Information Theory

09 The Noisy-Channel Coding Theorem

TI 2020/2021

Notice

Author

João Moura Pires (jmp@fct.unl.pt)

This material can be freely used for personal or academic purposes without any previous authorization from the author, provided that this notice is maintained/kept.

For commercial purposes the use of any part of this material requires the previous authorization from the author.

Bibliography

Many examples are extracted and adapted from:

Information Theory, Inference, and Learning Algorithms

Cambridge University Press, 2003

Information Theory, Inference, and Learning Algorithms David J.C. MacKay 2005, Version 7.2

- And some slides were based on lain Murray course
 - http://www.inf.ed.ac.uk/teaching/courses/it/2014/

Table of Contents

- The theorem
- Jointly-typical sequences
- Proof of the noisy-channel coding theorem
- Communication (with errors) above capacity
- Computing capacity
- Other coding theorems

Information Theory

Notation

Notation

 X^N - an ensemble used to create a random code \mathcal{C}

- N the length of the codewords
- $\mathbf{x}^{(s)}$ a codeword, the sth in the code
- s the number of a chosen codeword

R = K/N - the rate of the code, in bits per channel use

$$S = 2^K$$
 - the total number of codewords

Notation

\overline{Q}	the noisy channel
C	the capacity of the channel
X^N	an ensemble used to create a random code
\mathcal{C}	a random code
N	the length of the codewords
$\mathbf{x}^{(s)}$	a codeword, the sth in the code
S	the number of a chosen codeword (mnemonic: the <i>source</i>
	selects s)
$S = 2^K$	the total number of codewords in the code
$K = \log_2 S$	the number of bits conveyed by the choice of one codeword
	from S , assuming it is chosen with uniform probability
S	a binary representation of the number s
R = K/N	the rate of the code, in bits per channel use (sometimes called
	R' instead)
\hat{s}	the decoder's guess of s

Information Theory

The theorem

Part 1 - Positive

For every discrete memoryless channel, the channel capacity

$$C = \max_{P_X} I(X;Y)$$

has the following property.

For any $\varepsilon > 0$ and R < C, for large enough *N*, there exists a code of length *N* and rate $\ge R$

and a decoding algorithm, such that the maximal probability of block error is $< \epsilon$.

Part 1 - Positive

For every discrete memoryless channel, the channel capacity

$$C = \max_{P_X} I(X;Y)$$

has the following property. For any $\varepsilon > 0$ and R < C, for large enough *N*, there **exists a code**

of length *N* and rate $\ge R$ and a decoding algorithm, such that the maximal probability of block error is $< \varepsilon$.

Part 2 - Positive

If a probability of bit error p_b is acceptable, rates up to $R(p_b)$ are achievable, where

Communication (with errors) above capacity

Part 3 - Negative

For any p_b , rates greater than $R(p_b)$ are not achievable.

Jointly-typical sequences

Jointly-typical sequences

- We will define codewords $\mathbf{x}^{(s)}$ as coming from an ensemble X^N
- Consider the random selection of one codeword and a corresponding channel output y, thus defining a joint ensemble $(XY)^N$.
- A typical-set decoder, decodes a received signal y as s if $x^{(s)}$ and y are jointly typical.

Jointly-typical sequences

Joint typicality. A pair of sequences **x**, **y** of length *N* are defined to be jointly typical (**to**

tolerance β) with respect to the distribution P(x, y), if:

$$\mathbf{x} \text{ is typical of } P(\mathbf{x}), \quad \text{i.e.,} \quad \left| \frac{1}{N} \log \frac{1}{P(\mathbf{x})} - H(X) \right| < \beta,$$

$$\mathbf{y} \text{ is typical of } P(\mathbf{y}), \quad \text{i.e.,} \quad \left| \frac{1}{N} \log \frac{1}{P(\mathbf{y})} - H(Y) \right| < \beta,$$
and \mathbf{x}, \mathbf{y} is typical of $P(\mathbf{x}, \mathbf{y}), \quad \text{i.e.,} \quad \left| \frac{1}{N} \log \frac{1}{P(\mathbf{x}, \mathbf{y})} - H(X, Y) \right| < \beta.$

