular emission probability of output ot. This ensures that only
the observation probability that has the index that matches the observation ot contributes to
the sum. Computing P (O) now requires only O(N2T ), which is a substantial improvement,
in a very simple algorithm, as will be seen shortly.

We will use the following notation: ai,j is the transition probability of going from state i



Graphical Models � 337

to state j, so if there are N states, then it is of size N×N ; bi(o) is the transition probability
of emitting observation o in state i, so it is of size N×O, where O is the number of different
observations that there are (four in the example). It will be useful to introduce four more
variables, all of which are probabilities that are conditioned on the observation sequence
and the model:

• αi,t, which is the probability of getting the observation sequence up to time t and
being in state i at time t (size N × t),

• βi,t, which is the probability of the sequence from t+1 to the end given that the state
is i at time t,

• δi,t, which is the highest probability of any path that reaches state i at time t,

• ξi,j,t, which is the probability of being in state i at time t, state j at time t+ 1, and
so is an N ×N × T matrix.

Since αi,t is the probability of getting the observation sequence up to time t and being
in state i at time t conditioned on the model and the observations, the probability of the
whole observation sequence given the model is just

∑N
i=1 αi,T .

The HMM Forward Algorithm

• Initialise with αi,0 = πibi(o0)

• For each observation in order ot, t = 1, . . . , T

– for each of the Ns possible states s:

∗ αs,t+1 = bs(ot+1)
(∑N

i=1(αi,tai,s)
)

Let’s look at the first two states of our example HMM. In both, the observation is that
you were tired, so we need to compute αi,t and so construct the trellis. Figure 16.8 shows
the idea, with the initial αi,t=0 coming from my guesses about how likely each state is (the
π variable), and we just need to run through the set of computations to compute αi,t=2
and so on, getting the numbers that are shown in the figure. We then repeat this for the
next step and so on until we reach the final state. At this stage we can sum up all of the
possible probabilities, which tells me in this case that you were most likely watching TV
last night. We will also need to be able to go backwards through the trellis, which is a very
similar algorithm that works backwards to compute β values, also based on the transmission
probability and observation probability matrices by:

βi,t =
N∑
j=1

ai,jbj(ot+1)βj,t+1. (16.15)

16.3.2 The Viterbi Algorithm
The next problem that we want to solve is the decoding problem of working out the hidden
states: I can use my model of how students are expected to behave and match them with my
observations to guess what you have been doing each evening. The algorithm is known as
the Viterbi algorithm after its creator, although he actually derived it for error correction, a



338 � Machine Learning: An Algorithmic Perspective

FIGURE 16.8 The forward trellis for the first two observations of the example HMM.

completely different application! We want to work out the δi,t variable. This requires finding
the maximum probability of any path that gets us to state i at time t that has the right
observations for the sequence up to t; apart from being a maximisation instead of a sum, it
is pretty similar to the forward algorithm. The initialisation is δi,t=0 = πibi(o0), since this
tells us about the first observations we see, and then we work from there computing each
new δ as:

δj,t+1 = max
i

(δi,tai,j) bj(ot+1). (16.16)

It will also be useful to keep track of which state seems to be the best at each stage:
φj,t = arg maxi(δi,t−1ai,j), because at the end of the sequence we want to go backwards
through the matrix that we have built up and work out the actual most probable path from
it.

So once we reach the end, we can work out the most likely state as the one with the
highest q∗T = δ·, T , and then work back through the lattice using q∗t = φq∗t+1,t+1 until we
reach the start of the sequence. As an algorithm this can be written as:

The HMM Viterbi Algorithm

• Start by initialising δi,0 by πibi(o0) for each state i, φ0 = 0

– run forward in time t:
∗ for each possible state s:

· δs,t = maxi(δi,t−1ai,s)bs(ot)
· φs,t = arg maxi(δi,t−1ai,s)

– set q∗T , the most likely end hidden state to be q∗T = arg maxi δi,T
– run backwards in time computing:

∗ q∗t−1 = φq∗t ,t



Graphical Models � 339

FIGURE 16.9 The Viterbi trellis for the first three observations of the example HMM.

Figure 16.9 shows the path for the first three states of the example. Using the numbers
from the example, I can use the Viterbi algorithm to find the most likely explanation of a
set of observations such as (fine, hungover, hungover, fine, tired, fine, fine, fine, hungover,
hungover, tired, scared, scared), which tells me that you seem to have spent a lot of time in
the pub. However, even for this most likely sequence, the probability of it is only 7.65×10−9,
which doesn’t seem very likely. This is one of the problems with HMMs: the state space is
so large that the probabilities tend to 0 very quickly. This is both an interpretation problem
and a computational one, since we get problems with rounding errors very quickly because
the probabilities are so small. This is discussed briefly at the end of this section.

16.3.3 The Baum–Welch or Forward–Backward Algorithm
In the example I had to invent the transition and observation probabilities from my expe-
rience, and the result is that the best path is not very likely. It would obviously be better
to generate the HMM from sets of observations rather than by making up the transition
probabilities. This is a learning process, and it is an unsupervised learning problem since
we don’t have any target solutions to go on. In fact, finding the optimal probabilities is an
NP-complete problem, since we have to search over all the possible sets of probabilities for
all the possible sequences. Instead, we will use an EM algorithm known as the Baum–Welch
algorithm (see Section 7.1.1 for a previous example of an EM algorithm). This is not quite
as good as the previous one in that it is not guaranteed to find even a local optima, but in
general it works fairly well.

The key to the algorithm is in its second name: Forward–Backward. We introduced a
variable α above that took us forward through the HMM above, and we mentioned that it
had a complementary variable β that takes us backwards through the HMM, i.e., βi(t) tells
us the probability that at time t we are in state ωi and the result of the target sequence



340 � Machine Learning: An Algorithmic Perspective

(times t+ 1 to T ) will be generated correctly. So we can now pick any point in the middle
of a sequence, and run forwards from the beginning and backwards from the end to see the
possible paths.

To see what computations are needed we will work out what the three variables that
we are interesting in fitting—πi, ai,j and bi(ok)—are, which are respectively the number of
times we expect to be in state i at the first observation, the expected number of times we
transition from state i to state j divided by the number of times we leave state i, and the
expected number of times we see observation ok when in state i, divided by the number of
times we are in state i.

Thinking about the ξi,j,t variable that we talked about, but haven’t used yet, and which
is the probability of being in state i at time t, state j at time t+ 1, we can see that (where
the ·̂ is to make it clear that these are estimates based on the sequences that we see):

π̂i =
N∑
j=1

ξi,j,0 (16.17)

âi,j =
T−1∑
t=1

ξi,j,t/

T−1∑
t=1

N∑
j=1

ξi,j,t (16.18)

b̂i(ok) =
T∑

t=1,ot=k

N∑
j=1

ξi,j,t/

T∑
t=1

N∑
j=1

ξi,j,t (16.19)

The notation in the last line means that in the numerator we only include those times t
where the observation k was seen, and note that the sums over time in the middle line only
go up to T − 1, since it isn’t possible to move on from the last state.

So now the algorithm needs to start by computing ξi,j,t, and then make an estimate of
π, a, b, which can then be iterated until the values stop changing. This has the flavour of
an EM algorithm: we work out how many times we can expect to transition between states,
which is the expectation, and then we try to maximise them.

The only thing that we haven’t done yet is to work out how to compute ξi,j,t, although
looking back at the definitions of the α and β variables, and working out that what we are
doing is running forwards until time t, when we get to state i, then transitioning to state j
carrying on from there to the end (or equivalently, going backwards from the end to state
j at time t+ 1, we see that the form of ξi,j,t is:

ξi,j,t = αi,tai,jbj(ot+1)βj,t+1∑N
i=1
∑N
j=1 αi,tai,jbj(ot+1)βj,t+1

, (16.20)

where the numerator is simply a normaliser, and the values at T are a little different as
there is no b or β then. This leads to the complete Baum–Welch algorithm:



Graphical Models � 341

The HMM Baum–Welch (Forward–Backward) Algorithm

• Initialise π to be equal probabilities for all states, and a, b randomly unless you have
prior knowledge

• While updates have not converged:

– E-step:
– use forward and backward algorithms to get α and β
– for each observation in the sequence ot, t = 1 . . . T

∗ for each state i:
· for each state j:
· compute ξ using Equation (16.20)

– M-step:
– for each state i:

∗ compute π̂i using Equation (16.17)
∗ for each state j:

· compute âi,j using Equation (16.18)
– for each different possible observation o:

∗ compute b̂i(o) using Equation (16.19)

Since this is the most important algorithm, here is a Python implementation as well:

def BaumWelch(obs,nStates):

T = np.shape(obs)[0]
xi = np.zeros((nStates,nStates,T))

# Initialise pi, a, b randomly
pi = 1./nStates*np.ones((nStates))
a = np.random.rand(nStates,nStates)
b = np.random.rand(nStates,np.max(obs)+1)

tol = 1e-5
error = tol+1
maxits = 100
nits = 0
while ((error > tol) & (nits < maxits)):

nits += 1
oldpi = pi.copy()
olda = a.copy()
oldb = b.copy()

# E step
alpha,c = HMMfwd(pi,a,b,obs)



342 � Machine Learning: An Algorithmic Perspective

beta = HMMbwd(a,b,obs,c)

for t in range(T-1):
for i in range(nStates):

for j in range(nStates):
xi[i,j,t] = alpha[i,t]*a[i,j]*b[j,'
obs[t+1]]*beta[j,t+1]

xi[:,:,t] /= np.sum(xi[:,:,t])

# The last step has no b, beta in
for i in range(nStates):

for j in range(nStates):
xi[i,j,T-1] = alpha[i,T-1]*a[i,j]

xi[:,:,T-1] /= np.sum(xi[:,:,T-1])

# M step
for i in range(nStates):

pi[i] = np.sum(xi[i,:,0])
for j in range(nStates):

a[i,j] = np.sum(xi[i,j,:T-1])/np.sum(xi[i,:,:'
T-1])

for k in range(max(obs)):
found = (obs==k).nonzero()
b[i,k] = np.sum(xi[i,:,found])/np.sum(xi[i,:,'
:])

error = (np.abs(a-olda)).max() + (np.abs(b-oldb)).max()
print nits, error, 1./np.sum(1./c), np.sum(alpha[:,T-1])

return pi, a, b

We can’t really use this algorithm very well on the simple example, since we would need
rather more data to do justice to the training. However, if we do apply it and then compute
the Viterbi path, then it gives the same answer as with the invented data.

One final thing to mention with the HMM is that there are ways to deal with the fact
that the probabilities get so small, which can cause round-off errors inside the computer.
One approach is to renormalise the α values by dividing by the sum of the α values for
each time step. If the same values are used in the β calculation as well, then they cancel
out beautifully in the final calculations and things work very well. This is the c variable in
the following code for the forward algorithm:

def HMMfwd(pi,a,b,obs):

nStates = np.shape(b)[0]
T = np.shape(obs)[0]



Graphical Models � 343

alpha = np.zeros((nStates,T))
alpha[:,0] = pi*b[:,obs[0]]

for t in range(1,T):
for s in range(nStates):

alpha[s,t] = b[s,obs[t]] * np.sum(alpha[:,t-1] * a[:,s])

c = np.ones((T))
if scaling:

for t in range(T):
c[t] = np.sum(alpha[:,t])
alpha[:,t] /= c[t]

return alpha,c

That pretty much sums it up for the HMM. It is worth mentioning two limitations
of it, which are that the probability distributions are not time dependent, and that the
probabilities can get very small. The second of these problems is an implementation detail
that needs careful monitoring, while the first can be dealt with by using more general
graphical models, although with the additional computational costs that come with that.

16.4 TRACKING METHODS
We will now look at two methods of performing tracking. You perform tracking fairly easily,
keeping tabs on where something is and how it is moving. This has an obvious evolutionary
benefit, since keeping track of where predators were and whether they were coming towards
you could keep you alive. It is also useful for a machine to be able to do this, both for
similar reasons to a human or animal (watching something moving and predicting what
path it will follow, for example in radar or other imaging method) and to keep track of a
changing probability distribution. We will look at two methods of doing it, the Kalman filter
and the particle filter.

16.4.1 The Kalman Filter
The Kalman filter (named for E. Kalman; although he was not the original inventor he did
do quite a lot of work on it) is a recursive estimator. It makes an estimate of the next step,
then computes an error term based on the value that was actually produced in the next
step, and tries to correct it. It then uses both of those to make the next prediction, and
iterates this procedure. It can be seen as a simple cycle of predict-correct behaviour, where
the error at each step is used to improve the estimate at the next iteration. The Kalman
filter can be represented by the graphical model shown in Figure 16.10.

Much of the jargon that is associated with the Kalman filter is familiar to us: the state,
which is hidden, consists of the variables that we want to know, which we see through noisy
observations over time. There is a transition model that tells us how states change from one
to another, and an observation model (also called the sensor model here) that tells us how
states lead to observations.

The underlying idea is that there is some time-varying process that is generating a
set of noisy outputs, where there are two sources of noise: process noise, which represents



344 � Machine Learning: An Algorithmic Perspective

FIGURE 16.10 A representation of the Kalman filter with time derivatives (such as for
tracking) as a graphical model.

the fact that the process changes over time, but we don’t know how, and observation (or
measurement) noise, which is the errors that are made in the readings. Both are assumed to
be independent of each other, and zero mean Gaussians. We write the process as a stochastic
difference equation in x, which has n dimensions:

xt+1 = Axt + But + wt, (16.21)
where At is an n× n matrix that represents the non-driven part of the underlying process,
B is an n × l matrix that represents the driving force, and u is the l-dimensional driving
force. w is the process noise, which is assumed to be zero mean with standard deviation Q.

The observations that we make are m-dimensional:

yt = Hxt + vt, (16.22)
where m×n matrix H describes how measurements of the state are measured, and v is the
measurement noise, which is also assumed to be zero mean, but with standard deviation R.

As an example of this, consider a particle moving at a constant speed in one dimension.
The state is two dimensional, consisting of the position and velocity of the particle (so
x = [x, ẋ]T ). Since there is no driving force the next term is But = 0. The process equation
is then derived by using Newton’s laws of motion (so xt+1 = xt + ∆tẋt, and since we are
making indexing by time, ∆t = 1, and the velocity is constant):(

xt+1
ẋt+1

)
=
(

1 1
0 1

)(
xt
ẋt

)
+ wt. (16.23)

We can observe the position of the particle, up to measurement noise, but not the
velocity, and so the measurement equation is:

yt =
(
1 0

)(xt
ẋt

)
+ vt. (16.24)

The principal simplifying assumptions of the Kalman filter are that the process is linear
and that all of the distributions are Gaussian with constant covariance. Since the convolu-
tion of Gaussians is also Gaussian, this means that we can put them together to form new



Graphical Models � 345

Gaussians, and so the model stays well behaved. This was a significant advantage over pre-
vious methods of tracking, which tended to stop working fairly quickly, since the estimates
broke down because the probability distribution stopped being well-defined. We assume that
both the transition model and the observation model are Gaussians with means based on the
previous observations, and fixed covariances Q and R which can be written mathematically
as (with the same parameters as the state and measurement update equations):

P (xt+1|xt) = N (xt+1|Axt,Q) (16.25)
P (zt|xt) = N (zt|Hxt,R). (16.26)

Having described the set-up, what do we do? The basic idea is to make a prediction
and then correct it when the next observation is available, i.e., at the next timestep. We
will use x̂ and ŷ as the estimates, so ŷt+1 = HAx̂t+1 and so the error is yt+1 − ŷt+1;
that is the difference between what was actually observed and what we predicted (without
measurement noise). Since this is a probabilistic process with Gaussian distributions, we
can also keep a predicted covariance matrix that goes with it: Σ̂t+1 = AΣtAT + Q (which
is E[(xk − x̂k)(xk − x̂k)T ]). The Kalman filter weights these error computations by how
much trust the filter currently has in its predictions; these weights are known as the Kalman
gain and are computed by:

Kt+1 = Σ̂t+1HT
(
HΣ̂t+1HT + R

)−1
. (16.27)

This equation comes from minimising the mean-square error; we will not derive it, but
the Further Reading section gives further references for you to follow up if you wish. Using
it, the update for the estimate is:

xt+1 = x̂t+1 + Kt+1 (zt+1 −Hx̂t+1) , (16.28)

All that is then required is to update the covariance estimate:

Σt+1 = (I−Kt+1H)Σ̂t+1, (16.29)

where I is the identity matrix of the relevant size. Putting these equations together leads
to a simple algorithm.

The Kalman Filter Algorithm

• Given an initial estimate x(0)

• For each timestep:

– predict the next step
∗ predict state as x̂t+1 = Axt + But
∗ predict covariance as Σ̂t+1 = AΣtAT + Q

– update the estimate
∗ compute the error in the estimate, ε = yt+1 −HAxt+1

∗ compute the Kalman gain using Equation (16.27)
∗ update the state using Equation (16.28)
∗ update the covariance using Equation (16.29)



346 � Machine Learning: An Algorithmic Perspective

FIGURE 16.11 Estimates of a 1D constant noisy process using a Kalman filter. The filter
settles to representing the unchanging mean of the process fairly quickly, and the estimated
error (shown as dashed lines) drops accordingly.

Implementing this principally involves repeated use of np.dot() to multiply matrices
together.

Figure 16.11 shows a simple 1D example of using the Kalman filter, where there is no
time variation (so xt+1 = xt+wk). The dots are the noisy data from the process, and the line
is the Kalman filter estimate, with the dashed lines representing one standard deviation. It
can be seen that the initial estimate was not very good, but the algorithm quickly converges
to a good estimate of the mean of the data, and the error drops accordingly.

Now that we have seen the Kalman filter in action, we need to work out how to use
it for tracking. We worked out the process in 1D in Equations (16.23) and (16.24), and
Figure 16.12 shows an example of 1D tracking, but we will write them in 2D here, to make
sure that everything is clear. Again. we will assume that there is no control of the particle,
so that it moves at constant velocity (up to noise).

The state of the particle is then:

xt = (x1, x2, ẋ1, ẋ2)T , yt = (y1, y2)T , (16.30)

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , H =
(

1 0 0 0
0 1 0 0

)
(16.31)

In the absence of any other knowledge, we can assume that Q and R are proportional
to the 4× 4 and 2× 2 identity matrices, respectively.

Figure 16.13 shows an example of a point moving in two spatial dimensions, starting at
(10,10) and moving to the right at speed 1 for 15 steps, with noise standard deviation 0.1 in



Graphical Models � 347

FIGURE 16.12 Demonstration of the Kalman filter tracking an object moving in one spatial
dimension.

FIGURE 16.13 Demonstration of the Kalman filter tracking an object moving in two spatial
dimensions. The grey circles show the covariance around each estimated point.



348 � Machine Learning: An Algorithmic Perspective

FIGURE 16.14 A smoothed version of the path from Figure 16.13.

both x1 and x2, with the grey circles representing the covariance matrix (at one standard
deviation). It can be seen that the filter initially tracks the observations, but then learns
more of the underlying process. However, the trajectory that is shown is rather ‘jumpy’
as the high level of noise affects the estimates. One way around this is to use the Kalman
smoother, which performs a backwards smoothing of the trajectory after the filter has been
used to estimate the positions. So the filter is run to predict the points, and then the
predictions are updated to be a smoother path along the trajectory of the particle.

There are a variety of ways to do this smoothing, but one option, known as the Rauch–
Tung–Striebel smoother is to use the following update equations from the endpoint back to
the beginning (where the (̂·) variables are the filtered versions):

x′ = Ax̂
Σ′ = AΣ̂AT + Q

J = Σ̂AΣ′

xs = x̂ + J(x̂− x′)
Σs = Σ̂ + J(Σ̂−Σ′)JT (16.32)

Figure 16.14 shows the smoothed trajectory from Figure 16.13.
One of the main assumptions of the Kalman filter was that the process was linear. There

are many cases where this is not true. One option to deal with non-linearity is to linearise
about the current estimate (xt,Σt) and this leads to the Extended Kalman Filter. There are
a lot of similarities with the original Kalman filter, so let’s try and pick out the differences.

