
TI 2020/2021

Information Theory

Stream Codes

06

Stream Codes -

Notice

! Author

" João Moura Pires (jmp@fct.unl.pt)

! This material can be freely used for personal or academic purposes without

any previous authorization from the author, provided that this notice is

maintained/kept.

! For commercial purposes the use of any part of this material requires the

previous authorization from the author.

2

Stream Codes -

Bibliography

! Many examples are extracted and adapted from:

! And some slides were based on Iain Murray course

" http://www.inf.ed.ac.uk/teaching/courses/it/2014/

3

http://www.inf.ed.ac.uk/teaching/courses/it/2014/

Stream Codes -

! The guessing game

! Arithmetic codes

! Further applications of arithmetic coding

! Basic Lempel–Ziv algorithm

! Demonstration

! Summary

Table of Contents

4

Stream Codes -

Information Theory

The guessing game

5

Stream Codes -

! Arithmetic coding

! Method that goes hand in hand with the philosophy that compression of data from a source

entails probabilistic modelling of that source.

! As of 1999, the best compression methods for text files use arithmetic coding

! Several state-of-the-art image compression systems use it too.

! Lempel–Ziv coding

! is a ‘universal’ method, designed under the philosophy that we would like a single compression

algorithm that will do a reasonable job for any source.

! Lempel–Ziv compression is widely used and often effective.

Two data compression schemes

6

Stream Codes -

! Consider the redundancy in a typical English text file:

! Characters with non-equal frequency;

! Certain consecutive pairs of letters are more probable than others;

! Entire words can be predicted given the context and a semantic understanding of the text.

! A guessing game

! Assume an alphabet of the 26 upper case letters A, B, C, …, Z and a space ‘-’.

! Repeatedly attempts to predict the next character in a text file.

! The only feedback being whether the guess is correct or not, until the character is correctly

guessed.

! Then we note the number of guesses that were made when the character was identified

The guessing game

7

Stream Codes -

! Assume an alphabet of the 26 upper case letters A, B, C, …, Z and a space ‘-’.

! Repeatedly attempts to predict the next character in a text file.

! The only feedback being whether the guess is correct or not, until the character is correctly

guessed.

! Then we note the number of guesses that were made when the character was identified.

! Example:

− in many cases, the next letter is guessed immediately, in one guess.

− In other cases, particularly at the start of syllables, more guesses are needed.

The guessing game

8

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6

Stream Codes

In this chapter we discuss two data compression schemes.
Arithmetic coding is a beautiful method that goes hand in hand with the

philosophy that compression of data from a source entails probabilistic mod-
elling of that source. As of 1999, the best compression methods for text files
use arithmetic coding, and several state-of-the-art image compression systems
use it too.

Lempel–Ziv coding is a ‘universal’ method, designed under the philosophy
that we would like a single compression algorithm that will do a reasonable job
for any source. In fact, for many real life sources, this algorithm’s universal
properties hold only in the limit of unfeasibly large amounts of data, but, all
the same, Lempel–Ziv compression is widely used and often effective.

6.1 The guessing game

As a motivation for these two compression methods, consider the redundancy
in a typical English text file. Such files have redundancy at several levels: for
example, they contain the ASCII characters with non-equal frequency; certain
consecutive pairs of letters are more probable than others; and entire words
can be predicted given the context and a semantic understanding of the text.

To illustrate the redundancy of English, and a curious way in which it
could be compressed, we can imagine a guessing game in which an English
speaker repeatedly attempts to predict the next character in a text file.

For simplicity, let us assume that the allowed alphabet consists of the 26
upper case letters A,B,C,..., Z and a space ‘-’. The game involves asking
the subject to guess the next character repeatedly, the only feedback being
whether the guess is correct or not, until the character is correctly guessed.
After a correct guess, we note the number of guesses that were made when
the character was identified, and ask the subject to guess the next character
in the same way.

One sentence gave the following result when a human was asked to guess
a sentence. The numbers of guesses are listed below each character.