Example with N = 100

P(x, y) in which P(x) has $(p_0, p_1) = (0.9, 0.1)$ and $P(y \mid x)$ corresponds to a BSC (f = 0.2)

- - **x** has 10 1s, and so is typical of the probability P(x) (at any tolerance β);
 - **y** has 26 1s, so it is typical of P(y) (because P(y = 1) = 0.26)
 - **x** and **y** differ in 20 bits, which is the typical number of flips for this channel.

Joint typicality theorem

- **The jointly-typical set** $J_{N\beta}$ is the set of all jointly-typical sequence pairs of length N.
- Joint typicality theorem. Let x, y be drawn from the ensemble (*XY*)^N defined by

$$P(\mathbf{x}, \mathbf{y}) = \prod_{n=1}^{N} P(x_n, y_n).$$

then,

- The probability that **x**, **y** are jointly typical (to tolerance β) tends to 1 as $N \rightarrow \infty$
- The number of jointly-typical sequences $|J_{N\beta}|$ is close to $2^{NH(X, Y)}$

$$\left|J_{N\beta}\right| \leq 2^{N(H(X,Y)+\beta)}$$

If $\mathbf{x}' \sim X^N$ and $\mathbf{y}' \sim Y^N$, i.e., \mathbf{x}' and \mathbf{y}' are independent samples with the same marginal distribution

as P(x, y), then the probability that $(\mathbf{x}', \mathbf{y}')$ lands in the jointly-typical set is about $2^{-NI(X;Y)}$.

$$P\left[(\mathbf{x'},\mathbf{y'}) \in J_{N\beta}\right] \leq 2^{-N(I(X;Y)-3\beta)}$$

Joint typicality theorem

 A^{N}_{X} , the set of all input strings of length N.

 $A^{N}Y$, the set of all output strings of length N.

Each dot represents a jointly-typical pair of sequences (x, y).

The *total* number of **independent** typical pairs is the area of the dashed rectangle is $2^{NH(X)} 2^{NH(Y)}$

The number of **jointly**-typical pairs is roughly $2^{NH(X,Y)}$

The probability of hitting a jointly-typical pair is roughly

$$2^{NH(X,Y)}/2^{NH(X)+NH(Y)} = 2^{-NI(X;Y)}$$

Proof of the noisy-channel coding theorem

Proof of the noisy-channel coding theorem - General idea

- The proof will then centre on determining the probabilities
 - (a) that **the true input codeword** is **not jointly typical** with the output sequence;
 - (b) that a **false input codeword is jointly typical with the output**.

- We will show that, for large *N*, **both probabilities go to zero**
 - as long as there are **fewer than 2**^{*NC*} **codewords**
 - the ensemble *X* is the optimal input distribution.

Proof of the noisy-channel coding theorem - Strategy

- We wish to **show that there exists a code** and a **decoder** having **small probability of error**.
- Evaluating the probability of error of any particular coding and decoding system is not easy.
 - Shannon's innovation was this:
 - instead of constructing a good coding and decoding system and evaluating its error probability,
 - Shannon calculated the average probability of block error of all codes, and proved that this average is small.
 - **There must then exist individual codes that have small probability of block error.**

Consider an **encoding–decoding system**, whose **rate is** *R*′

- We fix P(x) and generate the code C that has
 - the set of codewords *S* with $|S| = 2^{NR'}$ of a block code (N, K) = (N, NR');

the 2^{NR'} codewords are picked randomly according to the probability distribution
$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n)$$