We start with some non-linear stochastic difference equation:

xt+1 = f(xt,ut,wt), (16.33)
where the variables are the same as for the Kalman filter, except that we have a non-linear
function f(·) in place of the nice linear matrix, and we also have a measurement function:

yt = h(xt,vt). (16.34)



Graphical Models � 349

If we have a current estimate x̂t then we can evaluate the function at that point by
computing x̃ = f(x̂,ut, 0), where we are assuming that the mean of the noise is 0. We now
linearise about this point as:

xt+1 ≈ x̃t+1 + Jf,x(x̂t,ut, 0)(xt − x̂t) + Jf,w(x̂t,ut, 0)wt), (16.35)

and similarly for h(·) to get:

yt ≈ ỹt+1 + Jh,x(x̃t, 0)(xt − x̃t) + Jh,v(x̃t,vt). (16.36)

In both of these equations J refers to the Jacobian of the subscripted function with
regard to the variable in the second subscript, so:

Jf,x|i,j = ∂fi
∂xj

(x̂t,ut, 0). (16.37)

So providing that we can compute these two functions and their derivatives, we can use
them to make an estimate of the error, which is a linear function and so can be estimated
using the normal Kalman filter. This leads to the following algorithm:

The Extended Kalman Filter Algorithm

• Given an initial estimate x(0)

• For each timestep:

– predict the next step
∗ predict state as x̂t+1 = f(x̂t,ut, 0
∗ compute the Jacobians Jf,x and Jf,w
∗ predict covariance as Σ̂t+1 = Jf,xΣtJTf,x + Jf,wQJTf,w

– update the estimate
∗ compute the error in the estimate, ε = yt − h(x̂t, 0)
∗ compute the Jacobians Jh,x and Jh,w
∗ compute the Kalman gain using K = Jf,xJTh,x(Jh,xJf,xJTh,x + Jh,wRJTh,w)−1

∗ update the state using x̂ = x̂ + Kε

∗ update the covariance using (I−KJh,x)Jf,x

Figure 16.15 shows an example of the extended Kalman filter tracking the function
h(x, y, z) = x+ y with f(x, y, z) = (y, z,−.5x(y + z)).

The Extended Kalman Filter is not an optimal estimator. Further, if the assumptions
about local linearity that underlie the linearisation are not true, then the estimate is very
poor, and even where it is good, it requires the computation of the Jacobians, which is
potentially difficult. There have been various attempts to improve upon it; one method
that may be of interest is to choose a set of points that represent the statistics of the data
and to transform them by passing them through the non-linear functions (f(·) and h(·)),
and then to compute the statistics of those points in order to estimate the statistics of the
transformed data. This has the great name of the unscented transform, and can be used to
produce an Unscented Kalman Filter. For more information on this, see the Further Reading
section; instead we will look at a common MCMC algorithm for performing tracking, the
particle filter.



350 � Machine Learning: An Algorithmic Perspective

FIGURE 16.15 The extended Kalman filter tracking the function h(x, y, z) = x + y with
f(x, y, z) = (y, z,−.5x(y + z)).

16.4.2 The Particle Filter
As well as the linearity of the function, the Kalman filter also assumes that the distributions
are Gaussian, so that they can be convolved and stay as Gaussians. In order to get around
this problem, we return to the methods that have underpinned many of the algorithms in
this chapter: sampling. The particular sampling technique that we will use is the sampling-
importance-resampling algorithm of Section 15.3, which forms the basis of the particle filter,
or condensation method. This is a relatively recent development, and has been finding many
successful applications in tracking, including in image and signal analysis. The idea is to
use sampling to keep track of the state of the probability distribution. This is known as
sequential sampling, since we are using a set of samples for time t to estimate the process at
time t+ 1, and then resampling from there.

One benefit of sampling methods is that we don’t have to hold on to the Markov assump-
tion. In tracking, prior history can be useful, which means that the Markov assumption is
a bad one. The proposal distribution is generally written as q(xt+1|x0:t,y0:t) to make this
dependence clear, and the proposal distribution that is generally used in the estimated tran-
sition probabilities p(x̂t+1|x0:t,y01:t), since it is a simple distribution that is related to the
process. With this decided, there is very little else to the basic particle filter: a schematic
of one iteration of the particle filter is shown in Figure 16.16. The basic algorithm is given
next, followed by some points about the implementation and some examples.



Graphical Models � 351

FIGURE 16.16 A schematic of one iteration of a particle filter. A set of random particle
positioned have importance weights computed according to the distribution, and then new
particles are created and modified based on these weights, and the estimated distribution
is updated.

The Particle Filter Algorithm

• Sample x(i)
0 from p(x0 for i = 1 . . . N

• For each timestep:

– importance sample
– for each datapoint:

∗ sample x̂(i)
t from q(x(i)

t |x
(i)
0:t−1,y1:t)

∗ add x̂(i)
t onto the list of samples to get x(i)

0:t from x(i)
0:t−1

∗ compute the importance weights:

w
(i)
t = w

(i)
t−1

p(yt|x̂(i)
t )p(x(i)

t |x̂
(i)
t−1)

q(x(i)
t |x

(i)
0:t−1,y1:t)

(16.38)

– normalise the importance weights by dividing by their sum
– resample the particles

∗ retain particles according to their importance weights, so that there might be
several copies of some particles, and none of others to get the same number
of particles approximately sampled from p(x(i)

0:t|y1:t)



352 � Machine Learning: An Algorithmic Perspective

The resampling part of this algorithm deserves a little more consideration, because
there are several ways in which it can be done, and they differ in their computational time
and the variance of the estimates. The code on the website provides two implementations:
systematic resampling and residual resampling. The basic idea of systematic resampling is
to use the cumulative sum of the weights (which will be 1 at the very end by definition)
and a set of uniform random numbers ũk, put together so that they are in order using
uk = (k = 1 + ũk)/N and put ni copies of particles i into the next set, where ni is the
number of uk for which

∑i−1
s=1 ws ≤ uk <

∑i
s=1 ws. One way to implement this is using the

following code:

def systematic(w,N):
# Systematic resampling
N2 = np.shape(w)[0]
# One too many to make sure it is >1
samples = np.random.rand(N+1)
indices = np.arange(N+1)
u = (samples+indices)/(N+1)
cumw = np.cumsum(w)
keep = np.zeros((N))
# ni copies of particle xi where ni = number of u between ws[i-1] and ws['
i]
j = 0
for i in range(N2):

while((u[j]<cumw[i]) & (j<N)):
keep[j] = i
j+=1

return keep

Residual sampling tries to speed this up (although it is an O(n) algorithm, it is called
often, and so making it fast is a very good idea) by first using the integer part of Nwi as
an idea of how many copies of each particle i to keep, and then using stratified samples for
the rest.

Figure 16.17 shows the particle filter keeping track of a distribution that changes at
t = 30. The positions of the particles are shown as dots, the underlying state process is
shown as the dashed line, and the observations are shown as pluses. The solid line is the
hypothesised observation based on the mean of the particles. It can be seen that this tracks
the observations very well.

As an example of using the Particle Filter for tracking, Figure 16.18 shows an object
moving at constant speed being tracked in 2D. The weights are computed based on the
Euclidean distance between each particle and the object, and the particles are resampled if
the average distance between them grows too large.



Graphical Models � 353

FIGURE 16.17 A particle filter tracking a 1D distribution that changes at t = 30. The
observations are marked as pluses, the underlying state is shown by the dashed line, the
particles at each iteration are shown as dots, and the hypothesised observation based on
the mean of the particles is shown as a solid line.



354 � Machine Learning: An Algorithmic Perspective

FIGURE 16.18 A particle filter tracking an object moving at a constant speed upwards and
to the right in 2D. The crosses show the position of the object, and the circles show 15
particles at each iteration, starting at black (t = 0) and fading to white (t = 10). It can
be seen that the particles track the object successfully.



Graphical Models � 355

FURTHER READING
Graphical models are a growth area at the moment, with lots of interesting research being
done in the area. The original work in the area, and the motivations for it, are described in:

• J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, San Mateo, CA, USA, 1988.

Alternative overviews of Bayesian networks can be found in the following papers and
books, the last of which is a collection of papers that provides a good overview of the area:

• W.L. Buntine. Operations for learning with graphical models. Journal of Artificial
Intelligence Research, 2:159–225, 1994.

• D. Husmeier. Introduction to learning Bayesian networks from data. In D. Husmeier,
R. Dybowski, and S. Roberts, editors, Probabilistic Modelling in Bioinformatics and
Medical Informatics, Springer, Berlin, Germany, 2005.

• Chapters 8 and 13 of C.M. Bishop. Pattern Recognition and Machine Learning.
Springer, Berlin, Germany, 2006.

• M.I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, MA, USA,
1999.

In the area of Markov Random Fields, the image denoising example comes from:

• S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6:721–741, 1984.

Markov Random Fields are most commonly used in imaging. There are good overviews
in:

• P. Pèrez. Markov random fields and images. CWI Quarterly, 11(4):413–437, 1998.

• R. Kindermann and J.L. Snell. Markov Random Fields and Their Applications. Amer-
ican Mathematical Society, Providence, RI, USA, 1980.

For more details on the Hidden Markov Model, the Kalman filter and the particle filter,
you might want to look at:

• L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–268, 1989.

• Z. Ghahramani. An introduction to Hidden Markov Models and Bayesian networks.
International Journal of Pattern Recognition and Artificial Intelligence, 15:9–42, 2001.

• G. Welch and G. Bishop. An introduction to the Kalman filter, 1995. URL http:
//www.cs.unc.edu/~welch/kalman/. Technical Report TR 95-041, Department of
Computer Science, University of North Carolina at Chapel Hill, USA.

• M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing, 50(2):174–188, 2002.



356 � Machine Learning: An Algorithmic Perspective

• S.J. Julier and J.K. Uhlmann. A new method for the nonlinear transformation of
means and covariances in nonlinear filters. IEEE Transactions on Automatic Control,
45(3):477–482, 2000.

• R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan. The unscented particle
filter. In Advances in Neural Information Processing Systems, 2000. (the technical
report version of this paper is particularly helpful).

A more detailed treatment is given in:

• Chapters 8 and 13 of C.M. Bishop. Pattern Recognition and Machine Learning.
Springer, Berlin, Germany, 2006.

PRACTICE QUESTIONS
Problem 16.1 Compute the probability of taking notes (N) in the Bayesian network shown

in Figure 16.19. The problem describes the chance of you taking notes in the lecture or
sleeping (S) according to whether or not the course was boring (B) based on whether
or not the professor is boring (L) and the content is dull (C). Compute the chance of
falling asleep in a lecture given that both the professor and the course are boring.

Problem 16.2 Use MCMC in order to compute the chance of taking notes in a lecture
given only that you know the lecture is interesting.

Problem 16.3 Compute the most likely path through the HMM shown in Figure 16.20
using the Viterbi algorithm.

Problem 16.4 Suppose that you notice a fairground show where the showman demon-
strates that a coin is fair, but then makes it turn up heads many times in a row. You
notice that he actually has two coins, and swaps between them with sleight-of-hand.
Watching, you start to see that he sticks to the fair coin with probability 0.4, and to
the biased coin with probability 0.1, and that the biased coin seems to come up heads
about 85% of the time. Make a hidden Markov model for this problem, construct an
observation sequence, and use the Viterbi algorithm to estimate the states.

Problem 16.5 On the website are a series of robot sensor readings. The aim is to predict
the next reading from the current one by using a Perceptron, and then monitor the
output of the Perceptron by using a Kalman filter in order to identify problem places
where the prediction does not work.

Problem 16.6 Figure 16.18 performs tracking of an object in 2D using the Euclidean
distance between each particle and the object to set the weights. Modify the code to
compare this to using a binary weight based on proximity to the object where you
will need to set a threshold to define proximity.



Graphical Models � 357

FIGURE 16.19 The Bayesian Network example for Problem 16.1.

FIGURE 16.20 The Hidden Markov Model example for Problem 16.3.





CHA PT E R 17

Symmetric Weights and Deep
Belief Networks

Let’s return to the model of the neuron that was the basis for the neural network algorithms
such as the Perceptron in Chapter 3 and the multi-layer Perceptron in Chapter 4. These
algorithms were based on what are effectively an integrate-and-fire model of a neuron, where
the product of the inputs and the weights was compared with a threshold (generally zero
when a bias node was also used) and the neuron produced a continuous approximation
to firing (output one) or not firing (output zero) for each input. The approximation was
typically the logistic function. The algorithms based on neurons that we have seen have
been asymmetric in the sense that the values of the inputs and weights made the (hidden)
neurons fire, or not, but the values of the neurons would never affect the inputs (in fact,
these input nodes were never considered as neurons).

If we were to think of these networks as graphs, the edges would be directed, with the
arrowhead pointing at the neurons from the inputs. This is shown on the left of Figure 17.1,
where the shading suggests that the two sets of nodes are different, since the light-coloured
nodes affect the firing of the dark-coloured nodes (based on the direction arrows on the
links), but not vice-versa. On the right of the figure, the links are not directed, and so the
nodes are all the same colour, since the firing of the nodes in the top layer, together with
the weights on the edges, can be used to decide if the nodes in the lower layer fire or not,
as well as the other way round.

However, the first learning rule that we saw (Hebb’s rule in Section 3.1.1) was entirely
symmetrical. It said that if two neurons fire at the same time then the synaptic connection
between them gets stronger, while if they do not fire at the same time then the connection
gets weaker. As we saw in that section, this means that if we only see one of two neurons
with a connection between them, then we can decide what the other one does: if they
are positively connected, then if the first one fires, so does the second one, and if they are
negatively connected, then if the first one fires, the second does not. It doesn’t matter which
of the two neurons we see, since the connection between them is symmetric — if we use the
usual notation of writing wmn for the weight (strength) of the connection between neuron
m and neuron n, then wmn = wnm, and so the weight matrix is symmetric.

In this chapter we explore a series of algorithms that are based on learning and using
these symmetric weights. While in general such networks are potentially very complicated
and hard to train, there are certain cases that are tractable and that turn out to be useful.
The first network that we look into is an early—and conceptually very simple—network,

359



360 � Machine Learning: An Algorithmic Perspective

FIGURE 17.1 Two neural networks made up of two layers of nodes. On the left the weighted
links are directional so that whether or not the lighter-coloured nodes fire affects the firing
of the darker-coloured nodes, but not vice-versa, while on the right the two layers are
symmetric, so that the firing of the upper layer can change the firing of the lower layer
in the same way as from bottom to top.

which was described by John Hopfield in 1982. However, before seeing the network we will
look at what it does.

17.1 ENERGETIC LEARNING: THE HOPFIELD NETWORK
17.1.1 Associative Memory
One thing that we know our brains are very good at is remembering things. This is clearly
a crucial part of learning: recognising things that we have seen before. There are many
different types of memory, but one of the most useful is associative memory. An associative
memory, also known as a context-addressable memory, works by learning a set of patterns
in such a way that if you see a new pattern, the memory reproduces whichever of the
stored patterns most closely resembles it. We use this all the time — for example, when
we recognise the letters of the alphabet that are written in some font that we haven’t seen
before, or when we recognise a person when we see them from an unusual angle, or decide
that one person looks like another. It can be thought of as completing or correcting inputs
(depending upon whether there are missing values, or incorrect values in the input).

So it would be worth studying context-addressable memories just because they are
clearly important in the brain. However, there are some more practical applications of
them, too. For example, we can use them to remove the noise from images, or reconstruct
the full image. We train the memory by showing it the complete pictures, and then, when
we show the memory a noisy (i.e., corrupted with some errors), or partial (with missing
values) version it will reproduce the original version.

As an example of the things that you can do with an associative memory, suppose that
we learn a list of pairs of words that are associated together, such as:

Humphrey – Bogart
Ingrid – Bergman
Paul – Henreid



Symmetric Weights and Deep Belief Networks � 361

FIGURE 17.2 Schematic of the Hopfield network, which is a fully connected set of neurons
with symmetric weights.

Claude – Rains
Omar – Sharif
Julie – Christie
The two things that we can do with an associative memory are pattern completion, so

that if we saw ‘Ingrid’ then the memory can provide ‘Bergman’, and pattern denoising, so
that if we saw ‘Hungry – Braggart’ then the memory can correct it to ‘Humphrey – Bogart’.
Of course, we can confuse it by adding memories that overlap. So if

Paul – Newman
was added to the memory, then looking for ‘Paul’ would produce one of the two (‘Henreid’
or ‘Newman’) arbitrarily.

Having understood what the memory does, let’s work out how to make one.

17.1.2 Making an Associative Memory
The Hopfield network consists of a set of McCulloch and Pitts neurons that are fully con-
nected with symmetric weights, so that every neuron is connected to every other neuron,
except for itself (so that wii = 0). In the brain there are cases where neurons have synapses
that connect back to themselves, but we’ll ignore that here. There is a picture of the Hopfield
network in figure 17.2.

McCulloch and Pitts neurons are binary, they either fire or don’t fire, but rather than
using 1 and 0 to encode these outputs, it is more convenient to use 1 and -1 instead. One
reason for this is that it gives us Hebb’s rule very simply. If s(t)

i is the activation of neuron
i at time t, then we can write Hebb’s rule as:

dwtij
dt

= s
(t)
i s

(t)
j , (17.1)



362 � Machine Learning: An Algorithmic Perspective

so that if two neurons have the same behaviour (firing or not firing) then the weight in-
creases, while if they have opposite behaviour then the weight decreases.

Note the time superscripts in Equation (17.1), which imply that the weight update is
based on the activations of the neurons at the current time. However, things are not as clear
when we consider the update of each neuron to decide whether or not it is firing. The reason
for this is that the weights are symmetric, and so there is no pre-defined order in which the
neurons should be updated. For a directed network, we start at the inputs, and use those
values and the weights to decide whether or not the next layer fire, and so on until we get to
the outputs. However, for symmetric weights there is no clearly defined order. This means
that there are two different ways in which we can do the update, and they can sometimes
produce different output behaviours. One method is to use:

s
(t)
i = sign

∑
j

wijs
(t−1)
j

 , (17.2)

which describes synchronous update where effectively every neuron has its value updated at
the same time; imagine all of the neurons making a simultaneous decision about whether
or not to fire at the next time step. The second version is asynchronous, each neuron makes
a decision about when to fire based on the current values — either s(t−1)

j or s(t)
j depending

which is available — of all of the other neurons. The order in which the neurons are updated
could be either random or in some fixed sequence. In either case, it can be necessary to run
the update for several steps to ensure that the network settles into a steady state. This is
sufficient to enable the network to recall previous inputs.

Regardless of which form of update is used, it is still normal to set the threshold for
each neuron to fire at 0, so that the decision about whether or not each will fire is:

si = sign

∑
j

wijsj

 , (17.3)

where sign(·) is a function that returns 1 if the input is greater than 0, and -1 otherwise.
It is possible to include a bias node (which is a node with a constant value, usually ±1) to
change this value in the normal way if required.

We give an input to the Hopfield network by setting the activations of the neurons (the
si) and then running the update equation until the neurons stop changing values. So once
the weights are set, the remembering is very simple. The learning is also simple: the Hopfield
network learns the weights using Hebb’s rule:

wij = 1
N

N∑
n=1

si(n)sj(n), (17.4)

where N is the number of patterns that we want the network to learn and si(n) is the
activation of neuron i for input pattern n. There is no t superscript since we are setting the
values of the neurons, not waiting for them to update.

The 1
N takes the place of the learning rate η in previous learning algorithms. It doesn’t

have much effect for the Hopfield network, since learning is effectively one-shot, but by using
1
N the maximum size of the weights is independent of N .

Suppose that we are learning to reproduce binary images, as in Section 4.4.5. We have
one neuron for each pixel of the picture, and we equate si = 1 with black pixels and si = −1
with white pixels. By considering the case of one input pattern, we can now see that the



Symmetric Weights and Deep Belief Networks � 363

FIGURE 17.3 The Hopfield network is trained on the top two images. When the first image
on the second row is presented it settles back to the first image on the top row. However,
when the second image is presented, it settles to the third image, which is the inverse of
the first input pattern.

Hopfield network does perform image correction. If we set the weights based on an image
and then present a noisy version of that image to the network, then each of the neurons
will have its activity updated by all of the other neurons. Many of the neurons will change
state from 1 to -1 and back again several times until the network settles into its final state
(stabilises). So what will the network stabilise to? Well, providing that more than half of
the initial bits are correct, on average the total input to each neuron will be more than
half correct, and this will overwhelm the errors. This means that the correct pattern is an
attractor: if we let the network settle into its final state, that final state will correspond to
the pattern that the network learned.

What if more than half of the inputs are incorrect? That means that black pixels are
white, and white pixels are black. In this case, the network will settle to the inverse of the
pattern, i.e., the pattern where black and white have been swapped throughout the image
(we will see an example of this in Figure 17.3). If we label the first, correct pattern as x,
this second pattern is −x. This is also an attractor.

Of course, the network actually learns about many input patterns (N of them) and so
there will be many attractors. For this reason, it is not guaranteed to find the ‘correct’
answer, since the noisy input may actually be closer to another of the trained patterns
that the one you expect. This suggests a question that we need to consider, which is: how
many memories can the Hopfield network hold; that is, how many different patterns can
the network remember?