T H E R E - I S - N O - R E V E R S E - O N - A - M O T O R C Y C L E -
1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1 1

Notice that in many cases, the next letter is guessed immediately, in one
guess. In other cases, particularly at the start of syllables, more guesses are
needed.

What do this game and these results offer us? First, they demonstrate the
redundancy of English from the point of view of an English speaker. Second,
this game might be used in a data compression scheme, as follows.

110

Stream Codes -

! The maximum number of guesses that the subject will make for a given letter is 27

! So what the subject is doing for us is performing a time-varying mapping

" {A, B, C, …, Z, −} ===> {1, 2, 3, …, 27}

" A twin could decode a sequence 1 1 1 5 1 as THERE

− If we stop him whenever he has made a number of guesses equal to the given number,

then he will have just guessed the correct letter, and we can then say ‘yes, that’s right’, and

move to the next character.

The guessing game

9

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6

Stream Codes

In this chapter we discuss two data compression schemes.
Arithmetic coding is a beautiful method that goes hand in hand with the

philosophy that compression of data from a source entails probabilistic mod-
elling of that source. As of 1999, the best compression methods for text files
use arithmetic coding, and several state-of-the-art image compression systems
use it too.

Lempel–Ziv coding is a ‘universal’ method, designed under the philosophy
that we would like a single compression algorithm that will do a reasonable job
for any source. In fact, for many real life sources, this algorithm’s universal
properties hold only in the limit of unfeasibly large amounts of data, but, all
the same, Lempel–Ziv compression is widely used and often effective.

6.1 The guessing game

As a motivation for these two compression methods, consider the redundancy
in a typical English text file. Such files have redundancy at several levels: for
example, they contain the ASCII characters with non-equal frequency; certain
consecutive pairs of letters are more probable than others; and entire words
can be predicted given the context and a semantic understanding of the text.

To illustrate the redundancy of English, and a curious way in which it
could be compressed, we can imagine a guessing game in which an English
speaker repeatedly attempts to predict the next character in a text file.

For simplicity, let us assume that the allowed alphabet consists of the 26
upper case letters A,B,C,..., Z and a space ‘-’. The game involves asking
the subject to guess the next character repeatedly, the only feedback being
whether the guess is correct or not, until the character is correctly guessed.
After a correct guess, we note the number of guesses that were made when
the character was identified, and ask the subject to guess the next character
in the same way.

One sentence gave the following result when a human was asked to guess
a sentence. The numbers of guesses are listed below each character.

T H E R E - I S - N O - R E V E R S E - O N - A - M O T O R C Y C L E -
1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1 1

Notice that in many cases, the next letter is guessed immediately, in one
guess. In other cases, particularly at the start of syllables, more guesses are
needed.

What do this game and these results offer us? First, they demonstrate the
redundancy of English from the point of view of an English speaker. Second,
this game might be used in a data compression scheme, as follows.

110

Stream Codes -

! A compression system with the help of just one human:

" A window length L (a number of characters of context) to show the human

" For every one of the 27L possible strings of length L, we ask them,

− ‘What would you predict is the next character?’, and ‘

− If that prediction were wrong, what would your next guesses be?’

" After tabulating their answers to these 26 × 27L questions, we could use two copies of these

enormous tables at the encoder and the decoder.

! Such a language model is called an Lth order Markov model.

The guessing game

10

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6

Stream Codes

In this chapter we discuss two data compression schemes.
Arithmetic coding is a beautiful method that goes hand in hand with the

philosophy that compression of data from a source entails probabilistic mod-
elling of that source. As of 1999, the best compression methods for text files
use arithmetic coding, and several state-of-the-art image compression systems
use it too.

Lempel–Ziv coding is a ‘universal’ method, designed under the philosophy
that we would like a single compression algorithm that will do a reasonable job
for any source. In fact, for many real life sources, this algorithm’s universal
properties hold only in the limit of unfeasibly large amounts of data, but, all
the same, Lempel–Ziv compression is widely used and often effective.