- The code is know by the sender and the receiver
- A message *s* is chosen from $\{1, 2, ..., 2^{NR'}\}$, and $\mathbf{x}(s)$ is transmitted. The received signal is \mathbf{y}

with

$$P(\mathbf{y} | \mathbf{x}^{(s)}) = \prod_{n=1}^{N} P(y_n | x_n^{(s)})$$

- The signal is decoded by **typical-set decoding**
- A decoding error occurs if $\hat{s} \neq s$

Typical-set decoding

Typical-set decoding

- Decode y as \hat{s} if $(\mathbf{x}^{(\hat{s})}, \mathbf{y})$ are jointly typical **and** there is no other s' such that $(\mathbf{x}^{(s')}, \mathbf{y})$ are jointly typical;
- otherwise declare a failure ($\hat{s} = 0$).
- This is not the optimal decoding algorithm, but it will be good enough, and easier to analyze.
- Joint typicality. A pair of sequences \mathbf{x} , \mathbf{y} of length N are defined to be jointly typical (to tolerance β) with respect to the distribution P(x, y), if:

$$\begin{array}{ll} \mathbf{x} \text{ is typical of } P(\mathbf{x}), & \text{i.e.,} & \left| \frac{1}{N} \log \frac{1}{P(\mathbf{x})} - H(X) \right| < \beta, \\ \mathbf{y} \text{ is typical of } P(\mathbf{y}), & \text{i.e.,} & \left| \frac{1}{N} \log \frac{1}{P(\mathbf{y})} - H(Y) \right| < \beta, \\ \text{and } \mathbf{x}, \mathbf{y} \text{ is typical of } P(\mathbf{x}, \mathbf{y}), & \text{i.e.,} & \left| \frac{1}{N} \log \frac{1}{P(\mathbf{x}, \mathbf{y})} - H(X, Y) \right| < \beta \end{array}$$

A sequence that is not jointly typical with any codeword

Three Probabilities of error

Probability of **block error for a particular code** *C*

 $p_{\rm B}(\mathcal{C}) \equiv P(\hat{s} \neq s \,|\, \mathcal{C})$

- This is a difficult quantity to evaluate for any given code.
- The **average** of Probability of block error over all codes of this block:

$$\langle p_{\rm B} \rangle \equiv \sum_{\mathcal{C}} P(\hat{s} \neq s \,|\, \mathcal{C}) P(\mathcal{C})$$

This quantity is much easier to evaluate than the first quantity $p_B(C)$.

The maximal block error probability of a code C

$$p_{\rm BM}(\mathcal{C}) \equiv \max_{s} P(\hat{s} \neq s \,|\, s, \mathcal{C})$$

Is the quantity we are most interested in: we wish **to show that there exists a code** *C* **with**

the required rate whose maximal block error probability is small

Three Probabilities of error - Strategy

- How to show that maximal block error probability is small?
 - By **first** finding the **average block error probability**, $\langle pB \rangle$.
 - Once we have shown that this can be made smaller than a desired small number, we immediately deduce that there must exist at least one code *C* whose block error probability

is also less than this small number.

- This code, whose block error probability is satisfactorily small but whose maximal block error probability is unknown (and could conceivably be enormous), can be modified to make a code of slightly smaller rate whose maximal block error probability is also guaranteed to be small.
- We modify the code by throwing away the worst 50% of its codewords.

- There are two sources of error when we use typical-set decoding.
 - The output y is not jointly typical with the transmitted codeword $\mathbf{x}(s)$
 - There is **some other codeword** in *C* that is jointly typical with **y**.
- By the symmetry of the code construction, the average probability of error averaged over all codewords **does not depend on the selected value of** *s*;
 - We can assume without loss of generality that *s* = 1.