However, before analysing the network further, and answering this question, we will need
a sidetrack, so first here is the complete algorithm:



364 � Machine Learning: An Algorithmic Perspective

The Hopfield Algorithm

• Learning

– take a training set of N d-dimensional inputs x(1),x(2), . . . ,x(N) with elements
±1

– create a set of d neurons (or d+ 1 including a bias node that is permanently set
to 1) and set the weights to:

wij =

 1
N

N∑
n=1

xi(n)xj(n) ∀i 6= j

0 ∀i = j
(17.5)

• Recall

– present the new input x by setting the states si of the neurons to xi
– repeat

∗ update the neurons using:

s
(t)
i = sign

∑
j

wijs
∗
j

 , (17.6)

where s∗j is s(t)
j if that neuron has been updated already, and s(t−1)

j if it has
not. This means that for synchronous update s∗j = s

(t−1)
j for every node,

while for asynchronous update it could be either value.
– until the network stabilises
– read off the states si of the neurons as the output

One way to implement the different forms of update is shown in the following code snip-
pet, which makes clear the difference between the synchronous and asynchronous versions:

def update_neurons(self):
if self.synchronous:

act = np.sum(self.weights*self.activations,axis=1)
self.activations = np.where(act>0,1,-1)

else:
order = np.arange(self.nneurons)
if self.random:

np.random.shuffle(order)
for i in order:

if np.sum(self.weights[i,:]*self.activations)>0:
self.activations[i] = 1

else:
self.activations[i] = -1

return self.activations



Symmetric Weights and Deep Belief Networks � 365

Figure 17.4 shows an example of a Hopfield network being used. The network is trained
on an image of each of the digits 0 to 9 taken from the ‘Binary Alphadigits’ dataset (a web
link is provided on the book website). These are 20 × 16 binary images, of the digits ‘0’ to
‘9’ and ‘A’ to ‘Z’ and the images used are shown in the top row of the figure.

Following the setting of the weights, the network was presented with the corrupted
version of the image of the ‘2’, as shown in the next line, and then performed asynchronous
random updating to settle back to the original, trained, image.

17.1.3 An Energy Function
We will return to the question of the capacity of the network shortly, but first let’s investigate
one of the major contributions that Hopfield made, which was to write down an energy
function for his network. Energy functions are used in physics to compute how much energy
a system has, with the idea that systems relax into low energy states, for example the way
that sets of chemicals mix together to form stable compounds. The energy function for the
Hopfield network with d neurons (where d may or may not include a bias node) is (using
the usual matrix notation in the second line):

H = −1
2

d∑
i=1

d∑
j=1

wijsisj

= −1
2sWsT (17.7)

The reason for the 1
2 is that each weight is counted twice in the double sum, since wijsisj

is the same as wjisjsi, and the negative signs are because we consider that finding lower
energies is better. Note that in the Hopfield network nodes are not connected to themselves,
and so wii = 0.

To see what the energy function computes, consider the case where the network has
learnt one training example, and it sees it again. In this case, wij = sisj , and since s2

i = 1
no matter whether si = −1 or si = 1:

H = −1
2

d∑
i=1

d∑
j=1

wijsisj

= −1
2

d∑
i=1

d∑
j=1,j 6=i

sisjsisj

= −1
2

d∑
i=1

d∑
j=1,j 6=i

s2
i s

2
j

= −1
2

d∑
i=1

d∑
j=1,j 6=i

1

= −d(d− 1)
2 . (17.8)

Note the insistence that the second sum is only over j 6= i from the second line on to
account for the fact that wii = 0.



366 � Machine Learning: An Algorithmic Perspective

FIGURE 17.4 Example of the Hopfield Network reconstructing a noisy version of an image.
The network was trained on the images at the top. It was then presented with the image
on the right of the second row, which is the image on the left of that row, but with 50 bits
corrupted by being inverted (so black becomes white and vice-versa). Three iterations of
the algorithm running are shown in the third row.



Symmetric Weights and Deep Belief Networks � 367

Clearly, any place where the weights and the neurons disagree will give a contribution
with +1 instead of -1, and so the total sum will have a higher (less negative) value. Thus,
the energy function describes the amount of mismatch between the values of the neurons
and what the weights say they should be.

An energy function sets the neural activity of the network into terms that physicists
have used for a long time, and indeed, physicists immediately recognised this equation – it
is (a slight variation of) the energy of the Ising Spin Glasses, which are a simple model of
magnetic materials, and have been very well studied. Once we have an energy function, we
can watch how it changes as the network stabilises.

We have just seen that once the network is stable so that the weights and neuron
activations agree, the energy is at a minimum, and while we wait for it to stabilise, the
energy is higher. This means that the attractors (stable patterns) are local minima of the
error function, just as in previous discussions about such functions. We can imagine the
change in energy as the network learns as an energy landscape (for the example shown in
Figure 17.4 the energy went from -1119.0 to -6447.8). If we think about a ball bearing rolling
around on this landscape under gravity, then the ball will roll downhill until it gets to the
bottom of some hollow, where it will stop. If there are lots of hollows, then which hollow
it will end up in depends on where it starts in the landscape. This is what happens when
many images are stored in the network — there are many different hollows relating to each
of the different images. The area around an attractor, from where the ball bearing will roll
into that hollow, is called the basin of attraction.

Another benefit of having an energy function is that we can see that the network will
eventually reach a stable state at a local minimum. (In fact, this is only true for asynchronous
update; for synchronous update there are cases that never converge.) To see that the network
will reach a local minima, we need to consider an update step where the value of bit
i changes. In this case, the network has gone from state s = (s1, . . . si, . . . sd) to state
s′ = (s1, . . . s

′
i, . . . sd) and the energy has gone from H(s) to H(s′). If we consider this

difference, we get:

H(s)−H(s′) = −1
2

d∑
j=1

wijsisj + 1
2

d∑
j=1

wijs
′
isj (17.9)

= −1
2(si − s′i)

d∑
j=1

wijsj (17.10)

The reason that the bit flipped is because the combination of the weights and the
values of the other neurons disagreed with its current value, so si and

∑d
j=1 wijsj must

have opposite signs. Likewise, si and s′i have opposite signs since the bit flipped. Hence,
H(s)−H(s′) must be positive, and so the total energy of the network has decreased. This
means that while the energy of the network continues to change, it will decrease towards a
minimum. There is no guarantee that the network will reach a global optimum, though.

17.1.4 Capacity of the Hopfield Network
The question of how many different memories the Hopfield network can store is obviously
an important one. Fortunately, it is fairly simple to answer by considering the stability of a
single neuron in the network, which we will label as the ith one. Suppose that the network
has learnt about input x(n) already. If that input is presented to the network again, then



368 � Machine Learning: An Algorithmic Perspective

the output of neuron i will be (using Equation 17.4 and ignoring the 1
N throughout since it

is just a scaling factor):

si =
d∑
j=1

wijxj(n)

=
d∑

j=1,j 6=i

(xi(n)xj(n))xj(n) +

 N∑
m=1,m 6=n

xi(m)xj(m)

xj(n)


= xi(n)(d− 1) +

d∑
j=1,j 6=i

N∑
m=1,m 6=n

xi(m)xj(m)xj(n) (17.11)

The output that we want is si = xi(n), which is the (d− 1 times) the value of the first
term, and so we ideally want the second term to be zero. Note that there are (d−1)×(N−1)
terms to be summed up.

The possible values for each xi are ±1, and we assume that each neuron has an equal
chance of either value, which means that we can model them as random binary variables
with zero mean and unit variance. Thus, the total sum has mean (d − 1)xi(n) (that is,
either −(d − 1) or d − 1) and variance (d − 1) × (N − 1) (and hence standard deviation√

(d− 1)(N − 1)) and it is approximately Gaussian distributed. So what is the probability
that bit i flips state? This happens in the tails of the Gaussian distribution, and we can
compute it using the Gaussian cumulative distribution function (where t = −(d−1)√

(d−1)(N−1)
) as:

P (bit i flips) = 1√
2π

∫ t

−∞
e−t

2/2dt (17.12)

This means that it is the ratio of d−1 and N−1 that is of interest, which is not surprising
since more neurons should be able to hold more memories. There is always a chance that a
bit will flip. If we are prepared to accept a 1% chance of this, then Equation (17.12) tells
us that we can store about N ≈ 0.18d patterns. However, we aren’t quite finished. The
computation we just did was about the probability of the bit flipping on the first iteration
of the update rule. A more involved analysis eventually tells us that with that same error
rate of 1% the network can store about N ≈ 0.138d patterns. So for the 20 × 16 images
that are learnt in the example dataset, there are 320 neurons, so it should be able to hold
around 44 images.

17.1.5 The Continuous Hopfield Network
There is a continuous version of the Hopfield network, which can be adapted to deal with
more interesting data, such as grayscale images. The basic difference is that the neurons
need to have an activation function that runs between -1 and 1. This could be done with
a scaled version of the logistic (sigmoidal) function that was used in earlier chapters, but
instead it is convenient to use the hyperbolic tangent function, which is already in that
range. In NumPy this is computed with np.tanh(). Changing the Hopfield network to use
these neurons is one of the exercises for this chapter.

In the continuous Hopfield network we make the same type of transformation as we
did for the MLP, using a continuous activation function instead of the binary threshold.
This changes the function of the network so that instead of minimising the energy function



Symmetric Weights and Deep Belief Networks � 369

FIGURE 17.5 A schematic of a BM network. All the nodes are fully connected, but there
are visible nodes (in dark grey) and hidden nodes.

in Equation (17.7), it approximates the probability distribution that matches that energy
function:

p(x|W) = 1
Z(W) exp

[
1
2xTWx

]
, (17.13)

where Z(W) =
∑

x exp
( 1

2xTWx
)
is a normalising function.

We can actually compute the distribution in Equation (17.13) directly if we transform
the neuron activations to lie between 0 and 1 instead of -1 and 1, and then interpret them
as the probability of the neuron firing, so that 0 means that the neuron does not fire and
1 means that it definitely does. This means that we have a stochastic neuron, which fires
with probability 1/(1 + e−x). A network based on stochastic neurons like this is known
as a Boltzmann machine. It produces Gibbs samples (see Section 15.4.4) of precisely this
probability distribution, and it is described next.

17.2 STOCHASTIC NEURONS — THE BOLTZMANN MACHINE
The original Boltzmann machine is fully connected just like the Hopfield network. However,
in addition to the neurons where the input can be specified (and the output read off), which
are termed visible neurons, there are also hidden neurons, which are free to take on any role in
the computational model. Figure 17.5 shows a schematic of a possible Boltzmann machine,
which is fully connected, with a set of visible neurons and a set of hidden nodes.

In order to see how to train a Boltzmann machine, let’s start with a stochastic Hopfield
network, where there are no hidden nodes. We will label the states of these visible nodes as
v. We know that the network is sampling from:

P (v|W) = 1
Z(W) exp

(
1
2vTWv

)
, (17.14)



370 � Machine Learning: An Algorithmic Perspective

Therefore, learning consists of modifying the weight matrix W so that the generative
model in Equation 17.14 matches the training data (xn) well. We want to maximise the
likelihood of this, which we can do by computing the derivative of the log of it with respect
to each weight wij :

∂

∂wij
log
∏

n = 1NP (xn|W) = ∂

∂wij

N∑
n=1

1
2(xn)TWxn − logZ(W) (17.15)

=
N∑
n=1

(
xni x

n
j − xni xnj P (x|W)

)
(17.16)

= N〈xixj〉data − 〈xixj〉P (x|W), (17.17)

where in the last line the 〈, 〉 notation means the average, so that the first term is the
average over the data, and the second term is the average over samples from the probability
distribution.

This means that the gradient with respect to each weight is proportional to the difference
between two correlations: the correlation between two values in the data (the empirical
correlation) and the correlation between them in the current model. Clearly, the first of
these is easy to calculate, but the second isn’t easy to evaluate directly. However, it can be
estimated by sampling from the model as the Boltzmann machine iterates.

Hinton, who first described the Boltzmann machine, describes the algorithm for com-
puting these two parts as a ‘wake-sleep’ algorithm. Initially the algorithm is awake, so it
computes the correlation in the data. The network then falls asleep and ‘dreams’ about the
data that it has seen, which lets it estimate the correlations in the model.

We can extend this derivation to a network with hidden neurons as well. We will label
the states of the set of hidden neurons as h, so that the state of the whole network is
y = (v,h). Remember that the hidden states are unknown. The likelihood of the weight
matrix W given a data example xn is (where Z now has to sum over the hidden nodes h
as well as the visible nodes):

P (xn|W) =
∑
h

P (xn,h|W) =
∑

h

1
Z(W) exp

(
1
2(yn)TWyn

)
. (17.18)

Computing the derivative of the log likelihood as before, the gradient with respect to a
weight wij has a similar form of the difference between two terms that are found while the
network is asleep and awake:

∂

∂wij
logP ({xn}|W) =

∑
n

(
〈yiyj〉P (h|xn,W) − 〈yiyj〉P (v,h|W)

)
. (17.19)

Unfortunately, now both of these correlations have to be sampled by running the network
for many iterations, where each iteration has two stages: in the first, awake, stage the visible
neurons have the values clamped to the input (that is, they are held fixed), while the hidden
nodes are allowed to take any values under their model, while in the second, asleep, stage
both sets are sampled from the model.

In Chapter 15 we saw one possible way to get around problems like this, by setting
up a Markov chain that converges to the correct probability distribution. If we let the
chain run until equilibrium then the result will be samples from the distribution, and so
we can approximate the average over the distribution by an average over these samples.



Symmetric Weights and Deep Belief Networks � 371

Unfortunately, this is still computationally very expensive since it will take lots of steps for
the Markov chain to converge at each stage.

However, using this, training the algorithm consists of clamping the visible nodes to the
input, and then using Gibbs sampling (see Section 15.4.4) until the network settles, then
computing the first of the two terms in Equation (17.19). Following this, the visible nodes
are allowed to go free as well and the whole distribution is sampled from, first the visible
nodes and then the hidden nodes, up and down through the network, until it converges
again, and then computing the second term. The weights can then be trained by using
Equation (17.19).

The Boltzmann machine is a very interesting neural network, particularly because it
produces a generative probabilistic model (which is what is sampled from for the weight
updates). However, it is computationally very expensive since every learning step involves
Monte Carlo sampling from the two distributions. In fact, since it is based on symmetric
connections the Boltzmann machine is actually a Markov Random Field (MRF) (see Sec-
tion 16.2). The computational expense has meant that the normal Boltzmann machine has
never been popular in practical use, which is why we haven’t examined an implementation
of it. However, a simplification of it has, and we will consider that next.

17.2.1 The Restricted Boltzmann Machine
The main computational expense in the algorithm above is that both of the correlations have
to be found by sampling, which means that the algorithm has to run for lots of iterations
so that it converges at each step of the learning. This is progressively more expensive as
the number of nodes grows, so that the algorithm scales very badly. However, some of
this sampling was unnecessary for the machine that didn’t have hidden nodes, where it is
possible to compute the first term from the data alone. Ideally, we would like to find some
simplification of the machine that allows for this to happen, and that also makes the number
of sampling steps required to estimate the second correlation reasonably small.

It turns out that it is the interconnections within each layer that cause some of the
problems. Without these interconnections, the nodes in a layer are conditionally independent
of each other, given that the nodes in the other layer are held constant. In other words,
by treating each hidden neuron as an individual ‘expert’ and multiplying together their
distributions for each visible neuron (or taking logs and adding them) it is possible to
compute the probability distribution for each visible neuron. Similarly, the distribution
over the hidden nodes can be computed given the visible nodes.

So the restricted Boltzmann machine (RBM) consists of two layers of nodes, the visible
ones (which are clamped to the inputs during the ‘awake’ training) and the hidden ones.
There are no interconnections within either of the two layers, but they are fully connected
between them using the symmetric weights. This is known as a bipartite graph and an
example for three input nodes and two hidden nodes is shown in Figure 17.6. This machine
was originally known by the delightful name of Harmonium, but the RBM name has stuck,
not least because the tractable training algorithm is conceptually very similar to that for
the full Boltzmann machine.

The algorithm that is used to train RBMs is known as the Contrastive Divergence (CD)
algorithm, and it was created by Hinton and colleagues, who also first proposed the Boltz-
mann machine. The algorithm is a wake-sleep algorithm, and it will be given shortly, before
we consider a numerical example, derive the update equations, and consider some imple-
mentation issues.



372 � Machine Learning: An Algorithmic Perspective

FIGURE 17.6 A schematic of the RBM network. There are two layers of nodes (the visible
ones and the hidden ones) that are connected with symmetric weights.

The Restricted Boltzmann Machine

• Initialisation

– initialise all weights to small (positive and negative) random values, usually with
zero means and standard deviation about 0.01

• Contrastive Divergence Learning

– take a training set of d-dimensional inputs x(1),x(2), . . . ,x(N) with elements
±1

– for some number of training epochs or until the error gets small:
∗ Awake phase
∗ clamp the visible nodes to the values of one of the input vectors
∗ compute the probability of each hidden node j firing as (where bj is the bias
input to hidden node hj):

p(hj = 1|v,W) = 1/(1 + exp(−bj −
d∑
i=1

viwij)) (17.20)

∗ create a random sample to decide if each hidden node hj fires
∗ compute CDpos = 1

N

∑
i

∑
j vihj

∗ Asleep phase
∗ for some number of CD steps:

· re-estimate vi using (where ai is the bias input to hidden node hi):

p(v′i = 1|h,W) = 1/(1 + exp(−ai −
n∑
j=1

wijhj)) (17.21)

· create a random sample to decide if each visible node vi fires



Symmetric Weights and Deep Belief Networks � 373

· re-estimate hj using:

p(h′j = 1|v,W) = 1/(1 + exp(−
d∑
i=1

v′iwij)) (17.22)

· create a random sample to decide if each hidden node hj fires
∗ use the current values of vi and hj to compute CDneg = 1

N

∑
i

∑
j vihj

– Weight Update
– update the weights with (where η is the learning rate, m is the momentum size,

and τ is the current step and τ − 1 is the previous one):

∆wτij = η(CDpos− CDneg) +m∆wτ−1
ij (17.23)

wij ← ∆wτij (17.24)

– update the bias weights with the same learning rule, but based on (where vn is
the vector of visible values for the nth input, and similarly for hn):

CDposvisible bias =
N∑
n=1

x(n) (17.25)

CDnegvisible bias =
N∑
n=1

vn (17.26)

CDposhidden bias =
N∑
n=1

x(n) (17.27)

CDneghidden bias =
N∑
n=1

hn (17.28)

(17.29)

– compute an error term (such as the reconstruction error
∑
i(vi − v′i)2)

• Recall

– clamp an input x by setting the states of the nodes vi to xi
∗ compute the activation of each hidden node j as:

p(hj = 1|v,W) = 1/(1 + exp(−
d∑
i=1

viwij)) (17.30)

∗ create a random sample to decide if each hidden node hj fires
∗ re-estimate vi using:

p(v′i = 1|h,W) = 1/(1 + exp(−
n∑
j=1

wijhj)) (17.31)

∗ create a random sample to decide if each visible node vi fires



374 � Machine Learning: An Algorithmic Perspective

This is a pretty complicated algorithm, so let’s consider a simple example of using an
RBM to illustrate it. Suppose that students need to choose three out of five possible courses
for a particular part of their degree. The courses are Software Engineering (SE), Machine
Learning (ML), Human-Computer Interaction (HCI), Discrete Maths (DM), and Databases
(DB). If a tutor wants to help students by recommending which courses would suit them
better, then it could be useful to separate the students according to whether they prefer
programming or information technology. Looking at a few examples from previous years, the
tutor might see examples like: (ML, DM, DB) and (SE, ML, DB) for the more programming-
orientated students and (SE, HCI, DB) for those that prefer IT. There will, of course, be
students who like both types of courses, and their choices would look more mixed.

Given only the list of which courses students took, the RBM can be used to identify the
clusters in the data and then, given the information about what kind of student they are,
it can suggest which courses they might choose.

Courses
SE ML HCI DM DB
0 1 0 1 1
1 1 0 1 0
1 1 0 0 1
1 1 0 0 1
1 0 1 0 1
1 1 1 0 0

On a very simple, small example like this we can see the effects of the computations very
simply. The wake phase of the algorithm uses these inputs to compute the probabilities, and
then sample activations, for the hidden layer, initially based on random weights. It then
works out the number of times that a visible node and hidden node fired at the same time,
which is an approximation to the expectation of the data. So if for our particular inputs
the computed activations of the hidden nodes were:

Hidden Node 1 Hidden Node 2
1 0
0 1
1 1
0 1
0 1
0 0

then for each of the five courses the CDpos values will be:

Course Hidden Node 1 Hidden Node 2
SE 1 4
ML 2 3
HCI 0 1
DB 1 1
DB 2 3

There are also similar computations for the bias nodes.
The algorithm then takes some small number of update steps sampling the visible nodes

and then the hidden nodes, and makes the same estimation to get CDneg values, which are



Symmetric Weights and Deep Belief Networks � 375

compared in order to get the weight updates, which consist of subtracting these two matrices
and including any momentum term to keep the weights moving in the same direction.