6.1 The guessing game

As a motivation for these two compression methods, consider the redundancy
in a typical English text file. Such files have redundancy at several levels: for
example, they contain the ASCII characters with non-equal frequency; certain
consecutive pairs of letters are more probable than others; and entire words
can be predicted given the context and a semantic understanding of the text.

To illustrate the redundancy of English, and a curious way in which it
could be compressed, we can imagine a guessing game in which an English
speaker repeatedly attempts to predict the next character in a text file.

For simplicity, let us assume that the allowed alphabet consists of the 26
upper case letters A,B,C,..., Z and a space ‘-’. The game involves asking
the subject to guess the next character repeatedly, the only feedback being
whether the guess is correct or not, until the character is correctly guessed.
After a correct guess, we note the number of guesses that were made when
the character was identified, and ask the subject to guess the next character
in the same way.

One sentence gave the following result when a human was asked to guess
a sentence. The numbers of guesses are listed below each character.

T H E R E - I S - N O - R E V E R S E - O N - A - M O T O R C Y C L E -
1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1 1

Notice that in many cases, the next letter is guessed immediately, in one
guess. In other cases, particularly at the start of syllables, more guesses are
needed.

What do this game and these results offer us? First, they demonstrate the
redundancy of English from the point of view of an English speaker. Second,
this game might be used in a data compression scheme, as follows.

110

Stream Codes -

Information Theory

Arithmetic codes

11

Stream Codes -

! Arithmetic codes were invented by Elias, by Rissanen and by Pasco, and subsequently made

practical by Witten et al. (1987).

! As each symbol is produced by the source, a probabilistic model supplies a predictive

distribution over all possible values of the next symbol, that is, a list of positive numbers

{pi} that sum to one.

! If we choose to model the source as producing i.i.d. symbols with some known distribution,

then the predictive distribution is the same every time;

! Arithmetic coding can with equal ease handle complex adaptive models that produce context-

dependent predictive distributions

Arithmetic codes

12

Stream Codes -

! Arithmetic codes were invented by Elias, by Rissanen and by Pasco, and subsequently made

practical by Witten et al. (1987).

! As each symbol is produced by the source, a probabilistic model supplies a predictive

distribution over all possible values of the next symbol, that is, a list of positive numbers

{pi} that sum to one

! The encoder makes use of the model’s predictions to create a binary string.

! The decoder makes use of an identical twin of the model to interpret the binary string.

! The predictive model is usually implemented in a computer program

Arithmetic codes

13

Stream Codes -

! Let the source alphabet be AX = {a1, …, aI}

! Let the Ith symbol aI have the special meaning ‘end of transmission’.

! The source spits out a sequence x1, x2, . . . , xn,

! We will assume that a computer program is provided to the encoder that assigns a

predictive probability distribution over ai given the sequence that has occurred thus far,

P(xn = ai | x1, . . . , xn -1).

! The receiver has an identical program that produces the same predictive probability

distribution P(xn = ai | x1, . . . , xn -1).

Arithmetic codes

14

Stream Codes -

! Notation for intervals.

! The interval [0.01, 0.10) is all numbers between 0.01 and 0.10

! including

! but not

! A binary transmission defines an interval within the real line from 0 to 1.

! For example the string 01 is interpreted as a binary real number 0.01.

" Lets make that corresponds to the interval [0.01, 0.10) in binary,

" i.e., the interval [0.25, 0.50) in base ten

Concepts for understanding arithmetic coding

15

0.01
.

≡ 0.01000...

0.10
.

≡ 0.1000...

Stream Codes -

! A binary transmission defines an interval within the real line from 0 to 1.

! For example the string 01 is interpreted as a binary real number 0.01.

" Lets make that corresponds to the interval [0.01, 0.10) in binary,

" i.e., the interval [0.25, 0.50) in base ten

Concepts for understanding arithmetic coding

16

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

Stream Codes -

! A binary transmission defines an interval within the real line from 0 to 1.