Joint typicality theorem (review)

- **The jointly-typical set** $J_{N\beta}$ is the set of all jointly-typical sequence pairs of length N.
- Joint typicality theorem. Let **x**, **y** be drawn from the ensemble (*XY*)^{*N*} defined by

$$P(\mathbf{x}, \mathbf{y}) = \prod_{n=1}^{N} P(x_n, y_n).$$

then,

- The probability that **x**, **y** are jointly typical (to tolerance β) tends to 1 as $N \rightarrow \infty$
- The number of jointly-typical sequences $|J_{N\beta}|$ is close to $2^{NH(X, Y)}$

$$\left|J_{N\beta}\right| \leq 2^{N(H(X,Y)+\beta)}$$

If $\mathbf{x}' \sim X^N$ and $\mathbf{y}' \sim Y^N$, i.e., \mathbf{x}' and \mathbf{y}' are independent samples with the same marginal distribution

as P(x, y), then the probability that $(\mathbf{x}', \mathbf{y}')$ lands in the jointly-typical set is about $2^{-NI(X;Y)}$.

$$P\left[(\mathbf{x'},\mathbf{y'}) \in J_{N\beta}\right] \leq 2^{-N(I(X;Y)-3\beta)}$$

- There are two sources of error when we use typical-set decoding.
 - The output y is not jointly typical with the transmitted codeword $\mathbf{x}(s)$
 - There is **some other codeword** in *C* that is jointly typical with **y**.
- By the symmetry of the code construction, the average probability of error averaged over all codewords **does not depend on the selected value of** *s*;
 - We can assume without loss of generality that *s* = 1.
- The probability that the input $\mathbf{x}^{(1)}$ and the output \mathbf{y} are not jointly typical vanishes, by the joint typicality theorem's first part.
 - Let δ , be the upper bound on this probability, satisfying $\delta \rightarrow 0$ as $N \rightarrow \infty$;
 - For any desired δ , we can find a block length $N(\delta)$ such that the $P((\mathbf{x}^{(1)}, \mathbf{y}) \notin J_{N\beta}) \leq \delta$.
- The probability that $\mathbf{x}^{(s')}$ and \mathbf{y} are jointly typical, for a given $s' \neq 1$ is $\leq 2^{-N(I(X;Y)-3\beta)}$, by the joint typicality theorem's first part 3. And there are $(2^{NR'} 1)$ rival values of s' to worry about.

- The probability that the input $\mathbf{x}^{(1)}$ and the output \mathbf{y} are not jointly typical vanishes, by the joint typicality theorem's first part.
 - Let δ , be the upper bound on this probability, satisfying $\delta \to 0$ as $N \to \infty$;
 - For any desired δ , we can find a block length $N(\delta)$ such that the $P((\mathbf{x}^{(1)}, \mathbf{y}) \notin J_{N\beta}) \leq \delta$.
- The probability that $\mathbf{x}^{(s')}$ and \mathbf{y} are jointly typical, for a given $s' \neq 1$ is $\leq 2^{-N(I(X;Y)-3\beta)}$, by the joint typicality theorem's part 3. And there are $(2^{NR'} 1)$ rival values of s' to worry about.
- Thus the average probability of error $\langle p_B \rangle$ satisfies

$$\langle p_{\mathrm{B}} \rangle \leq \delta + \sum_{s'=2}^{2^{NR'}} 2^{-N(I(X;Y)-3\beta)}$$

$$\leq \delta + 2^{-N(I(X;Y)-R'-3\beta)}.$$

 $\langle p_B \rangle$ can be made $\langle 2\delta$ by increasing *N* if $R' \langle I(X; Y) - 3\beta$.

Thus the average probability of error $\langle p_B \rangle$ satisfies

$$\langle p_{\rm B} \rangle \leq \delta + \sum_{s'=2}^{2^{NR'}} 2^{-N(I(X;Y)-3\beta)}$$

$$\leq \delta + 2^{-N(I(X;Y)-R'-3\beta)}.$$

- $< p_B >$ can be made $< 2\delta$ by increasing N if $R' < I(X; Y) 3\beta$.
- We choose P(x) in the proof to be the optimal input distribution of the channel.
 - Then the condition $R' < I(X; Y) 3\beta$ becomes $R' < C 3\beta$
- Since the average probability of error over all codes is $< 2\delta$, there must exist a code with mean probability of block error $p_B(C) < 2\delta$.
- To show that **not only the average** but **also the maximal probability of error**, p_{BM} , can be made small we modify this code by **throwing away the worst half of the codewords** – the ones most likely to produce errors.