After a few iterations of learning the probabilities start to be significantly different to
0.5 as the algorithm identifies the appropriate structure. For example, after 10 iterations
with the dataset, the probabilities could be (to 2 decimal places):

Courses
SE ML HCI DM DB
0.78 0.63 0.23 0.29 0.49
0.90 0.76 0.19 0.22 0.60
0.90 0.76 0.19 0.22 0.60
0.90 0.76 0.19 0.22 0.60
0.89 0.75 0.34 0.30 0.63
0.89 0.75 0.34 0.30 0.63

At this point we can look at either the probabilities or activations of the hidden nodes
when the visible nodes are clamped to the inputs, or to new test data, or we can clamp the
hidden nodes to particular values and look at the probabilities or activations of the visible
nodes.

If we look at the hidden node activations for the training inputs, then we might well see
something like:

Hidden Node 1 Hidden Node 2
0 1
0 1
1 1
1 1
1 0
1 0

This suggests that the algorithm has identified the same categories that were used to
generate the data, and also seen that the two students in the middle chose a mixture of the
courses.

We can also feed in a new student to the visible nodes, who took (SE, ML, DB) and
the algorithm will turn on both of the hidden nodes. Further, if we turn on only the first
of the two hidden nodes, and sample a few times from the visible nodes we will see outputs
like (1, 1, 1, 0, 1) and (1, 1, 1, 0, 0), since the algorithm does not know to only choose three
courses.

17.2.2 Deriving the CD Algorithm
Having seen the algorithm and a small example of using it, it is now time to look at the
derivation of it. In order to understand the ideas behind this algorithm, let’s recap a little
about what we are doing, which is trying to compute the probability distribution p(y,W),
which can be written as:

p(y,W) = 1
Z(W) exp(yTWy). (17.32)

In order to find the maximum likelihood solution to this equation, as we did previously,



376 � Machine Learning: An Algorithmic Perspective

we would use a training set, compute the derivative of the log likelihood based on this train-
ing set, and use gradient ascent. We saw what this derivative looked like in Equation (17.15),
but we will write it in a slightly different way here.

The log likelihood based on N training inputs is:

L = 1
N

N∑
n=1

log p(xn,W)

= 〈log p(x,W)〉data

= −1
2 〈(x

n)TWxn〉data − logZ(W) (17.33)

When we compute the derivative of this with respect to the weights the second term
goes away and we get:

∂L
∂W = −〈 ∂L

∂W 〉data + 〈 ∂L
∂W 〉p(x,W) (17.34)

Looking at it in this form it is clear what the problem is: the second term is averaged
over the full probability distribution, which includes the normalisation term Z(W), which
is a sum over all of the possible values of x, and so it is very expensive to compute.

The last insight we need is to see an alternative description of what maximising the
likelihood computes. This is that it minimises what is known as the Kullback–Leibler (KL)
divergence, which is a measure of the difference between two probability distributions. In
fact, it is precisely the information gain that we used in Chapter 12. The KL divergence
between two probability distributions p and q is defined as:

KL(p||q) =
∫
p(x) log p(x)

q(x)dx (17.35)

Note that it is asymmetric, in that KL(p||q) 6= KL(q||p) in general.
To see that minimising this is equivalent to maximising the log likelihood we just need

to write it out:

KL(p(x,W)data||p(x,W)model) =
N∑
n=1

pdata log pdata

pmodel
dx

=
N∑
n=1

pdata log pdata −
N∑
n=1

pdata log pmodel

=
N∑
n=1

pdata log pdata −
1
N

N∑
n=1

log p(xn|W)

(17.36)

Since the first term is independent of the weights it can be ignored for the optimisation,
and the second term is the definition of the log likelihood.

Hinton’s insight was that if, instead of minimising the KL divergence, the difference
between two different KL divergences (KL(pdata||pmodel)−KL(pMCMC(n)||pmodel) was min-
imised, then the expensive term in Equation 17.34 would cancel out. The term pMCMC(n)
denotes the probability distribution after n samples of the Markov chain; often n = 1.



Symmetric Weights and Deep Belief Networks � 377

FIGURE 17.7 The form of alternating Gibbs sampling. The initial values of the visible
nodes are used (with the weights) to compute the probability distribution for the hidden
nodes, and then these are used to re-estimate the values of the visible nodes, and the
process iterates.

That is the idea of the contrastive divergence algorithm: we compute the expectation of
the data, and then use Gibbs sampling starting at the data distribution for a small number
of steps to get the next term. In the terms of a wake-sleep algorithm, we don’t allow the
network to dream for long before we wake it up and demand to know what it was dreaming
about.

In order to see what the difference is between them, consider the (non-restricted) Boltz-
mann machine that had only visible nodes. In that case we worked out the full computation
using maximum likelihood, and the resulting weight update equation is:

wij ← wij + η(〈vivj〉data − 〈vivj〉p(x,W) (17.37)

Using the CD algorithm instead doesn’t change things much:

wij ← wij + η(〈vivj〉data − 〈vivj〉MCMC(n)) (17.38)

For the restricted Boltzmann machine the CD weight update is:

wij ← wij + η(〈vihj〉p(h|v,W) − 〈vihj〉MCMC(n)) (17.39)

The first term estimates the distribution of the hidden nodes based on the training data,
while the second runs a few steps of the Markov chain to estimate the distribution. This
running of the Markov chain is in the form of alternating Gibbs sampling, where the values of
the visible nodes and the weights are used to estimate the hidden nodes, and then these are
used to estimate the visible nodes, and the process iterates. This is shown in Figure 17.7.
As with other algorithms based on gradient ascent (or descent), such as the MLP, it can
be very helpful to include a momentum term in the weight update, and this is included in
the description of the RBM algorithm that is given below. Following that are a few notes
about the implementation of the RBM.

Looking at this algorithm you might notice that the bias weights are kept separate to the
others, and have their own update rules. This is because there are two sets of bias weights:
separate ones for the visible nodes and the hidden nodes. These are not symmetrical weights
for the simple reason that they aren’t really weights like the other connections, but just a
convenient way of encoding the different activation thresholds for each neuron.

Most of the computational steps are simple to compute in NumPy. However, one par-
ticular step justifies a little bit of thought, which is the decision about whether a neuron



378 � Machine Learning: An Algorithmic Perspective

actually fires or not, based on a random sample. The probability computation for a neuron
is something like:

sumin = self.visiblebias + np.dot(hidden,self.weights.T)
self.visibleprob = 1./(1. + np.exp(-sumin))

and so the problem is to decide whether or not the neuron actually fires. The simplest way
to do it is to sample a uniform random number between 0 and 1, and then check whether
or not that is bigger. Two possible ways to do that are shown in the next code snippet:

self.visibleact1 = (self.visibleprob>np.random.rand(np.shape(self.'
visibleprob)[0],self.nvisible)).astype(’float’)
self.visibleact2 = np.where(self.visibleprob>np.random.rand(self.visibleprob.'
shape[0],self.visibleprob.shape[1]),1.,0.)

There is no difference between the output of these two lines, so at first glance there is
nothing to choose between them. However, there is a difference. To see it we need to explore
the tools that Python provides to time things, with the TimeIt module. This can be used
in different ways, but as a demonstration, we will just use it at the Python command line.
The TimeIt module runs a command (or set of commands) a specified number of times,
and returns information about how long that took.

The next few lines show the results of running this on my computer, where the first
argument to the timeit method is the command to time, the second is the setup to do
(which is not included in the time), and the last one is the number of times to run it. So
this code makes a fairly small array of random numbers and uses the two approaches to
turn them into binary firing values, performing it 1,000 times.

>>> import timeit
>>> timeit.timeit("h = (probs > np.random.rand(probs.shape[0],probs.shape[1])'
).astype(’float’)",setup="import numpy as np; probs =
np.random.rand(1000,'
100)",number=1000)
2.2446439266204834
>>> timeit.timeit("h= np.where(probs>np.random.rand(probs.shape[0],probs.'
shape[1]),1.,0.)",setup="import numpy as np; probs =
np.random.rand(1000,100)'
",number=1000)
5.140886068344116

It can be seen that the second method takes more than twice as long as the first method,
although neither of them is that fast. Since this is a computation that will be performed
many, many times when the RBM runs, it is definitely worth using the first version rather
than the second.



Symmetric Weights and Deep Belief Networks � 379

You might be wondering why the truth values are cast as floats rather than ints. We
have seen the reason for this type of casting before which is that NumPy tends to cast
things as the lowest complexity type, and so if the activations are cast as integers, then the
whole calculation of the probabilities that are based on this input at the next layer can also
be cast as integers, which obviously causes large errors.

Using this code to compute the activations of the two layers, the steps for simple con-
trastive divergence in Python match the algorithm description very clearly:

def contrastive_divergence(self,inputs,labels=None,dw=None,dwl=None,'
dwvb=None,dwhb=None,dwlb=None,silent=False):

# Clamp input into visible nodes
visible = inputs
self.labelact = labels

for epoch in range(self.nepochs):
# Awake Phase
# Sample the hidden variables
self.compute_hidden(visible,labels)

# Compute <vh>_0
positive = np.dot(inputs.T,self.hiddenact)
positivevb = inputs.sum(axis=0)
positivehb = self.hiddenprob.sum(axis=0)

# Asleep Phase
# Do limited Gibbs sampling to sample from the hidden distribution
for j in range(self.nCDsteps):

self.compute_visible(self.hiddenact)
self.compute_hidden(self.visibleact,self.labelact)

# Compute <vh>_n
negative = np.dot(self.visibleact.T,self.hiddenact)
negativevb = self.visibleact.sum(axis=0)
negativehb = self.hiddenprob.sum(axis=0)

# Learning rule (with momentum)
dw = self.eta * ((positive - negative) / np.shape(inputs)[0] - self.'
decay*self.weights) + self.momentum*dw
self.weights += dw
dwvb = self.eta * (positivevb - negativevb) / np.shape(inputs)[0] + self.'
momentum*dwvb
self.visiblebias += dwvb
dwhb = self.eta * (positivehb - negativehb) / np.shape(inputs)[0] + self.'
momentum*dwhb
self.hiddenbias += dwhb
error = np.sum((inputs - self.visibleact)**2)

visible = inputs



380 � Machine Learning: An Algorithmic Perspective

FIGURE 17.8 An RBM for supervised learning, with an extra layer of ‘label’ nodes, also
connected with symmetric weights. However, these nodes use soft-max activation instead
of logistic activation.

self.labelact = labels

17.2.3 Supervised Learning
The RBM performs pattern completion, just like the Hopfield network, so that after training,
when a corrupted or partial input is shown to the network (by putting them into the visible
units) the network relaxes to a lower energy trained state. However, it is possible to extend
the RBM so that it performs classification. This is done by adding an additional layer of
soft-max units (for a reminder about soft-max, see Section 4.2.3) that also have symmetric
weights (see Figure 17.8).

The activation of these nodes is soft-max rather than logistic, so that there is only one
neuron (one class) activated for each input. The training rule for this extra set of weights
(and the corresponding bias weights) is also based on contrastive divergence.

The additions that this makes to an implementation of the RBM are fairly simple, with
the most obvious difference in the sampling of the visible nodes, since there are now two
sets of them: the input nodes and the label nodes (l), so we are computing p(v|h,W) and
p(l|h,W′), where W′ are the extra weights connecting the hidden nodes to the label nodes;
these weights are not included in the conditioning of each other since they are independent
given the hidden nodes. However, the probabilities of the hidden nodes are conditioned on
both of them (and both sets of weights): p(h|v, l,W,W′).

Since the label nodes are soft-max units, the activation of them is different, as was
described in Section 4.2.3. However, the implementation can be a little awkward in that if
we use the soft-max equation as it stands, then the numbers get very large (since we are



Symmetric Weights and Deep Belief Networks � 381

calculating ex for quite large values of x). One simple solution to this is to subtract off the
largest value so that the numbers are all 0 or below. This does make for quite complicated
code, unfortunately:

# Compute label activations (softmax)
if self.nlabels is not None:
sumin = self.labelbias + np.dot(hidden,self.labelweights.T)
summax = sumin.max(axis=1)
summax = np.reshape(summax,summax.shape+(1,)).repeat(np.shape(sumin)[1],'
axis=-1)
sumin -= summax
normalisers = np.exp(sumin).sum(axis=1)
normalisers = np.reshape(normalisers,normalisers.shape+(1,)).repeat(np.'
shape(sumin)[1],axis=-1)
self.labelact = np.exp(sumin)/normalisers

Figure 17.9 shows the outputs of a RBM with 50 hidden nodes learning about 3 letters
(‘A’, ‘B’, and ‘S’) from the Binary Alphadigits dataset without knowing about the labels,
while Figure 17.10 shows the same examples, but with a labelled RBM. The algorithm had
1,000 epochs of learning. The top row shows the training set (with 20 examples of each
letter) and the reconstructed version of each member of the training set, while the bottom
row shows the test set of the remaining 57 examples (19 of each) and their reconstructions.
It can be seen that the reconstructions are mostly pretty good. The labelled algorithm got 0
training examples wrong, and 5 of the test examples wrong, whereas the unlabelled version
got 0 training examples wrong, but 7 test examples wrong.

17.2.4 The RBM as a Directed Belief Network
We have just seen that the RBM does a pretty good job of learning about a fairly complex
dataset, and that the fact that we can use the network as a generative model helps us to
see what it is learning. One way to understand the power of the RBM is to see that it is
equivalent to a directed network that has an infinite number of layers, all consisting of the
same stochastic neurons as the RBM, and with the same weight matrix connecting each
pair of sequential layers, as is shown in Figure 17.11.

For a given set of weights we can use this network to generate possible inputs that
were used in training by putting a random configuration into the nodes of an infinitely
deep layer. The activations of the previous layer can then be inferred using the weights,
and choosing the binary state of each neuron from a probability distribution based on the
parents. This procedure can be iterated until the visible nodes are reached, and this gives
us a reconstruction of a possible input.

It is also possible to go ‘up’ the network, from the visible nodes through the layers,
by using the transpose of the weight matrix that is used for going from top to bottom.
This enables us to infer the factorial distribution (that is, just the product of independent
distributions) over a hidden layer by setting values for the visible layer below it. This is
a factorial distribution since the nodes in the hidden layer are independent of each other.
We can follow this process up the layers, and it enables us to sample from the posterior
distribution over the hidden layers.



382 � Machine Learning: An Algorithmic Perspective

FIGURE 17.9 Training with an unlabelled RBM. Top left: Training set, top right: recon-
structed versions of the training set, bottom left: Test set, bottom right: reconstructed
versions of the test set. A few errors can be seen in this last set, such as the last picture
on the 5th line, where an ‘S’ has been reconstructed as a ‘B’.

FIGURE 17.10 Training with a labelled RBM. Left: reconstructed versions of the training
set, right: reconstructed versions of the test set.



Symmetric Weights and Deep Belief Networks � 383

FIGURE 17.11 A Directed Belief Network with infinite layers.



384 � Machine Learning: An Algorithmic Perspective

Since we can sample from the posterior distribution, we can also compute derivatives of
the probability of the data (and more pertinently, the log probability of the data):

∂ log p(v0)
∂wij

= 〈h0
j (v0

i − v̂0
i )〉, (17.40)

where v0 denotes the vector of values in visible layer 0, and v̂i is the probability that neuron
i is firing if the visible vector is reconstructed from the sampled hidden values. Since the
weight matrix is the same between each pair of layers, v̂0

i = v1
i .

Since we have the same weight matrix at each layer, the full derivative of the weight
needs to have the contribution of all of the layers included in it:

∂ log p(v0)
∂wij

= 〈h0
j (v0

i − v1
i )〉+ 〈v1

i (h0
j − h1

j )〉+ 〈h1
j (v1

i − v2
i )〉+ 〈v2

i (h1
j − h2

j )〉+ . . . (17.41)

If you look at this carefully, you will notice that most of the terms cancel out, and the
final result is:

∂ log p(v0)
∂wij

= 〈v0
i h

0
j 〉 − 〈v∞i h∞j 〉, (17.42)

which is exactly the same as the full Boltzmann machine. Since the two networks minimise
the same gradient and are based on the same sampling steps, they are equivalent.

This actually lets us see something important, which is the RBM seems to cancel out
some of the need for explaining away when performing inference. Explaining away is one of
the main challenges with performing inference in a belief network. We want to be able to
choose between possible competing reasons for something happening, so that if we see that
a visible node is on, and there are two competing hidden nodes that could have caused it,
they don’t both get switched on automatically.

To see why explaining away matters, suppose that you are sitting a multiple-choice exam
for a topic that you know nothing about (hopefully not machine learning any more!). If you
were to get a passing grade for that exam, then the possible reasons could be that you
got very lucky with your guesses, or that the examiner mixed up your exam paper with
somebody who did understand the material.

Both of these reasons are quite unlikely, and they are independent of each other. So if you
see the class genius looking shocked when she collects her result, then you can deduce that
your exam papers have been swapped over, and stop thinking about buying a lottery ticket
on the way home. In other words, although the two explanations are independent of each
other, they are made conditionally dependent by the fact that they are both explanations
for your exam success.

Explaining away was not a problem in the infinite belief network that we have just seen,
but it would be for a finite one. Consider a single hidden layer, with a data vector clamped
on the visible inputs. The nodes in the hidden layer would have a distribution that includes
conditional dependencies between them, based on the data vector. In the infinite version
this doesn’t happen, since the other hidden layers cancel them out. These cancelling-out
terms are sometimes known as complementary priors.

The RBM is of interest in itself, but it is what you can build it up into that is even more
interesting, and this fact of equivalence with the infinite directed belief network will help
with the required algorithm, as we shall see in the next section.



Symmetric Weights and Deep Belief Networks � 385

17.3 DEEP LEARNING
We saw in Chapter 4 that an MLP can learn any arbitrary decision surface. However, the
fact that it can do it only tells part of the story of learning. It might very well need lots
and lots of nodes in order to learn some interesting function, and that means even more
weights, and even more training data, and even more learning time, and even more local
minima to get stuck in. So while it is true in theory, it doesn’t mean that the MLP is the
last word in learning, not even supervised learning.

One way to view all of the algorithms that we have talked about in this book is that
they are shallow in the sense that they take a set of inputs and produce (linear or nonlinear)
combinations of those inputs, but nothing more than that. Even the methods that are based
on trees only consider one input at a time, and so are effectively just a weighted combination
of the inputs.

This doesn’t seem to be the way that the brain works, since it has columns built up of
several layers of neurons, and it also isn’t the way that we seem to do things like analysing
images. For example, Figure 17.12 shows an image and different representations and sets
of features that can be derived from the image. If we want to perform image recognition
then we can’t just feed in the pixel values into our machine learning algorithm, since all
that this will do is find combinations of these pixel values and try to perform classification
based on that. Instead, we derive sets of features of interest from the images, and feed those
into the learning algorithm. We choose the features that seem to be useful according to
our knowledge of the problem that we wish to solve and the appearance of the images; for
example, if we are looking at the shape of objects, then edges are more useful than textures.
It might also be useful to know how circular objects are, etc. Further, if the intensity of
lighting in the images change, so that some are dark and some are light, then pixel intensities
are not very useful, but edges and other features based on derivatives of the image intensity
might well be.

All of this knowledge is put into the choice of the inputs features by the human investi-
gator, and then the derived features are fed into the machine learning algorithm, with the
hope that combinations of these derived features will be enough to enable the recognition.

However, when we look at an image we appear to perform several different recognition
problems, looking at shape, texture, colour, etc., both independently and together. It seems
that we split the recognition problem up into lots of sub-problems, and solve those and
combine the results of those sub-problems to make our decision. We go from the colour
of individual parts of the image (sort-of like pixels) through progressively more abstract
representations until we combine them all to recognise the whole image.

We can make deep networks, where there are progressively more combinations of derived
features from the inputs with the MLP, since we can just add more layers and then use the
back-propagation algorithm to update the weights. But the search space that the algorithm
is trying to find a minimum of gets massively larger as we do this, and the estimates
of the gradients in that space that the back-propagation algorithm is making get noisier
and noisier. So making deep networks isn’t so hard, but training them is. In fact, they
should actually need less training overall than a shallow network that has the equivalent
expressivity, for reasons that I won’t go into here, but that doesn’t make them easier to
train.

The first experiments that people performed into deep learning were mostly with au-
toencoders, which we saw in Section 4.4.5. These were MLPs where the inputs and outputs
were clamped together, so that the (smaller number of) hidden nodes produced a lower
dimensional representation of the inputs. We also saw that this could be used to perform
pattern completion.



386 � Machine Learning: An Algorithmic Perspective

FIGURE 17.12 The idea of deep learning is that initial analysis of an image such as the
bird at the bottom can only deal with the pixel values. The learners at different levels can
produce higher-order correlations of the data, so that eventually the whole system can
learn more complicated functions.



Symmetric Weights and Deep Belief Networks � 387

FIGURE 17.13 A schematic of a deep network built up of a set of autoencoders. The
hidden layer of one autoencoder, which provides a representation of the input data it
sees, is used as the input to the next one. The second half of each autoencoder, which is
the reconstruction of the inputs, is shown in lighter grey and with dotted weight lines.

The idea is fairly simple: we train a single autoencoder, and then use the hidden layer
of that network as the input to another one. This second network learns a higher-order
representation of the initial inputs, that are based on the activations of the hidden nodes of
the original network. Progressively more autoencoders can be trained and stacked on top
of one another, and if the purpose is to do classification or regression, then a Perceptron
can be added at the top, to take the activations of the final set of hidden nodes and
perform supervised learning on them. Figure 17.13 shows a schematic of this kind of learning
architecture.

The simplicity of the scheme is also the problem with it. Each autoencoder is trained
in a pretty much unsupervised way; it is normal back-propagation learning, but the input
and the desired output are the same, so there is no real information about what the hidden
layer should be learning. There is some real supervised learning in the Perceptron at the
final layer of the network, but this network has to deal with what it gets as the inputs,



388 � Machine Learning: An Algorithmic Perspective

there is no error signal that informs the weights in all of the lower-down autoencoders and
enables them to be trained further to produce more useful representations of the inputs.

There is some similarity between autoencoders and RBMs; they perform the same job,
but the autoencoder is directional in that the weights run from input to hidden node to
output, while the RBM weights are symmetrical. This means that we can run the RBM
backwards: we can take samples of the hidden nodes and infer the values of the visible nodes
that gave rise to them. This is a generative model of the type of inputs that the network
sees. And this means that we can get information from the top of a stack of RBMs and push
it back down through the RBMs all the way back to the input visible units, which gives us
a chance of actually changing the weights of these RBMs, and so the representations that
they find.

Deep learning is a very popular area for research at the moment, and various companies
like Google obviously believe it is important, since they are employing a large number of
deep learning researchers, and buying up companies that have been successful in developing
applications based upon these ideas.

A set of stacked RBMs is known as a Deep Belief Network (DBN) and it is the topic of
the next section.

17.3.1 Deep Belief Networks (DBN)
Conceptually, the DBN is pretty much the same thing that we have just seen with autoen-
coders. It consists of a series of unlabelled RBMs stacked together, with a labelled RBM at
the very top. However, while creating the architecture is simple, we need to do some work
to work out how to train it.

The first hope would be that we set up our stack of RBMs, and then use CD learning
to train all of the weights in the network at the same time. However, it turns out that it
takes a very long time for the network to settle to a distribution, and this involves lots of
sampling steps up and down the network.

Instead, we will start greedily, by sequentially training the series of RBMs, just as we
discussed doing for the autoencoders above. We clamp an input onto the visible nodes,
and train this RBM, which will learn a set of symmetric weights that describe a generative
model of the inputs. We then sample the hidden nodes of the RBM, and sequentially train
a series of these RBMs, each unlabelled, with the visible nodes for layer i being clamped to
samples of the hidden nodes for layer i−1. At the top layer we use an RBM with labels, and
train that. This is the complete greedy learning algorithm for the DBN, and it is exactly
the same as we could do with an autoencoder. However, we haven’t finished yet.

At this stage we can recognise that there are two purposes to the network: to recognise
inputs (that is, to do normal classification) based on the visible nodes and to generate
samples that look like the inputs based on the hidden nodes. The RBM is fully symmetric
and so the same weight matrix is used for these two purposes. However, once we start to
add extra layers of RBMs above and below, with success training of each RBM based on
the training of the one below it, things get a bit out of sync between working upwards from
the visible nodes at the bottom to perform recognition, and working downwards from the
output nodes to generate samples, principally because in the generative model the weights
were set assuming that the hidden node probabilities came from the recognition model, and
this is no longer true, since they come from the layers above the current one, and therefore
will be different to the values that they were trained on.

For these reasons, there are two parts to the training. In the first, greedy, part there is
only one set of weights, and so the training is precisely that of a set of autoencoders, while



Symmetric Weights and Deep Belief Networks � 389

in the second part the recognition weights and generative weights are decoupled, except for
the labelled RBM at the top layer (since there the weights are still actually the same since
there are no layers above to confuse things). We can now use a variant of the wake-sleep
algorithm that we saw earlier. Starting at the visible layer with a clamped input, we use the
recognition weights to pick a state for each hidden variable, and then adjust the generative
weights using Equation (17.40). Once we have reached the associative memory RBM at the
top, we train this normally and then create samples of the hidden units using (truncated)
Gibbs sampling. These are then used to sample the visible nodes at the top-most unlabelled
RBM, and a similar update rule (with the role of hidden and visible nodes switched) is used
to train the recognition weights.

So initially there is only one set of weights, and these are cloned at the appropriate point
in the learning, and then modified from there. The following code snippet shows one way
to implement this in NumPy.

def updown(self,inputs,labels):

N = np.shape(inputs)[0]

# Need to untie the weights
for i in range(self.nRBMs):

self.layers[i].rec = self.layers[i].weights.copy()
self.layers[i].gen = self.layers[i].weights.copy()

old_error = np.iinfo(’i’).max
error = old_error
self.eta = 0
for epoch in range(11):

# Wake phase

v = inputs
for i in range(self.nRBMs):

vold = v
h,ph = self.compute_hidden(v,i)
v,pv = self.compute_visible(h,i)

# Train generative weights
self.layers[i].gen += self.eta * np.dot((vold-pv).T,h)/N
self.layers[i].visiblebias += self.eta * np.mean((vold-pv),axis=0)

v=h

# Train the labelled RBM as normal
self.layers[self.nRBMs].contrastive_divergence(v,labels,silent=True)

# Sample the labelled RBM
for i in range(self.nCDsteps):

h,ph = self.layers[self.nRBMs].compute_hidden(v,labels)
v,pv,pl = self.layers[self.nRBMs].compute_visible(h)



390 � Machine Learning: An Algorithmic Perspective

# Compute the class error
#print (pl.argmax(axis=1) != labels.argmax(axis=1)).sum()

# Sleep phase

# Initialise with the last sample from the labelled RBM
h = v
for i in range(self.nRBMs-1,-1,-1):

hold = h
v, pv = self.compute_visible(h,i)
h, ph = self.compute_hidden(v,i)

# Train recognition weights
self.layers[i].rec += self.eta * np.dot(v.T,(hold-ph))/N
self.layers[i].hiddenbias += self.eta * np.mean((hold-ph),axis=0)

h=v

old_error2 = old_error
old_error = error
error = np.sum((inputs - v)**2)/N
if (epoch%2==0):

print epoch, error
if (old_error2 - old_error)<0.01 and (old_error-error)<0.01:

break

This combination of a greedy and wake-sleep algorithm trains the RBN. It is possible to
show that if the full maximum likelihood training (rather than CD learning) is used then
this training regime will never reduce the log probability of the data under the generative
model. However, in practice CD learning is always used since it gives good results in a
reasonable time.

Both classification and generative modelling simply consist of choosing values for the
appropriate nodes and then sampling your way up or down the set of layers of the network.
The entire algorithm is given next.

The Deep Belief Network Algorithm

• Initialisation

– create a set of unlabelled RBMs with pre-defined numbers of hidden nodes in
each, and the corresponding number of visible nodes in the layer above; finish
with a single labelled RBM.

– initialise all weights to small (positive and negative) random values, usually with
zero mean and 0.01 standard deviation

• Greedy learning

– clamp the input vector on the visible units of the first RBM and train it using
the CD learning algorithm in Section 17.2.1



Symmetric Weights and Deep Belief Networks � 391

– sample the hidden nodes of this RBM and use these values to set the visible units
of the next RBM

– repeat up the stack until you reach the RBM with labels; train this one with
supervised learning using the hidden layer of the topmost RBM as the input
visible units and the labels as the output visible units

– Wake-sleep
∗ for some pre-determined number of epochs, or until learning stops improving:
∗ for each of the unlabelled RBMs (k):

· create a copy of the weight matrix, separating those for recognition and
for generation

· set the visible nodes to the relevant inputs (the inputs or the hidden
nodes of the network below)

· sample the hidden nodes and use those samples to reconstruct the visible
nodes

· update the generative weights with:

w
g,(k)
ij ← w

g,(k)
ij + ηhj(vi − v̂i) (17.43)

where vi is the input value of visible node i, v̂i is the reconstructed
version, and (k) indexes the RBMs

· update the biases with:

wvisible,ij ← wvisible,ij + ηmean(vi − v̂i) (17.44)

∗ train the labelled RBM as normal with CD learning
∗ use alternating Gibbs’ sampling for a small number of iterations to get sam-
ples for hidden and visible nodes of the labelled RBM

∗ for each of the unlabelled RBMs (k), starting at the top:
· initialise the hidden nodes with the samples from the visible nodes of

the layer above
· sample the visible nodes and use those samples to reconstruct the hidden

nodes
· update the recognition weights with:

w
r,(k)
ij ← w

r,(k)
ij + ηvi(hj − ĥj) (17.45)

where hj is the input value of hidden node j and ĥj is the reconstructed
version

· update the biases with:

whidden,ij ← whidden,ij + ηmean(hj − ĥj) (17.46)

There are no particular new surprises in the implementation of this pair of algorithms.
To see how well this works, we continue with the three characters from the Binary

Alphadigits dataset that we used to demonstrate the RBM. Figure 17.14 shows the output
for a DBN made up of three RBNs, each with 100 nodes in the hidden layer.



392 � Machine Learning: An Algorithmic Perspective

FIGURE 17.14 Training with the DBN. Top left: Training set, top right: reconstructed
versions of the training set, bottom left: Test set, bottom right: reconstructed versions
of the test set. The reconstructions are clearer than for the single RBN, although some
errors are still visible such as the very last one.



Symmetric Weights and Deep Belief Networks � 393

FURTHER READING
The Hopfield network and some early work on Boltzmann Machines is covered in:

• D.J.C. MacKay. Information Thoery, Inference and Learning Algorithms. Cambridge
University Press, Cambridge, UK, 2003.

For more up-to-date information, Hinton’s papers are the best resource. If you are looking
to make implementations of the RBM, then the following is definitely helpful:

• G. E. Hinton. A practical guide to training restricted Boltzmann machines. Technical
Report UTML TR 2010-003, Department of Computer Science, University of Toronto,
2010.

For more on Deep Belief Networks, try:

• G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

• Yoshua Bengio. Learning deep architectures for AI. Technical Report 1312, Dept.
IRO, Universit’e de Montréal.

• Juergen Schmidhuber. Deep Learning in Neural Networks: An Overview http://
arxiv.org/abs/1404.7828

PRACTICE QUESTIONS
Problem 17.1 In the Hopfield network the learning rate is not an important parameter.

Work out why not, and justify the use of 1
N .

Problem 17.2 Modify the Hopfield network code to make a continuous version of the
network, using tanh() (which is available as np.tanh()) as the activation function.
Produce a greyscale version of the digits problem and use it to recognise them.

Problem 17.3 The Travelling Salesman Problem (TSP) was discussed in Section 9.4. It
can be solved using a Hopfield network by using an N ×N network for N cities, with
the columns representing the cities, and the rows representing the order in which they
occur, so that there is exactly one active neuron in each row and column in a valid
solution. The weights between adjacent columns encode -1 times the distance between
the cities, and the weights between nodes in the same row or column should be set
as a large negative value to stop more than one entry in each row and column being
activated. Implement this and compare it to solving the TSP using the methods in
Section 9.4.

Problem 17.4 Create a dataset that consists of horizontal and vertical stripes in a 2D
array of size 4×4. Test whether or not an RBM can differentiate between the horizontal
and vertically striped examples. Is the result what you expected?

Problem 17.5 In the RBM the probabilities for the nodes can be used, or actual acti-
vations based on random numbers. Hinton, in the practical guide referred to in the
Further Reading section suggests that for the hidden nodes it is important to use
activations for the hidden nodes (except for the final step of the CD learning), but
probabilities are fine for the visible nodes. Modify the code to experiment with using
both versions and compare the results on the AlphaDigits dataset.



394 � Machine Learning: An Algorithmic Perspective

Problem 17.6 Hinton also suggests that it can be very effective to use minibatches of
between 10 and 100 examples (as was discussed in Section 4.2.7 for the MLP) in order
to estimate the gradient. Implement this and investigate how many cases work best
for different datasets. Make sure that you randomise the order to the data at each
iteration.

Problem 17.7 Apply the Deep Belief Network to the MNIST dataset. Compare to just
using a single RBM.



CHA PT E R 18

Gaussian Processes

The supervised machine learning algorithms that we have seen have generally tried to fit
a parametrised function to a set of training data in order to minimise an error function.
This function is then used to generalise to previously unseen data. Some of the differences
between the methods have been the set of model functions that the algorithm can use to
represent the data; for example, the linear models of Chapter 3 and the piecewise constant
splines of Chapter 5. However, if we do not know anything about the underlying process that
generated the data, then choosing an appropriate model is often a trial-and-error process.

As a very simple example, Figure 18.1 shows a few datapoints. If we assumed that these
were drawn from a single Gaussian distribution then we would have two parameters to fit
(the mean and standard deviation) in order to get the best match that we could, as shown in
the middle figure. However, choosing a different distribution (here, a Weibull distribution,
which also has two parameters):

f(x; k, λ) =
{

k
λ

(
x
λ
k−1e−( xλ )k

)
, x ≥ 0

0 x < 0
(18.1)

gives a better fit, as shown on the right (where the dashed line is the Weibull distribution
and the solid line is the Gaussian). For the Gaussian µ = 0.7 and σ2 = 0.25, while for the
Weibull k = 2 and λ = 1.

One possible solution to this problem is to let the optimisation process search over

FIGURE 18.1 Left: a set of datapoints, right: two possible fits to that data, using a Gaus-
sian (solid line) and Weibull distribution (dashed line). It can be seen that the Weibull
distribution fits the data better, although both are a fairly good fit.

395



396 � Machine Learning: An Algorithmic Perspective

FIGURE 18.2 Left: 10 samples from the stochastic process f(x) = exp(ax) cos(bx) with
a and b drawn from Gaussian distributions. Right: The probability distribution of f(1)
based on 10,000 samples of f(x).

FIGURE 18.3 Left: 10 samples from the stochastic process f(x) = exp(−ax2) with a > 0
drawn from a Gaussian distribution. Right: The probability distribution of f(1) based on
10,000 samples of f(x).

different models as well as the parameters of the model. To do this, we need to generalise
the idea of a probability distribution to something that we can optimise over. This is known
as a stochastic process, and it is simply a collection of random variables put together:
instead of having a set of parameters that specify a probability distribution (such as the
mean and covariance matrix for a multivariate Gaussian), we have a set of functions and
a distribution over that set of functions. Figure 18.2 shows an example of a set of samples
from the stochastic process f(x) = exp(ax) cos(bx) with a drawn from a Gaussian with
mean 0 and variance 0.25, and b from a Gaussian with mean 1 and variance 1, together
with the probability distribution of f(1) (computed from a set of 10,000 samples of f(x)).

Dealing with general stochastic processes is very difficult because combining the random
variables is generally hard. However, if we restrict the process in such a way that all of the
random variables have a Gaussian distribution, and the joint distribution over any (finite)
subset of the variables is also Gaussian, then this Gaussian process (GP) is much easier to deal
with. In order to see that it is still very powerful, Figure 18.3 shows a set of samples from
f(x) = exp(−ax2) with a drawn from a Gaussian distribution with mean 1 and standard
deviation 0.25. It can be seen that the probability distribution of f(1) is not a Gaussian.

The way to think about modelling with a Gaussian process is that we put a probability
distribution over the space of functions and sample from that. A function is a mapping



Gaussian Processes � 397

from some (possibly multi-dimensional) input x to f(x), so to specify the function we could
just list the value of f(x) for every value of x, which would be an infinitely long vector.
One sample would consist of a specification of this vector. However, because everything is
Gaussian, just as we specify a Gaussian distribution with the mean and covariance matrix,
we can specify a Gaussian process by the mean function and a covariance function.

A complete specification of a particular function would, as has already been remarked,
require an infinitely long vector. However, it turns out that Gaussian processes are very
well behaved, so that considering only finite sets of points gives exactly the same inference
result as would the compete integral (for more on this, see the references in the Further
Reading section).

There have been various versions of Gaussian processes around for a very long time,
known as kriging after one inventor, and Kolmogorov–Wiener prediction after two more. In
more than one dimension it is technically a Gaussian random field, which was the focus of
Section 16.2.

In fact, Gaussian processes are just smoothers, fitting a smooth curve through a set of
datapoints. It seems amazing that such a simple process can be so powerful, but regression
problems do all pretty much boil down to finding a smooth function that passes through
the data. More surprisingly, we will see later in the chapter that Gaussian processes can
also solve classification problems, which are harder to view in this way. Regardless of how
it is viewed, it is time to start working out how to use one.

18.1 GAUSSIAN PROCESS REGRESSION
As was mentioned previously, the GP is specified by the mean and covariance functions.
In fact, it is usual to subtract off the mean first, so that the mean function is identically
zero. In this case, the GP is completely described as a function G(k(x,x′)) that models
some underlying function f(x), where covariance function k(x,x′) gives us the expected
covariance matrix between the values of f at x and x′. The random variables that define
the GP are used to provide an estimate of f(x) for each input x.

This is where we have to put some prior work in: the covariance function needs to be
specified, and this is what provides the expressive power of the GP. This covariance function
is the same thing as the kernel, which we explored in Chapter 8, and there are strong links
between SVMs and GPs; for more details see the references in the Further Reading section.

Taking a hint from SVMs, then, we will start with a covariance matrix that has the form
of the RBF kernel:

k(x,x′) = σ2
f exp

(
− 1

2l2 |x− x′|2
)
. (18.2)

In GPs, for some reason, this is normally known as the squared exponential covariance
matrix rather than the RBF. For a set of input vectors it enables us to specify a matrix of
covariances K where the element at place (i, j) in the matrix is Kij = k(x(i),x(j)).

There are two parameters in this covariance function: σf and l, and we shall consider
them shortly. First, though, we will work out how to use the GP to predict the value of
f∗ = f(x∗) for some values of x∗ based on a training set of values f(x).

As is usual for supervised learning, the training set consists of a set of N labelled
examples (xi, ti), i = 1..N . Since this is a GP, the joint density P (t∗, tN ) is a Gaussian
(where the notation is meant to imply that t∗ is a single test point, while tN is the whole
set of training target labels) and so is this conditional distribution:



398 � Machine Learning: An Algorithmic Perspective

P (t∗|tN ) = P (t∗, tN )/P (tN ). (18.3)

The covariance matrix for the joint distribution is KN+1, which has size (N+1)×(N+1),
and can be partitioned in the following way:

KN+1 =


 KN

 k∗
[

k∗T
]

[k∗∗]

 (18.4)

where KN is the covariance matrix for the training data, k∗ is the covariance matrix between
the test points x∗ and the training data (which also appears in transposed form), and k∗∗
is the covariance between the points in the test set (which will be a single scalar value when
building KN+1 from KN ). If there are N pieces of training data and n test points, then
the sizes of these parts are N × N , N × n, and n × n, respectively. We will drop the size
subscript from K from now on, and use it to denote the covariance matrix of the training
data (KN ) and use the notation introduced in Equation (18.4).

The joint distribution of the training and test data (p(t, t∗) is the Gaussian distribution
with zero mean and the extended covariance matrix shown in Equation (18.4). We know
the values of the observations for the test data, so we only want to produce samples that
match the observables at these points. We could do this by choosing random samples and
throwing them away if they don’t match, but this would be very slow, since very few of the
samples would match.