Those that remain must all have *conditional* probability of error less than 4δ .

- These remaining codewords to define a new code. This new code has $2^{NR'-1}$ codewords.
- The rate is reduced from *R*' to *R*' 1/*N* and achieved $p_{BM} < 4\delta$.

Those that remain must all have *conditional* probability of error less than 4δ .

- These remaining codewords to define a new code. This new code has $2^{NR'-1}$ codewords.
- The rate is reduced from *R*' to *R*' 1/*N* and achieved $p_{BM} < 4\delta$.

Part 1 - Positive

For every discrete memoryless channel, the channel capacity

$$C = \max_{P_X} I(X;Y)$$

has the following property. For any $\varepsilon > 0$ and R < C, for large enough *N*, there exists a code

of length *N* and rate $\geq R$ and a decoding algorithm, such that the maximal probability of block error is $< \varepsilon$.

We can '*construct*' a code of rate R' - 1/N,

where $R' < C - 3\beta$, with maximal probability of error $< 4\delta$.

We obtain the theorem as stated by setting R' = (R + C)/2,

 $\delta = \varepsilon/4$, $\beta < (C - R')/3$, and N sufficiently large for the remaining conditions to hold.

- We have shown that we can turn any noisy channel into an essentially noiseless binary channel with rate up to *C* bits per cycle.
- We now extend the right-hand boundary of the region of achievability at non-zero error probabilities
- If a probability of bit error p_b is acceptable, rates up to $R(p_b)$ are achievable, where $R(p_b) = \frac{1}{1 - H_2(p_b)}$

- We know we can make the noisy channel into a perfect channel with a smaller rate !
- It is sufficient to consider communication with errors over a **noiseless channel**.
- How fast can we communicate over a noiseless channel, if we are allowed to make errors ?
- Consider a **noiseless binary channel**
 - Assume that we force communication at a rate greater than its capacity of 1 bit.
 - For example, if we require the sender to attempt to communicate at R = 2 bits per cycle then he must effectively throw away half of the information.
 - One simple strategy is to communicate a fraction 1/R of the source bits, and ignore the rest. The receiver guesses the missing fraction 1 1/R at random,

$$p_{\rm b} = \frac{1}{2}(1 - 1/R)$$

Consider a **noiseless binary channel**

One simple strategy is to communicate a fraction 1/R of the source bits, and ignore the rest. The

receiver guesses the missing fraction 1 - 1/R at random,

$$p_{\rm b} = \frac{1}{2}(1 - 1/R)$$

Consider a noiseless binary channel

One simple strategy is to communicate a fraction 1/R of the source bits, and ignore the rest. The receiver guesses the missing fraction 1 - 1/R at random,

For any Channel, we can extend the right-hand boundary of the region of achievability

at non-zero error probabilities

If a probability of bit error p_b is acceptable, rates up to $R(p_b)$ are achievable, where

$$R(p_b) = \frac{C}{1 - H_2(p_b)}$$

Computing capacity

Computing capacity

- How can we compute the capacity of a given discrete memoryless channel?
 - We need to find its optimal input distribution.
 - In general we can find the optimal input distribution by a computer search, making use of the

derivative of the mutual information with respect to the input probabilities.