Fortunately, we can condition the joint distribution on the training data, which gives us
the posterior distribution as:

P (t∗|t,x,x∗) ∝ N
(
k∗TK−1t, k∗∗ − k∗TK−1k∗

)
, (18.5)

where N (m,Σ) denotes a Gaussian distribution with mean m and covariance Σ.
There is one important thing to notice, which is the requirement to invert the N × N

matrix K, which is an expensive operation, and not necessarily a numerically stable one. The
good news is that only the covariance matrix of the training data needs to be inverted, and
so this only has to be done once. However, if there is a lot of training data then this is still
an expensive O(N3) operation, and it requires that the matrix is (numerically) invertible.

18.1.1 Adding Noise
The top-left plot in Figure 18.4 shows the mean and plus/minus two standard deviations
of the posterior distribution for the squared exponential kernel with the five datapoints
marked as the training data. In that plot, you can see that the variance at the training data
is zero, which is fine if you don’t believe that your training data has any noise. However,
this is, of course, very unlikely. The usual way to add noise into any GP is to assume that
it is independent, identically distributed Gaussian noise and so include an extra parameter
into the covariance matrix, so that instead of using K we use K+σ2

nI, where I is the N×N
identity matrix. Noise is only added to the covariance for the training data. Together, the
parameters of the kernel, including σn, are known as hyperparameters.

The posterior distribution is then:

P (t∗|t,x,x∗) ∝ N
(
k∗T (K + σnI)−1t, k∗∗ − k∗T (K + σnI)−1k∗

)
. (18.6)



Gaussian Processes � 399

FIGURE 18.4 The effects of adding noise to the estimate of the covariance in the training
data with the squared exponential kernel. Each plot shows the mean and 2 standard
deviation error bars for a Gaussian process fitted to the five datapoints marked with dots.
Top left: σn = 0.0, top right: σn = 0.2, bottom left: σn = 0.4, bottom right: σn = 0.6



400 � Machine Learning: An Algorithmic Perspective

FIGURE 18.5 The effects of the other two parameters in the squared exponential kernel
(compare to the top-left plot of Figure 18.4). Each plot shows the mean and 2 standard
deviation error bars for a Gaussian process fitted to the five datapoints marked with dots.
The parameters of the kernels were: Top left: σf = 0.25, l = 1.0, σn = 0.0, top right:
σf = 1.0, l = 1.0, σn = 0.0, bottom left: σf = 0.5, l = 0.5, σn = 0.0, bottom right:
σf = 0.5, l = 2.0, σn = 0.0.

The other three plots in Figure 18.4 show the effect that adding increasing amounts of
observation noise makes.

Since we have considered the role of one of the hyperparameters, this is also a good place
to consider the role of σf and l. Figure 18.5 shows the effects of changing these parameters
for the same data as in Figure 18.4. It can be seen that modifying the signal variance σ2

f

simply controls the overall variance of the function, while the length scale l changes the
degree of smoothing, trading it off against how well the curve matches the training data.

Of the two parameters it is the l factor that is of most interest. It acts as a length scale,
which says something about how quickly the function changes as the inputs vary. Figure 18.6
shows GP regression with similar data, except that in the plots on the second row, the x
values of the points have been brought closer together. On the left, l = 1.0, while on the
right l = 0.5. It can be seen that the top left and bottom right plots, where the length scale
‘matches’ the distances in the data, the fit looks smoother.



Gaussian Processes � 401

FIGURE 18.6 The effects of changing the length scale in GP regression. The top row shows
one dataset, while the second row shows the same dataset, but with the points brought
closer together. The length scale is the same for the plots above each other, being l = 1.0
on the left and l = 0.5 on the right.



402 � Machine Learning: An Algorithmic Perspective

18.1.2 Implementation
We have seen everything that we need to compute a basic Gaussian process regression
program: we compute the covariance matrix of the training data, and also the covariances
between the training and test data, and the test data alone. Then we compute the mean
and covariance of the posterior distribution and sample from it. This results in the following
algorithm:

Gaussian Process Regression

• For given training data (X, t), test data x∗, covariance function k(), and hyperparam-
eters θ = (σ2

f , lσ
2
n):

– compute the covariance matrix K = k(X,X) + σnI for hyperparameters θ

– compute the covariance matrix k∗ = k(X,x∗)
– compute the covariance matrix k∗∗ = k(x∗,x∗)
– the mean of the process is k∗TK−1t
– the covariance is k∗∗ − k∗TK−1k∗

However, before implementing it, there are a few numerical problems that need to be
dealt with, as inverting the matrix (K+σnI) is not always stable, as it can have eigenvalues
that are very close to 0.

Since we know that K is symmetric and positive definite, there are more stable ways
to perform the inversion. The key is what is known as the Cholesky decomposition, which
decomposes a real-valued matrix K into the product LLT , where L is a lower triangular
matrix that only has non-zeros entries on and below the leading diagonal. There are two
benefits to this, first that it is relatively cheap to calculate the inverse of a lower triangular
matrix (and the inverse of the original matrix is K−1 = L−TL−1, where L−T = (L−1)T ),
and secondly that it provides a very quick and easy way to solve linear systems Ax = b.

In fact, these two benefits are both parts of the same thing, since the inverse of a matrix
A is the matrix B for which AB = I, and we can solve this column-by-column as ABi = Ii
(where the subscript is an index for the ith column of the matrix).

To solve LLTx = t it is simply a matter of forward substitution to find the z that solves
Lz = t followed by back-substitution to find the x that solves LTx = z.

The cost of these operations is O(n3) for the Cholesky decomposition and O(n2) for the
solve, and the whole thing is numerically very stable. NumPy provides implementations of
both of these computations in the np.linalg module, and so the whole computation of the
mean (f) and covariance (V) can be written as:

L = np.linalg.cholesky(k)
beta = np.linalg.solve(L.transpose(), np.linalg.solve(L,t))
kstar = kernel(data,xstar,theta,wantderiv=False,measnoise=0)
f = np.dot(kstar.transpose(), beta)
v = np.linalg.solve(L,kstar)
V = kernel(xstar,xstar,theta,wantderiv=False,measnoise=0)-
np.dot(v.transpose('
),v)



Gaussian Processes � 403

The computation of V uses vTv, where Lv = k∗ and to see that this does indeed match
the covariance in Equation (18.6) requires a little bit of algebra:

k∗TK−1k∗ = (Lv)TK−1Lv
= vTLT (LLT )−1Lv
= vTLTL−TL−1Lv
= vTv

Comparing the code to Equation (18.6) you might also notice that the mean can be
written in a slightly different way as:

m(x,x∗) =
∑
i

βik(xi,x∗), (18.7)

where βi is the ith part of β = (K + σ2
nI)−1t. This suggests that we can consider GP

regression as the sum of a set of basis functions positioned on the training data; indeed for
the squared exponential covariance matrix, we have produced precisely an RBF method; see
Chapter 5. In that chapter we could modify the weights that specified the locations of the
RBFs, but here we can’t, but we can modify the weights that connect them to the outputs.
Seen in this way, this GP is basically a linear neural network.

So providing that the hyperparameters are chosen to match the data, using a GP for
regression is very simple. Now we are ready to do some learning to modify the parameters
based on the data in order to improve the fit of the GP.

18.1.3 Learning the Parameters
The squared exponential covariance matrix (Equation (18.2)) has three hyperparameters
(σf , σn, l) that need to be selected, and we have already seen that they can have a significant
effect on the shape of the resulting output curve, so that finding the correct values is very
important. In the next section we will also see that with more complex covariance matrices
there are many more hyperparameters to choose, and so finding an automatic method of
choosing the hyperparameters is clearly important if GPs are going to be useful.

If the set of hyperparameters are labelled as θ then the ideal solution to this problem
would be to set up some kind of prior distribution over the hyperparameters and then
integrate them out in order to maximise the probability of the output targets:

P (t∗|x, t,x∗) =
∫
P (t∗|x, t,x∗,θ)P (θ|x, t)dθ. (18.8)

This integral is very rarely tractable, but we can compute the posterior probability of
θ (which is the marginal likelihood times P (θ)). The log of the marginal likelihood (also
known as the evidence for the hyperparameters, which marginalises over the function values)
is:

logP (t|x,θ) = −1
2tT (K + σ2

nI)−1t− 1
2 log |K + σ2

nI| − N

2 log 2π. (18.9)

In order to derive this equation you need to remember that the product of two Gaussians
is also Gaussian (up to normalisation) and then write out the equation of a multivariate
Gaussian and take the logarithm.

We now want to minimise this log likelihood, which we can do by using our favourite



404 � Machine Learning: An Algorithmic Perspective

gradient descent solver from Chapter 9 (for example, conjugate gradients from Section 9.3),
providing that we first compute the gradient of it with respect to each of the hyperpa-
rameters. We will write Q = (K + σ2

nI) and then recall that Q is a function of all of the
hyperparameters θi. Amazingly, these derivatives have a very nice form, as can be seen with
the use of two matrix identities (where ∂Q

∂θ is simply the element-by-element derivative of
the matrix):

∂Q−1

∂θ
= −Q−1 ∂Q

∂θ
Q−1 (18.10)

∂ log |Q|
∂θ

= trace
(

Q−1 ∂Q
∂θ

)
. (18.11)

Then:

∂

∂θ
logP (t|x,θ) = 1

2tTQ−1 ∂Q

∂θ
Q−1t− 1

2trace
(

Q−1 ∂Q
∂θ

)
. (18.12)

Now, all that is required is to actually perform the computations of the derivatives of
the covariance with respect to each hyperparameter, and then optimise the log likelihood
using the conjugate gradient solver.

It will make things slightly easier if we change the way that the hyperparameters are
presented a little bit. Note that all of the hyperparameters are positive numbers (since they
are all squared in Equation (18.2). We can also make them positive by taking the exponential
of each of them, and since the derivative of an exponential is just the exponential, this can
make things a little clearer. Further, we will effectively work with 1/σl since it also makes
the computation easier.

For the squared exponential kernel (where there is a slight notation abuse in the use of
the identity matrix I in the last term):

k(x,x′) = exp(σf ) exp
(
−1

2 exp(σl)|x− x′|2
)

+ exp(σn)I (18.13)

= k′ + exp(σn)I (18.14)

these are nice and easy to compute:

∂k

∂σf
= k′ (18.15)

∂k

∂σl
= k′ ×

(
−1

2 exp(σl)|x− x′|2
)

(18.16)

∂k

∂σn
= exp(σn)I (18.17)

Note that the term inside the bracket in ∂k
∂σl is precisely the one that has already been

computed for the exponential calculation.

18.1.4 Implementation
The basic algorithm is very simple again, which is to call the conjugate gradient optimiser
to minimise the log likelihood, providing it with the computations of the gradients with



Gaussian Processes � 405

respect to the parameters. The SciPy optimiser was used in Section 9.3 and the syntax is
no different here:

result = so.fmin_cg(logPosterior, theta, fprime=gradLogPosterior,
args=[(X,y)'
], gtol=1e-4,maxiter=5,disp=1)

where possible implementations of the log likelihood and gradient functions are:

def logPosterior(theta,args):
data,t = args
k = kernel2(data,data,theta,wantderiv=False)
L = np.linalg.cholesky(k)
beta = np.linalg.solve(L.transpose(), np.linalg.solve(L,t))
logp = -0.5*np.dot(t.transpose(),beta) - np.sum(np.log(np.'
diag(L))) - np.shape(data)[0] /2. * np.log(2*np.pi)
return -logp

def gradLogPosterior(theta,args):
data,t = args
theta = np.squeeze(theta)
d = len(theta)
K = kernel2(data,data,theta,wantderiv=True)

L = np.linalg.cholesky(np.squeeze(K[:,:,0]))
invk = np.linalg.solve(L.transpose(),np.linalg.solve(L,np.'
eye(np.shape(data)[0])))

dlogpdtheta = np.zeros(d)
for d in range(1,len(theta)+1):

dlogpdtheta[d-1] = 0.5*np.dot(t.transpose(), np.dot('
invk, np.dot(np.squeeze(K[:,:,d]), np.dot(invk,t)))) '
- 0.5*np.trace(np.dot(invk,np.squee

ze(K[:,:,d])))

return -dlogpdtheta

In terms of implementation, the only thing that we have not covered yet is how to
compute the covariance matrix, but there is nothing complex about that: the function takes
in two sets of datapoints and returns the covariance matrix, and possibly the gradients as
well (which is the wantd switch). One possible way to do this for the squared exponential
kernel is:



406 � Machine Learning: An Algorithmic Perspective

def kernel(data1,data2,theta,wantderiv=True,measnoise=1.):
# Squared exponential
theta = np.squeeze(theta)
theta = np.exp(theta)
if np.ndim(data1) == 1:

d1 = np.shape(data1)[0]
n = 1

else:
(d1,n) = np.shape(data1)

d2 = np.shape(data2)[0]
sumxy = np.zeros((d1,d2))
for d in range(n):

D1 = np.transpose([data1[:,d]]) * np.ones((d1,d2))
D2 = [data2[:,d]] * np.ones((d1,d2))
sumxy += (D1-D2)**2*theta[d+1]

k = theta[0] * np.exp(-0.5*sumxy)

if wantderiv:
K = np.zeros((d1,d2,len(theta)+1))
K[:,:,0] = k + measnoise*theta[2]*np.eye(d1,d2)
K[:,:,1] = k
K[:,:,2] = -0.5*k*sumxy
K[:,:,3] = theta[2]*np.eye(d1,d2)
return K

else:
return k + measnoise*theta[2]*np.eye(d1,d2)

Figure 18.7 shows an example of a Gaussian process before and after optimisation, with
initially random hyperparameters. Before the optimisation process the log likelihood of the
data under the model, based on random initialisation of the hyperparameters, was around
60, whereas afterwards it was around 16. It can be seen that the model fits the data much
better after the optimisation process.

18.1.5 Choosing a (set of) Covariance Functions
Like any other kernel, the choice of covariance function is crucial to successful prediction.
This is the modelling part of GP learning, and it is entirely human-dependent: you choose
appropriate covariance functions and then the algorithm learns their parameters. All that
is required is that the functions must generate positive-definite (or actually, non-negative
definite) covariance matrices. There is a fairly large choice of typical kernels for GPs, but
given that our only restriction is that they must be positive-definite, it is possible to add
and multiply kernels as we saw in Section 8.2 using Mercer’s theorem. The upshot of this
is that you can string together a whole set of covariance functions that represent different
parts of what you believe the data is doing. So for example, if you think that there are two
different squared exponential processes, but with different length scales, you could include
two versions of the kernel, and optimise the two different length scales.



Gaussian Processes � 407

FIGURE 18.7 Left: the data and the model based on random parameters, right: the fitted
model.

A few commonly used covariance functions are:

Constant k(x,x′) = eσ

Linear k(x,x′) =
∑D
d=1 e

σdxdx′d

Squared Exponential k(x,x′) = eσf exp
(
− 1

2 exp(σl)(x− x′)2)
Ornstein–Uhlenbeck k(x,x′) = exp (− exp(σl)|x− x′|)

Matérn k(x,x′) = 1
2σν−1Γ(σν)

(√
2σν
l (x− x′)

)ν
Kν

(√
2σν
l (x− x′)

)
,

where Kσν is a modified Bessel function and Γ is the gamma function.

Periodic k(x,x′) = exp
(
−2 exp(σl) sin2(σνπ(x− x′))

)
Rational Quadratic k(x,x′) =

(
1 + 1

2σα exp(σl)(x− x′)2
)−σα

18.2 GAUSSIAN PROCESS CLASSIFICATION
While it is possible to perform multi-class classification with a Gaussian process, we will
consider only two classes, labelled as +1 and -1. The task of the process is then to model
the probability that input x belongs to class 1, which means that the output should be a
value between 0 and 1 (inclusive) like all good probabilities. We will arrange this in the
same way that we did it for neurons: by squashing it using the logistic function P (t∗ =
1|a) = σ(a) = 1/(1 + exp(−a)), where a is the output of the regression GP, and a little care
is needed since we are now using σ(·) to denote the logistic function, as well as σn to denote
a hyperparameter and even σ2 as the variance. Since there are two classes P (t∗ = −1|a) =
1− P (t∗ = 1|a), and so we can write p(t∗|a) = σ(t∗f(x∗)). So GP classification consists of
finding a GP prior over f(x) (known as the latent function) and then putting this through
the logistic function to find a prior on the predicted class, which is:

p(t∗ = 1|x, t,x∗) =
∫
σ(f(x∗))p(f(x∗)|x, t,x∗)df(x∗). (18.18)

This is a 1D integral, and so it can be computed numerically, but unfortunately the like-
lihood function p(f(x∗)|x, t,x∗) is not a Gaussian function and so computing that term is



408 � Machine Learning: An Algorithmic Perspective

intractable. This means that some form of approximation is needed. There are several meth-
ods of doing these approximations, including using MCMC, but we will consider only the
simplest version, which is known as Laplace’s approximation. The references at the end of the
chapter provide a list of places with more information about more advanced approximation
methods.

18.2.1 The Laplace Approximation
Laplace’s approximation is a way to approximate any integral of the form

∫
exp(f(x))dx,

which, of course, includes Gaussians. The basic idea is to find the global maximum of the
function f(x), which occurs at some x0. At this point the gradient of f(x) (which is ∇f(x))
is 0, and so the second-order Taylor expansion around x0 is (where ∇∇f(·) is the Hessian
matrix):

f(x) ≈ f(x0) + 1
2(x− x0)T∇∇f(x)(x− x0). (18.19)

Since the logarithm of a Gaussian is a quadratic function, this has a unique maximum,
and so we replace f(x) by log f(x) and then compute the exponential of this, which tells
us that:

f(x) ≈ f(x0) exp
(

1
2(x− x0)T∇∇ log f(x)(x− x0)

)
. (18.20)

Normalising this to make it a Gaussian distribution tells us that:

q(f(x)|x, t) ∝ exp
(
−1

2(f(x)− f̂(x))TW(f(x)− f̂(x))
)

= N (f(x)|f(x0,W−1)), (18.21)

where W = −∇∇ log f(x).
In order to compute the Laplace approximation we need to find the value of x0 and then

evaluate the Hessian matrix at that point. Identifying x0 can be done using the Newton–
Raphson iteration, which finds an approximation to solutions of f(x) = 0 (in fact, here we
want to find f ′(x) = 0, but this doesn’t change things much) by iterating the computation:

xn+1 = xn −
f(xn)
f ′(xn) (18.22)

until the changes are sufficiently small for the required accuracy.

18.2.2 Computing the Posterior
Returning to the actual computations that we need for the GP, we had reached the stage
of approximating p(f(x∗)|x, t,x∗). Using Bayes’ rule we get that:

p(f(x)|x, t) = p(t|f(x))p(f(x)|x)
p(t|x) . (18.23)

We are in the lucky situation that the denominator is independent of f(), and so can be
ignored for the optimisation. The first term in the numerator is:



Gaussian Processes � 409

p(t|f(x)) =
N∏
i=1

σ(f(xi))tn(1− σ(f(xi))1−tn . (18.24)

We will need to differentiate the log of this expression twice in order to use Equa-
tion (18.21):

∇ log p(t|f(x)) = t− σ(f(x))−K−1f(x) (18.25)
∇∇ log p(t|f(x)) = −diag(σ(f(x))(1− σ(f(x))))−K−1, (18.26)

where diag() puts the values along the diagonal of a zero matrix, and this term is the W
matrix in Equation (18.21).

We now need to find the maximum of log p(t|f(x)), for which we construct the Newton–
Raphson iteration:

f(x)new = f(x)−∇∇ log p(t|f(x))
= f(x) + (K−1 + W)−1(∇ log p(t|f(x))−K−1f(x))
= (K−1 + W)−1(Wf((x)) +∇ log p(t|f(x))). (18.27)

Thus, the Laplace approximation to the posterior probability is:

q(f(x)|x, t) = N (f̂ , (K−1 + W)−1). (18.28)

Based on this, we can estimate the posterior mean and variance. For the mean, we need
to use the fact that at the maximum of log p(t|f(x)):

f̂(x) = K(∇ log p(t|f̂(x))), (18.29)

and then the expressions for the mean and variance of the GP regression give us posterior
distribution:

P (t∗|t,x,x∗) ∝ N
(
k∗T (t− σ(f(x))), k∗∗ − k∗T (K + W−1)−1k∗

)
(18.30)

For the optimisation we will also need to calculate the log likelihood and the gradient
of it with respect to each hyperparameter, just as we did for GP regression.

The log likelihood is:

log p(t|x,θ) =
∫
p(t|f(x)p(f(x)|θ)df(x), (18.31)

and so we again use the Laplace approximation to get:

log p(t|x,θ) ≈ log q(t|x,θ)

= log p(f̂(x)|θ) + log p(t|f̂(x)− 1
2 log |W + K−1|+ N

2 log(2π).

(18.32)

Differentiating this with respect to each of the hyperparameters will lead to two terms,
since both f̂() and K depend on θ. The same matrix identities as for the regression case are



410 � Machine Learning: An Algorithmic Perspective

useful, and the first part, which is the explicit dependence upon any element of θ is fairly
similar to the regression case:

∂

∂θj
log p(t|θ)

∣∣∣∣
explicit

= 1
2 f̂(x)TK−1 ∂K

∂θj
K−1f̂(x)− 1

2trace
(

(I + KW)−1W ∂K
∂θj

)
(18.33)

We can then use the chain rule to get the other parts: ∂
∂θj

= ∂
∂f̂

∂f̂
∂θj

, where:

∂f̂

∂θj
= (I + WK)−1 ∂K

∂θj
(t− σ(f̂(x)), (18.34)

and so we just need to compute:

∂

∂f̂(xi)
log |W + K−1|

=
(
(I + WK)−1K

)
ii
σ(f̂(xi))(1− σ(f̂(xi)))(1− 2σ(f̂(xi))

∂f̂(xi)
∂θj

(18.35)

Note that this includes the third derivative of the σ(·) term!
Putting these three terms together gives us the whole gradient, ready for the conjugate

gradient solver.

18.2.3 Implementation
The algorithm can be written out from the previous discussion, but as with the regression
case, there are some tricks that can be used to improve the computational time and stability.
The main one is that the matrix (K+W−1) can be inverted using another matrix identity:

(K + W−1)−1 = K−KW 1
2 B−1W 1

2 K, (18.36)

where · 12 means the element-wise square root and B is the symmetric positive definite matrix

B = I + W 1
2 KW 1

2 . (18.37)

To make implementation easier, the algorithm is written out here in these computation-
ally efficient terms:

Gaussian Process Classification

• To find the maximum by Newton–Raphson iteration:

– compute the covariance matrix K = k(X,X) + σnI for hyperparameters θ

– repeat until change < tolerance:
∗ W = −∇∇ log p(f(x))
∗ L = cholesky(I + W 1

2 KW
1
2 )

∗ update f using Equation (18.27), with Equation (18.36) giving the form of
the inverse matrix

∗ change = oldf - f



Gaussian Processes � 411

FIGURE 18.8 Gaussian process classification for a very simple dataset (shown plotted in
the figure on the left). The latent function can be seen on the left, and the output of the
logistic function on the right.

• To make a prediction:

– compute the covariance matrix k∗ = k(x∗,X)
– compute the covariance matrix k∗∗ = k(x∗,x∗)
– compute the maximum f∗ using the Newton–Raphson iteration algorithm
– the mean of the process is k∗∇ log p(f(x))
– solve Lv = W 1

2 k∗ for v
– the variance is k∗∗ − vTv

• To compute the log likelihood and gradient:

– compute log likelihood using Equation (18.31)
– compute R = W 1

2 B−1W 1
2 , where B is defined in Equation (18.37).

– compute s2 = ∂
∂f̂(x) log q using Equation (18.35)

– for each hyperparameter θj :
∗ compute gradients of covariance matrix with respect to θj

∗ compute explicit gradient s1 = ∂
∂θj

log p(t|θ) using Equation (18.33)

∗ compute s2 = ∂f̂
∂θj

using Equation (18.34)
∗ full gradient of log likelihood for θj is s1 + sT2 s3

Figure 18.8 shows a very simple example of Gaussian process classification. The data
consists of a few points at around x = −2 and x = +2 that belong to one class and a few
at around x = 0 that belong to the other class.

It is possible to do multi-class classification with GPs. The basic idea is to use a separate
latent function for each class (so that the function f(x) gets c times longer for c classes),
looking like:

(fC1
1 , fC1

2 , . . . fC1
n , fC2

1 , fC2
2 , . . . fC2

n , . . . fCc1 , fCc2 , . . . fCcn ). (18.38)

The target vector has to be the same dimension, so it will contain a row of n 1s where the



412 � Machine Learning: An Algorithmic Perspective

FIGURE 18.9 Gaussian process classification on the modified XOR dataset, with standard
deviations σ = 0.1 (left), σ = 0.3 (middle), σ = 0.4 (right). The line gives the p = 0.5
decision boundary.

fi for the correct target class are, and 0 everywhere else. The covariance function will then
be represented by a set of blocks of the individual covariance matrices. It is also necessary to
use soft-max instead of the logistic function to do the ‘squashing’ of the regression output,
which changes the derivatives in the computation of the log likelihood and its gradients.
For further details on this, see the references in the Further Reading section.

There has been a lot more work on Gaussian processes over the past 10 years, including
far more sophisticated optimisation methods, better ways to perform multi-class classifi-
cation, and a better understanding of the links between Gaussian processes and neural
networks, splines, and many other topics, but they are beyond our scope here: for more
information, consult the references in the Further Reading section.

For a fairly simple idea, Gaussian processes do tend to work very well on a wide range of
topics, and the way that the covariance function explicitly encodes the correlations that can
be seen in the data means that the user has a lot of control. Even in the simple treatment
here we have put quite a lot of effort into making the computations numerically stable
and relatively fast. However, there is much more that can be done, including methods for
approximation to speed things up significantly. Again, the Further Reading section provides
more detail.

FURTHER READING
There is a very readable book dedicated solely to Gaussian Processes, which is:

• Carl Edward Rasmussen and Christopher K.I. Williams. Gaussian Processes for Ma-
chine Learning. MIT Press, Cambridge, MA, USA, 2006.

Another summary that may be useful is:

• D. MacKay. Neural networks and machine learning. NATO ASI Series, Series F,
Computer and Systems Sciences, 168:133–166, 1998.



Gaussian Processes � 413

and GPs are also covered in:

• D.J.C. MacKay. (Chapter 45) Information Theory, Inference and Learning Algo-
rithms. Cambridge University Press, Cambridge, UK, 2003.

• C.M. Bishop. (Section 6.4) Pattern Recognition and Machine Learning. Springer,
Berlin, Germany, 2006.

PRACTICE QUESTIONS
Problem 18.1 The current implementation only has the squared exponential kernel in.

Implement some more of those listed in Section 18.1.5 and experiment with them, par-
ticularly with the Palmerston North ozone layer dataset that we saw in Section 4.4.4.
You might find the example in Section 5.4.3 of Rasmussen and Williams helpful.

Problem 18.2 Compare the optimisation results with using other optimisers, such as
BFGS.

Problem 18.3 A simple version of multiclass classification uses one-against-all classifiers
as we did with the SVM. Implement that and see how well it works on the iris dataset.





A P P E ND I X A

Python

The examples in this book are all written in Python, and the various graphs and results were
also created in that language, using the code available via the book website. The purpose
of this chapter is to give a brief introduction to using Python, and particularly NumPy, the
numerical library for Python.

A.1 INSTALLING PYTHON AND OTHER PACKAGES
The Python language is very compact, but there are huge numbers of extensions and libraries
available to make it more suited to a wide variety of tasks. Almost all of the examples in the
book use NumPy, a set of numerical libraries, and the figures are produced using Matplotlib.
Both of these packages have syntax that is similar to MATLAB®. There are a few places
where examples also use SciPy, the scientific programming libraries.

An Internet search will turn up working distributions as self-extracting zip files for the
major operating systems, which will include the Python interpreter and all of the packages
that are used in the book, amongst others. If you download individual packages, then
they generally come with a setup script (setup.py) that can be run from a shell. Package
webpages generally give instructions.

A.2 GETTING STARTED
There are two ways that Python is commonly used. The first is as an interactive command
environment, such as iPython or IDLE, which are commonly bundled with the Python
interpreter. Starting Python with one of these (using Start/IPython in Windows, or by
typing python at a command prompt in other operating systems) results in a script window
with a command prompt (which will be shown as >>>). Unlike with C or Java, you can
type commands at this prompt and the interpreter will run the commands and display the
results, if any, on the screen. You can write functions in a text editor and run them from the
command prompt by calling them by name. We’ll see more about functions in Section A.3.

As well as iPython there are several other Python IDEs and code editors available for
various operating systems. Two nice possibilities are the Java-based IDE Eclipse using the
extension for Python called PyDev, and Spyder, which is aimed at exactly the kind of
scientific Python that we are doing in this book. Both of these are freely available on the
Internet and include all of the usual syntax highlighting and development help. In addition,
you can run programs directly, and you can also set up an interactive Python environment
so that you can test small pieces of code to see how they work.

The best way to get used to any language is, of course, to write programs in it. There

415



416 � Machine Learning: An Algorithmic Perspective

is lots of code in the book and practical programming assignments along the way, but if
you haven’t used Python before, then it will help if you get used to the language prior to
working on the code examples in the book. Section A.3 describes how to get started writing
Python programs, but here we will begin by using the command line to see how things work.
This can be in iPython or IDLE, by typing python at the command prompt, or within the
console in the PyDev Eclipse extension or Spyder.

Creating a variable in Python is easy: you give it a name and assign a value. While
Python is strongly typed (so that variables that contain integers don’t suddenly change to
holding strings or floats without being told to) it performs all the declaration and creation of
variables for you, unlike lower level languages like C. So typing >>> a = 3 at the command
prompt (note that the >>> is the command prompt, so you only actually type a = 3) defines
a as an integer variable and gives it value 3. To see the effect of the integer typing, type
>>> a/2, and you will see that the answer is 1. What Python actually does is compute the
answer in the most accurate of the types that are included in the calculation, but since a
is an integer, and so is 2, it returns the answer as an integer. You can see this using the
type() function; type(3/2) returns <type ’int’>. So >>> a/2.0 will work perfectly well,
since the type of 2.0 is a float (type(3/2.0) = <type ’float’>. When writing floats, you
can abbreviate them to 2. without the zero if you really want to save typing one character.
To see the value of a variable you can just type its name at the command prompt, or use
>>> print a, or whatever the name of the variable is.

You can perform all of the usual arithmetic operators on numbers, adding them up, etc.
Raising numbers to a power is performed by a**2 or pow(a,2). In fact, you can use Python
as a perfectly good calculator at the command line.

Just like in many other languages, comparison is performed using the double equals
(==). It returns Boolean values True (1) and False (0) to tests like >>> 3 < 4 and >>> 3
== 4. The other arithmetic comparisons are also available: <, <=, >, >= and these can be
chained (so 3<x<6 performs the two tests and only returns True if both are true). The not-
equal-to test is != or <>, and there is another useful comparison: is checks if two variables
point to the same object. This might not seem important, but Python works by reference,
which means that the command >>> a = b does not put a copy of the value of b into a, but
rather assigns to a a reference to the variable b. This can be a trap for the unwary, as will be
discussed more shortly. The normal logical operators are slightly unusual in Python, with
the normal logical operators using the words and, or, and not; the symbols &, | perform
bit-wise and/or. These bit-wise operators are actually quite useful, as we’ll see later.

In addition to integer and floating point representations of numbers, Python also deals
with strings, which are described by using single or double quotes (’ or ") to surround them:
>>> b = ’hello’. For strings, the + operator is overloaded (given a new meaning), which
is concatenation: merging the strings. So >>> ’a’ + ’d’ returns the new string ’ad’.

Having made the basic data types, Python then allows you to combine them into three
different basic data structures:

Lists A list is a combination of basic data types, surrounded by square brackets. So >>>
mylist = [0, 3, 2, ’hi’] is a perfectly good list that contains integers and a
string. This ability to store different types inside a list gives you a hint that Python
handles lists differently to the way other languages handle arrays. This comes about
because Python is inherently object-oriented, so that every variable that you make is
simply an object, and so a list is just a collection of objects. This is why the type of
the object does not matter. It also means that you can have lists of lists without a
problem: >>> newlist = [3, 2, [5, 4, 3], [2, 3, 2]].
Accessing particular elements of a list simply requires giving it an index. Like C,



Python � 417

but unlike MATLAB®, Python indices start at 0, so >>> newlist[0] returns the first
element (3). You can also index from the end using a minus sign, so >>> newlist[-1]
returns the last element, >>> newlist[-2] the last-but-one, etc. The length of a list
is given by len, so >>> len(newlist) returns 4. Note that >>> newlist[3] returns
the list in the 4th location of newlist (i.e., [2, 3, 2]). To access an element of that
list you need an extra index: >>> newlist[3][1] returns 3.
A useful feature of Python is the slice operator. This is written as a colon (:) and
enables you to access sections of a list easily, such as >>> newlist[2:4] which returns
the elements of newlist in positions 2 and 3 (the arguments you use in a slice are
inclusive at the start and exclusive at the end, so the second parameter is the first index
that is excluded). In fact, the slice can take three operators, which are [start:stop:step],
the third element saying what stepsize to use. So >>> newlist[0:4:2] returns the
elements in locations 0 and 2, and you can use this to reverse the order of a list: >>>
newlist[::-1]. This last example shows a couple of other refinements of the slice
operator: if you don’t put a value in for the first number (so it looks like [:3]) then
the value is taken as 0, and if you don’t put a value for the second operator ([1:])
then it is taken as running to the end of the list. These can be very useful, especially
the second one, since it avoids having to calculate the length of the list every time
you want to run through it. >>> newlist[:] returns the whole string.
This last use of the slice operator, returning the whole string, might seem useless.
However, because Python is object-oriented, all variable names are simply references
to objects. This means that copying a variable of type list isn’t as obvious as it
could be. Consider the following command: >>> alist = mylist. You might expect
that this has made a copy of mylist, but it hasn’t. To see this, use the following
command >>> alist[3] = 100 and then have a look at the contents of mylist.
You will see that the 3rd element is now 100. So if you want to copy things you
need to be careful. The slice operator lets you make actual copies using: >>> alist
= mylist[:]. Unfortunately, there is an extra wrinkle in this if you have lists of
lists. Remember that lists work as references to objects. We’ve just used the slice
operator to return the values of the objects, but this only works for one level. In
location 2 of newlist is another list, and the slice operator just copied the reference
to that embedded list. To see this, perform >>> blist = newlist[:] and then >>>
blist[2][2] = 100 and have a look at newlist again. What we’ve done is called a
shallow copy, to copy everything (known as a deep copy) requires a bit more effort.
There is a deepcopy command, but to get to it we need to import the copy module
using >>> import copy (we will see more about importing in Section A.3.1). Now
we can call >>> clist = copy.deepcopy(newlist) and we finally have a copy of a
complete list.
There are a variety of functions that can be applied to lists, but there is another
interesting feature of the fact that they are objects. The functions (methods) that
can be used are part of the object class, so they modify the list itself and do not
return a new list (this is known as working in place). To see this, make a new list >>>
list = [3, 2, 4, 1] and suppose that you want to print out a list of the numbers
sorted into order. There is a function sort() for this, but the obvious >>> print
list.sort() produces the output None, meaning that no value was returned. How-
ever, the two commands >>> list.sort() followed by >>> print list do exactly
what is required. So functions on lists modify the list, and any future operations will
be applied to this modified list.



418 � Machine Learning: An Algorithmic Perspective

Some other functions that are available to operate on lists are:

append(x) adds x to the end of the list
count(x) counts how many times x appears in the list
extend(L) adds the elements in list L to the end of the original list
index(x) returns the index of the first element of the list to match x

insert(i, x) inserts element x at location i in the list, moving everything else along
pop(i) removes the item at index i

remove(x) deletes the first element that matches x
reverse() reverses the order of the list
sort() we’ve already seen

You can compare lists using >>> a==b, which works elementwise through the list,
comparing each element against the matching one in the second list, returning True
if the test is true for each pair (and the two lists are the same length), and False
otherwise.

Tuples A tuple is an immutable list, meaning that it is read-only and doesn’t change.
Tuples are defined using round brackets, e.g., >>> mytuple = (0, 3, 2, ’h’). It
might seem odd to have them in the language, but they are useful if you want to
create lists that cannot be modified, especially by mistake.

Dictionaries In the list that we saw above we indexed elements by their position within
the list. In a dictionary you assign a key to each entry that you can use to access it. So
suppose you want to make a list of the number of days in each month. You could use
a dictionary (shown by the curly braces): >>> months = {’Jan’: 31, ’Feb’: 28,
’Mar’: 31} and then you access elements of the dictionary using their key, so >>>
months[’Jan’] returns 31. Giving an incorrect key results in an exception error.
The function months.keys() returns a list of all the keys in the dictionary, which is
useful for looping over all elements in a dictionary. The months.values() function
returns a list of values instead, while months.items() gives a list of tuples containing
everything. There are lots of other things you can do with dictionaries, and we shall
see some of them when we use the dictionary in Chapter 12.

There is one more data type that is built directly into Python, and that is the file. This
makes reading from and writing to files very simple in Python: files are opened using >>>
input = open(’filename’), closed using >>> input.close() and reading and writing are
performed using readlines() (and read(), and writelines() and write()). There are
also readline() and writeline() functions, that read and write one line at a time.

A.2.1 Python for MATLAB® and R users
With the NumPy package that we are using there are a great many similarities between
MATLAB® or R and Python. There are useful comparison websites for both MATLAB®

and R, but the main thing that you need to be aware of is that indexing starts at 0 instead
of 1 and elements of arrays are accessed with square brackets instead of round ones. After
that, while there are differences, the similarity between the three languages is striking.



Python � 419

A.3 CODE BASICS
Python has a fairly small set of commands and is designed to be fairly small and simple to
use. In this section we’ll go over the basic commands and other programming details. There
are lots of good resources available for getting started with Python; a few books are listed
at the end of the chapter, and an Internet search will provide plenty of other resources.

A.3.1 Writing and Importing Code
Python is a scripting language, meaning that everything can be run interactively from the
command line. However, when writing any reasonable sized piece of code it is better to
write it in a text editor or IDE and then run it. The programming GUIs provide their own
code writing editors, but you can also use any text editor available on your machine. It is a
good idea to use one that is consistent in its tabbing, since the white space indentation is
how Python blocks code together.

The file can contain a script, which is simply a series of commands, or a set of functions
and classes. In either case it should be saved with a .py extension, which Python will compile
into a .pyc file when you first load it. Any set of commands or functions is known as a
module in Python, and to load it you use the import command. The most basic form of the
command is import name. If you import a script file then Python will run it immediately,
but if it is a set of functions then it will not run anything.

To run a function you use >>> name.functionname(), where name is the name of the
module and functionname the relevant function. Arguments can be passed as required in
the brackets, but even if no arguments are passed, then the brackets are still needed. Some
names get quite long, so it can be useful to use import x as y, which means that you can
then use >>> y.functionname() instead.

When developing code at a command line there is one slightly irritating feature of
Python, which is that import only works once for a module. Once a module has been
imported, if you change the code and want Python to work on the new version, then you
need to use >>> reload(name). Using import will not give any error messages, but it will
not work, either.

Many modules contain several subsets, so when importing you may need to be more
specific. You can import particular parts of a module in this way using from x import y,
or to import everything use from x import *, although this is rarely a good idea as some
of the modules are very large. Finally, you can specify the name that you want to import
the module as, by using from x import y as z.

Program code also needs to import any modules that it uses, and these are usually
declared at the top of the file (although they don’t need to be, but can be added anywhere).
There is one other thing that might be confusing, which is that Python uses the pythonpath
variable to tell it where to look for code. Eclipse doesn’t include other packages in your
current project on the path, and so if you want it to find those packages, you have to add
them to the path using the Properties menu item while Spyder has it in the ‘Spyder’ menu.
If you are not using either or these, then you will need to add modules to the path. This
can be done using something like:

import sys
sys.path.append(’mypath’)



420 � Machine Learning: An Algorithmic Perspective

A.3.2 Control Flow
The most obviously strange thing about Python for those who are used to other program-
ming languages is that the indentation means something: white space is the way that blocks
of code are shown. So if you have a loop or other construct, then the equivalent of begin
... end or the braces { } in other languages is a colon (:) after the keyword and indented
commands following on. This looks quite strange at first, but is actually quite nice once
you get used to it. The other thing that is unusual is that you can have an (optional) else
clause on loops. This clause runs when the loop terminates normally. If you break out of a
loop using the break command, then the else clause does not run.

The control structures that are available are if, for, and while. The if statement
syntax is:

if statement:
commands

elif:
commands

else:
commands

The most common loop is the for loop, which differs slightly from other languages in
that it iterates over a list of values:

for var in set:
commands

else:
commands

There is one very useful command that goes with this for loop, which is the range
command, which produces a list output. Its most basic form is simply >>> range(4), which
produces the list [0, 1, 2, 3]. However, it can also take 2 or 3 arguments, and works in
the same way as in the slice command, but with commas between them instead of colons:
>>> range(start,stop,step). This can include going down instead of up a list, so >>>
range(5,-3,-2) produces [5, 3, 1, -1] as output.