- Since I(X; Y) is concave in the input distribution p, any probability distribution p at which I(X; Y) is stationary must be a global maximum of I(X; Y).
- So it is **tempting** to put the derivative of I(X;Y) into a routine that finds a local maximum of I(X;Y), that is, an input distribution P(x) such that

$$\frac{\partial I(X;Y)}{\partial p_i} = \lambda \quad \text{for all } i,$$

where λ is a Lagrange multiplier associated

with the constraint $\sum_i p_i = 1$

Computing capacity

- Since I(X; Y) is concave in the input distribution p, any probability distribution p at which I(X; Y) is stationary must be a global maximum of I(X; Y).
- So it is **tempting** to put the derivative of I(X;Y) into a routine that finds a local maximum of I(X;Y), that is, an input distribution P(x) such that

$$\frac{\partial I(X;Y)}{\partial p_i} = \lambda \quad \text{for all } i,$$

where λ is a Lagrange multiplier associated

with the constraint $\sum_i p_i = 1$

- However, this approach may fail to find the right answer, because I(X; Y) might be maximized by a distribution that has $p_i = 0$ for some inputs.
- The optimization routine must therefore take account of the possibility that, as we go up hill on

I(X; Y), we may run into the inequality constraints $p_i \ge 0$.

Computing capacity - Results that may help

- All outputs must be used
- I(X; Y) is a convex \smile function of the channel parameters.
- There may be several optimal input distributions, but they all look the same at the output
- A discrete memoryless channel is a symmetric channel if the set of outputs can be partitioned into subsets in such a way that for each subset the matrix of transition probabilities has the property that each row (if more than 1) is a permutation of each other row and each column is a permutation of each other column.

Computing capacity - symmetric channel

An example of a Symmetric Channel

$$P(y=0 | x=0) = 0.7; \quad P(y=0 | x=1) = 0.1;$$

$$P(y=? | x=0) = 0.2; \quad P(y=? | x=1) = 0.2;$$

$$P(y=1 | x=0) = 0.1; \quad P(y=1 | x=1) = 0.7.$$
(10.23)

is a symmetric channel because its outputs can be partitioned into (0, 1) and ?, so that the matrix can be rewritten:

$$P(y=0 | x=0) = 0.7; \quad P(y=0 | x=1) = 0.1; P(y=1 | x=0) = 0.1; \quad P(y=1 | x=1) = 0.7; P(y=? | x=0) = 0.2; \quad P(y=? | x=1) = 0.2.$$
(10.24)

Other coding theorems

Other coding theorems

- The noisy-channel coding theorem is quite general, applying to any discrete memoryless channel; but it is not very specific.
- The theorem **only says** that reliable communication with error probability ε and rate *R* can be achieved by using codes with sufficiently large block length *N*.
- The theorem **does not say how large** *N* **needs to be** to achieve given values of *R* and ε .

Presumably, the smaller ε is and the closer *R* is to *C*, the larger *N* has to be

Noisy-channel coding theorem – explicit N-dependence

For a discrete memoryless channel, a block length *N* and a rate *R*, there exist block codes of length *N* whose average probability of error satisfies:

$$p_{\rm B} \le \exp\left[-NE_{\rm r}(R)\right]$$

where $E_r(R)$ is the *random-coding exponent* of the channel, a convex , decreasing, positive function of *R* for $0 \le R < C$.

The random-coding exponent is also known as the **reliability function**

- $E_r(R) \text{ approaches zero as } R \rightarrow C;$
- The computation of the random-coding exponent for

interesting channels is a challenging task

Lower bounds on the error probability as a function of N

For any code with block length *N* on a discrete memoryless channel, the probability of error assuming **all source messages are used with equal probability** satisfies

$$p_{\rm B} \gtrsim \exp[-NE_{\rm sp}(R)],$$

where the function $E_{sp}(R)$, the *sphere-packing* exponent of the channel, is a convex \checkmark ,

decreasing, positive function of *R* for $0 \le R < C$.

Further Reading and Summary

Further Reading

Recommend Readings

- Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, pages 161 - 173.
- Supplemental readings:

What you should know

- The three parts of noisy-channel coding theorem
- The concept of Jointly-typical sequences
- What is Random coding and typical-set decoding
- What is the general ideia of noisy-channel coding theorem's demonstration

Further Reading and Summary