Finally, there is a while loop:

while condition:
commands

else:
commands

A.3.3 Functions
Functions are defined by:



Python � 421

def name(args):
commands
return value

The return value line is optional, but enables you to return values from the function
(otherwise it returns None). You can list several things to return in the line with commas
between them, and they will all be returned. Once you have defined a function you can call
it from the command line and from within other functions. Python is case sensitive, so with
both function names and variable names, Name is different to name.

As an example, here is a function that computes the hypotenuse of a triangle given the
other two distances (x and y). Note the use of ’#’ to denote a comment:

def pythagoras(x,y):
""" Computes the hypotenuse of two arguments"""
h = pow(x**2+y**2,0.5)
# pow(x,0.5) is the square root
return h

Now calling pythagoras(3,4) gets the expected answer of 5.0. You can also call the
function with the parameters in any order provided that you specify which is which, so
pythagoras(y=4,x=3) is perfectly valid. When you make functions you can allow for default
values, which means that if fewer arguments are presented the default values are given. To
do this, modify the function definition line: def pythagoras(x=3,y=4):

A.3.4 The doc String
The help facilities within Python are accessed by using help(). For help on a particular
module, use help(’modulename’). (So using help(pythagorus) in the previous example
would return the description of the function that is given there). A useful resource for most
code is the doc string, which is the first thing defined within the function, and is a text
string enclosed in three sets of double quotes ("""). It is intended to act as the documenta-
tion for the function or class. It can be accessed using >>> print functionname.__doc__.
The Python documentation generator pydoc uses these strings to automatically generate
documentation for functions, in the same way that javadoc does.

A.3.5 map and lambda

Python has a special way of performing repeated function calls. If you want to apply the
same function to every element of a list you don’t need to loop over the elements of the
list, but can instead use the map command, which looks like map(function,list). This
applies the function to every element of the list. There is one extra tweak, which is the fact
that the function can be anonymous (created just for this job without needing a name) by
using the lambda command, which looks like lambda args : command. A lambda function
can only execute one command, but it enables you to write very short code to do relatively
complicated things. As an example, the following instruction takes a list and cubes each
number in it and adds 7:



422 � Machine Learning: An Algorithmic Perspective

map(lambda x:pow(x,3)+7,list)

Another way that lambda can be used is in conjunction with the filter command. This
returns elements of a list that evaluate to True, so:

filter(lambda x:x>=2,list)

returns those elements of the list that are greater than or equal to 2. NumPy provides
simpler ways to do these things for arrays of numbers, as we shall see.

A.3.6 Exceptions
Like other modern languages, Python allows for the trapping of exceptions. This is done
through the try ... except ... else and try... finally constructions. This exam-
ple shows the use of the most common version. For more details, including the types of
exceptions that are defined, see a Python programming book.

try:
x/y

except ZeroDivisonError:
print "Divisor must not be 0"

except TypeError:
print "They must be numbers"

except:
print "Something unspecified went wrong"

else:
print "Everything worked"

A.3.7 Classes
For those that wish to use it in this way, Python is fully object-oriented, and classes are
defined (with their constructor) by:

class myclass(superclass):

def __init__(self,args):

def functionname(self,args):

If a superclass is not specified, then the class does not inherit from elsewhere. The
__init__(self,args) function is the constructor for the class. There can also be a destructor
__del__(self), although they are rarely used. Accessing methods from the class uses the



Python � 423

classname.functionname() syntax. The self argument can be ignored in all function calls,
since Python fills it in for you, but it does need to be specified in the function definition.
Many of the examples in the book are based on classes provided on the book website. You
need to be aware that you have to create an instance of the class before you can run it.
There is one extra thing that can catch the unwary. If you have imported a module within
a program and then you change the code of the module that you have imported, reloading
the program won’t reload the module. So to import and run the changed module you need
to use:

import myclass
var = myclass.myclass()
var.function()

and if there is a module within there that you expect to change (for example, during testing
or further development, you modify it a little to include:

import myclass
reload(myclass)
var = myclass.myclass()
var.function()

A.4 USING NUMPY AND MATPLOTLIB
Most of the commands that are used in this book actually come from the NumPy
and Matplotlib packages, rather than the basic Python language. More specialised com-
mands are described thoughout the book in the places where they become relevant. There
are lots of examples of performing tasks using the various functions within NumPy on
its website. Getting information about functions within NumPy is generally done using
help(np.functionname) such as help(np.dot).

NumPy has a base collection of functions and then additional packages that have to
be imported as well if you want to use them. To import the NumPy base library and get
started you use:

>>> import numpy as np

A.4.1 Arrays
The basic data structure that is used for numerical work, and by far the most important
one for the programming in this book, is the array. This is exactly like multi-dimensional
arrays (or matrices) in any other language; it consists of one or more dimensions of numbers
or chars. Unlike Python lists, the elements of the array all have the same type, which can
be Boolean, integer, real, or complex numbers.

Arrays are made using a function call, and the values are passed in as a list, or set of
lists for higher dimensions. Here are one-dimensional and two-dimensional arrays (which



424 � Machine Learning: An Algorithmic Perspective

are effectively arrays of arrays) being made. Arrays can have as many dimensions as you
like up to a language limit of 40 dimensions, which is more than enough for this book.

>>> myarray = np.array([4,3,2])
>>> mybigarray = np.array([[3, 2, 4], [3, 3, 2], [4, 5, 2]])
>>> print myarray
[4 3 2]
>>> print mybigarray
[[3 2 4]
[3 3 2]
[4 5 2]]

Making arrays like this is fine for small arrays where the numbers aren’t regular, but
there are several cases where this is not true. There are nice ways to make a set of the more
interesting arrays, such as those shown next.

Array Creation Functions

np.arange() Produces an array containing the specified values, acting as an array
version of range(). For example, np.arange(5) = array([0, 1, 2, 3, 4]) and
np.arange(3,7,2) = array([3, 5]).

np.ones() Produces an array containing all ones. For both np.ones() and np.zeros() you
need two sets of brackets when making arrays of more than one dimension. np.ones(3)
= array([ 1., 1., 1.]) and np.ones((3,4)) =
array([[ 1., 1., 1., 1,]
[ 1., 1., 1., 1.]
[ 1., 1., 1., 1.]])
You can specify the type of arrays using a = np.ones((3,4),dtype=float). This can
be useful to ensure that you don’t run into problems with integer casting, although
NumPy is fairly good at casting things as floats.

np.zeros() Similar to np.ones(), except that all elements of the matrix are zero.

np.eye() Produces the identity matrix, i.e., the 2D matrix that is zero everywhere except
down the leading diagonal, where it is one. Given one argument it produces the square
identity: np.eye(3) =
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]

while with two arguments it fills spare rows or columns with zeros: np.eye(3,4) =
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]]

np.linspace(start,stop,npoints) Produces a matrix with linearly spaced elements.
The nice thing is that you specify the number of elements, not the spacing.
np.linspace(3,7,3) = array([ 3., 5., 7.])



Python � 425

np.r_[] and np.c_[] Perform row and column concatenation, including the use of the
slice operator: np.r_[1:4,0,4] = array([1, 2, 3, 0, 4]). There is also a varia-
tion on np.linspace() using a j in the last entry: np.r_[2,1:7:3j] = array([ 2.
, 1. , 4. , 7.]). This is another nice feature of NumPy that can be used with
np.arange() and np.meshgrid() as well. The j on the last value specifies that you
want 3 equally spaced points starting at 0 and running up to (and including) 7, and
the function works out the locations of these points for you. The column version is
similar.

The array a used in the next set of examples was made using >>> a =
np.arange(6).reshape(3,2), which produces:
array([[0, 1],

[2, 3],
[4, 5]])

Indexing elements of an array is performed using square brackets ‘[’ and ‘]’, remembering
that indices start from 0. So a[2,1] returns 5 and a[:,1] returns array([1, 3, 5]). We
can also get various pieces of information about an array and change it in a variety of
different ways, as follows.

Getting information about arrays, changing their shape, copying them

np.ndim(a) Returns the number of dimensions (here 2).

np.size(a) Returns the number of elements (here 6).

np.shape(a) Returns the size of the array in each dimension (here (3, 2)). You can access
the first element of the result using shape(a)[0].

np.reshape(a,(2,3)) Reshapes the array as specified. Note that the new dimensions are in
brackets. One nice thing about np.reshape() is that you can use ‘-1’ for 1 dimension
within the reshape command to mean ‘as many as is required’. This saves you doing
the multiplication yourself. For this example, you could use np.reshape(a,(2,-1))
or np.reshape(a,(-1,2)).

np.ravel(a) Makes the array one-dimensional (here array([0, 1, 2, 3, 4, 5])).

np.transpose(a) Compute the matrix transpose. For the example:
[[0 2 4]
[1 3 5]]

a[::-1] Reverse the elements of each dimension.

np.min(), np.max(a), np.sum(a) Returns the smallest or largest element of the matrix,
or the sum of the elements. Often used to sum the rows or columns using the axis
option: np.sum(axis=0) for columns and np.sum(axis=1) for rows.

np.copy() Makes a deep copy of a matrix.

Many of these functions have an alternative form that like a.min() which returns the
minimum of array a. This can be useful when you are dealing with single matrices. In
particular, the shorter version of the transpose operator, a.T, can save a lot of typing.

Just like the rest of Python, NumPy generally deals with references to objects, rather
than the objects themselves. So to make a copy of an array you need to use c = a.copy().



426 � Machine Learning: An Algorithmic Perspective

Once you have defined matrices, you need to be able to add and multiply them in
different ways. As well as the array a used above, for the following set of examples two
other arrays b and c are needed. They have to have sizes relating to array a. Array b is
the same size as a and is made by >>> b = np.arange(3,9).reshape(3,2), while c needs
to have the same inner dimension; that is, if the size of a is (x, 2) then the size of c
needs to be (2, y) where the values of x and y don’t matter. For the examples >>> c =
np.transpose(b). Here are some of the operations you can perform on arrays and matrices:

Operations on arrays

a+b Matrix addition. Output for the example is:
array([[ 3, 5],

[ 7, 9],
[11, 13]])

a*b Element-wise multiplication. Output:
array([[ 0, 4],

[10, 18],
[28, 40]])

np.dot(a,c) Matrix multiplication. Output:
array([[ 4, 6, 8],

[18, 28, 38],
[32, 50, 68]])

pow(a,2) Compute exponentials of elements of matrix (a Python function, not a NumPy
one). Output:
array([[ 0, 1],

[ 4, 9],
[16, 25]])

pow(2,a) Compute number raised to matrix elements (a Python function, not a NumPy
one). Output:
array([[ 1, 2],

[ 4, 8],
[16, 32]])

Matrix subtraction and element-wise division are also defined, but the same trap that
we saw earlier can occur with division, namely that a/3 returns an integer not a float if a
is an array of integers.

There is one more very useful command on arrays, which is the np.where() command.
This has two forms: x = np.where(a>2) returns the indices where the logical expression
is true in the variable x, while x = np.where(a>2,0,1) returns a matrix the same size
as a that contains 0 in those places where the expression was true in a and 1 everywhere
else. To chain these conditions together you have to use the bitwise logical operations, so
that indices = np.where((a[:,0]>3) | (a[:,1]<3)) returns a list of the indices where
either of these statements is true.



Python � 427

A.4.2 Random Numbers
There are some good random number features within NumPy, which you access in
np.random after importing NumPy. To find out about the functions use help(np.random)
once NumPy has been imported, but the more useful functions are:

np.random.rand(matsize) produces uniformly distributed random numbers between 0
and 1 in an array of size matsize

np.random.randn(matsize) produces zero mean, unit variance Gaussian random num-
bers

np.random.normal(mean,stdev,matsize) produces Gaussian random numbers with
specifed mean and standard deviation

np.random.uniform(low,high,matsize) produces uniform random numbers between low
and high

np.random.randint(low,high,matsize) produces random integer values between low
and high

A.4.3 Linear Algebra
NumPy has a reasonable linear algebra package that performs standard linear algebra func-
tions. The functions are available as np.linalg.inv(a), etc., where a is an array and pos-
sible functions are (if you don’t know what they all are, don’t worry: they will be defined
where they are used in the book):

np.linalg.inv(a) Compute the inverse of (square) array a

np.linalg.pinv(a) Compute the pseudo-inverse, which is defined even if a is not square

np.linalg.det(a) Compute the determinant of a

np.linalg.eig(a) Compute the eigenvalues and eigenvectors of a

A.4.4 Plotting
The plotting functions that we will be using are in the Matplotlib package (also known
as pylab, and which we will import as import pylab as pl). These are designed to look
exactly like the MATLAB® plotting functions. The entire set of functions, with examples,
are given on the Matplotlib webpage, but the two most important ones that we will need are
pl.plot and pl.hist. When producing plots they sometimes do not appear. This is usually
because you need to specify the command >>> pl.ion() which turns interactive plotting
on. If you are using Matplotlib within Eclipse it has a nasty habit of closing all of the display
windows when the program finishes. To get around this, issue a show() command at the
end of your function.

The basic plotting commands of Matplotlib are demonstrated here, for more advanced
plotting facilities see the package webpage.

The following code (best typed into a file and executed as a script) computes a Gaussian
function for values -2 to 2.5 in steps of 0.01 and plots it, then labels the axes and gives the
figure a title. The output of running it is shown in Figure A.1.



428 � Machine Learning: An Algorithmic Perspective

FIGURE A.1 The Matplotlib package produces useful graphical output, such as this plot
of the Gaussian function.

import pylab as pl
import numpy as np

gaussian = lambda x: exp(-(0.5-x)**2/1.5)
x = np.arange(-2,2.5,0.01)
y = gaussian(x)
pl.ion()
pl.figure()
pl.plot(x,y)
pl.xlabel(’x values’)
pl.ylabel(’exp(-(0.5-x)**2/1.5’)
pl.title(’Gaussian Function’)
pl.show()

There is another very useful way to make arrays in NumPy, which is np.meshgrid(). It
can be used to make a set of indices for a grid, so that you can quickly and easily access all
the points within the grid. This has many uses for us, not least of which is to find a classifier
line, which can be done using np.meshgrid() and then drawn using pl.contour():

pl.figure()
step=0.1
f0,f1 = np.meshgrid(np.arange(-2,2,step), np.arange(-2,2,step))

# Run a classifier algorithm
out = classifier(np.c_[np.ravel(f0), np.ravel(f1)],soft=True).T
out = out.reshape(f0.shape)



Python � 429

pl.contourf(f0, f1, out)

A.4.5 One Thing to Be Aware of
NumPy is mostly great to use, and extremely powerful. However, there is one thing that I
still find annoying on occasion, and that is the two different types of vector. The following
set of commands typed at the command line and the output produced show the problem:

>>> a = np.ones((3,3))
>>> a
array([[ 1., 1., 1.],

[ 1., 1., 1.],
[ 1., 1., 1.]])

>>> np.shape(a)
(3, 3)
>>> b = a[:,1]
>>> b
array([ 1., 1., 1.])
>>> np.shape(b)
(3,)
>>> c = a[1,:]
>>> np.shape(c)
(3,)
>>> print c.T
>>> c
array([ 1., 1., 1.])
>>> c.T
array([ 1., 1., 1.])

When we use a slice operator and only index a single row or column, NumPy seems
to turn it into a list, so that it stops being either a row or a column. This means that
the transpose operator doesn’t do anything to it, and also means that some of the other
behaviour can be a little odd. It’s a real trap for the unwary, and can make for some
interesting bugs that are hard to find in programs. There are a few ways around the problem,
of which the two simplest are shown below: either listing a start and end for the slice even
for a single row or column, or explicitly reshaping it afterwards.

>>> c = a[0:1,:]
>>> np.shape(c)
(1, 3)
>>> c = a[0,:].reshape(1,len(a))
>>> np.shape(c)
(1, 3)



430 � Machine Learning: An Algorithmic Perspective

FURTHER READING
Python has become incredibly popular for both general computing and scientific computing.
Because writing extension packages for Python is simple (it does not require any special
programming commands: any Python module can be imported as a package, as can packages
written in C), many people have done so, and made their code available on the Internet.
Any search engine will find many of these, but a good place to start is the Python Cookbook
website.

If you are looking for more complete introductions to Python, some of the following may
be useful:

• M.L. Hetland. Beginning Python: From Novice to Professional, 2nd edition, Apress
Inc., Berkeley, CA, USA, 2008.

• G. van Rossum and F.L. Drake Jr., editors. An Introduction to Python. Network
Theory Ltd, Bristol, UK, 2006.

• W.J. Chun. Core Python Programming. Prentice-Hall, New Jersey, USA, 2006.

• B. Eckel. Thinking in Python. Mindview, La Mesa, CA, USA, 2001.

• T. Oliphant. Guide to NumPy, e-book, 2006. The official guide to NumPy by its
creator.

PRACTICE QUESTIONS
Problem A.1 Make an array a of size 6× 4 where every element is a 2.

Problem A.2 Make an array b of size 6 × 4 that has 3 on the leading diagonal and 1
everywhere else. (You can do this without loops.)

Problem A.3 Can you multiply these two matrices together? Why does a * b work, but
not dot(a,b)?

Problem A.4 Compute dot(a.transpose(),b) and dot(a,b.transpose()). Why are
the results different shapes?

Problem A.5 Write a function that prints some output on the screen and make sure you
can run it in the programming environment that you are using.

Problem A.6 Now write one that makes some random arrays and prints out their sums,
the mean value, etc.

Problem A.7 Write a function that consists of a set of loops that run through an array
and count the number of ones in it. Do the same thing using the where() function
(use info(where) to find out how to use it).



Chapman & Hall/CRC 
Machine Learning & Pattern Recognition Series

Chapman & Hall/CRC 
Machine Learning & Pattern Recognition Series

M
ac

h
in

e Learn
in

g

MACHINE 
LEARNING
An Algorithmic Perspective
S e c o n d  E d i t i o n

M
a

r
sla

n
d

Stephen Marsland

•  Access online or download to your smartphone, tablet or PC/Mac
•  Search the full text of this and other titles you own
•  Make and share notes and highlights
•  Copy and paste text and figures for use in your own documents
•  Customize your view by changing font size and layout

WITH VITALSOURCE®

EBOOK

sec
o

n
d

 ed
it

io
n

Machine Learning: An Algorithmic Perspective, Second Edition helps you understand 
the algorithms of machine learning. It puts you on a path toward mastering the relevant 
mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition
•  Two new chapters on deep belief networks and Gaussian processes 
•  Reorganization of the chapters to make a more natural flow of content
•  Revision of the support vector machine material, including a simple implementation for 

experiments
•  New material on random forests, the perceptron convergence theorem, accuracy 

methods, and conjugate gradient optimization for the multi-layer perceptron
•  Additional discussions of the Kalman and particle filters
•  Improved code, including better use of naming conventions in Python

The text strongly encourages you to practice with the code. Each chapter includes detailed 
examples along with further reading and problems. All of the Python code used to create the 
examples is available on the author’s website. 

Features
•  Reflects recent developments in machine learning, including the rise of deep belief 

networks
•  Presents the necessary preliminaries, including basic probability and statistics
•  Discusses supervised learning using neural networks
•  Covers dimensionality reduction, the EM algorithm, nearest neighbor methods, optimal 

decision boundaries, kernel methods, and optimization
•  Describes evolutionary learning, reinforcement learning, tree-based learners, and 

methods to combine the predictions of many learners
•  Examines the importance of unsupervised learning, with a focus on the self-organizing 

feature map 
•  Explores modern, statistically based approaches to machine learning

K18981

w w w . c r c p r e s s . c o m

Machine Learning 

K18981_cover.indd   1 8/19/14   10:02 AM


	Front Cover
	Contents
	Prologue to 2nd Edition
	Prologue to 1st Edition
	Chapter 1: Introduction
	 Chapter 2: Preliminaries
	Chapter 3: Neurons, Neural Networks,and Linear Discriminants
	Chapter 4: The Multi-layer Perceptron
	Chapter 5: Radial Basis Functions andSplines
	Chapter 6: Dimensionality Reduction
	Chapter 7: Probabilistic Learning
	Chapter 8: Support Vector Machines
	Chapter 9: Optimisation and Search
	Chapter 10: Evolutionary Learning
	Chapter 11: Reinforcement Learning
	Chapter 12:  Learning with Trees
	Chapter 13: Decision by Committee:Ensemble Learning
	Chapter 14: Unsupervised Learning
	Chapter 15: Markov Chain Monte Carlo(MCMC) Methods
	Chapter 16: Graphical Models
	Chapter 17: Symmetric Weights and DeepBelief Networks
	Chapter 18: Gaussian Processes
	APPENDIX A: Python
	Back Cover