Concepts for understanding arithmetic coding

17

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

0

1

00

01

10

11

Stream Codes -

! 01 is interpreted as a binary real number 0.01; corresponds to the interval [0.01, 0.10)

" 0.10 = 0.01 + 0.01

! The longer string 01101 is interpreted as a binary real number 0. 01101 and corresponds

to a smaller interval [0.01101, 0.01110).

" 0.01110 = 0.01101 + 0.00001

Concepts for understanding arithmetic coding

18

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

010

011

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

0110
0111

Stream Codes -

! The source alphabet be AX = {a1, …, aI}

! We can divide the real line [0,1) into I intervals of lengths equal to the probabilities

P(x1 = ai).

Concepts for understanding arithmetic coding

21

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

Stream Codes -

! We may then take each interval ai and subdivide it into intervals denoted aia1, aia2,…, aiaI,

such that the length of aiaj is proportional to P(x2 = aj | x1 = ai).

! Indeed the length of the interval aiaj will be precisely the joint probability

Concepts for understanding arithmetic coding

22

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

!

"

0

!

"

1

!
"
01 01101#

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00
P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

!"a1

!

"

a2

!"aI

...

a2a5#

a2a1#
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.

A probabilistic model
defines real intervals

within the real line [0,1).

Stream Codes -

! Iterating this procedure, the interval [0, 1) can be divided into a sequence of intervals

corresponding to all possible finite length strings x1x2 . . . xN , such that the length of an

interval is equal to the probability of the string given our model.

Concepts for understanding arithmetic coding

23

A probabilistic model defines real intervals within the real line [0,1).

Stream Codes -

! The process can be written explicitly as follows. The intervals are defined in terms of the

lower and upper cumulative probabilities

! As the nth symbol arrives, we sub-divide the n-1th interval at the points defined by Qn and Rn

! Starting with the first symbol the intervals are:

Formulae describing arithmetic coding

24

Qn(ai | x1,...,xn−1) = P(xn = ai ' | x1,...,xn−1)
i '=1

i−1

∑

Rn(ai | x1,...,xn−1) = P(xn = ai ' | x1,...,xn−1)
i '=1

i

∑

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 113

Algorithm 6.3. Arithmetic coding.
Iterative procedure to find the
interval [u, v) for the string
x1x2 . . . xN .

u := 0.0
v := 1.0
p := v − u
for n = 1 to N {

Compute the cumulative probabilities Qn and Rn (6.2, 6.3)
v := u + pRn(xn |x1, . . . , xn−1)
u := u + pQn(xn |x1, . . . , xn−1)
p := v − u

}

Formulae describing arithmetic coding

The process depicted in figure 6.2 can be written explicitly as follows. The
intervals are defined in terms of the lower and upper cumulative probabilities

Qn(ai |x1, . . . , xn−1) ≡
i−1∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1), (6.2)

Rn(ai |x1, . . . , xn−1) ≡
i∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1). (6.3)

As the nth symbol arrives, we subdivide the n−1th interval at the points defined
by Qn and Rn. For example, starting with the first symbol, the intervals ‘a1’,
‘a2’, and ‘aI ’ are

a1 ↔ [Q1(a1), R1(a1)) = [0, P (x1 = a1)), (6.4)

a2 ↔ [Q1(a2), R1(a2)) = [P (x= a1), P (x= a1) + P (x= a2)) , (6.5)

and

aI ↔ [Q1(aI), R1(aI)) = [P (x1 = a1) + . . . + P (x1 = aI−1), 1.0) . (6.6)

Algorithm 6.3 describes the general procedure.

To encode a string x1x2 . . . xN , we locate the interval corresponding to
x1x2 . . . xN , and send a binary string whose interval lies within that interval.
This encoding can be performed on the fly, as we now illustrate.

Example: compressing the tosses of a bent coin

Imagine that we watch as a bent coin is tossed some number of times (cf.
example 2.7 (p.30) and section 3.2 (p.51)). The two outcomes when the coin
is tossed are denoted a and b. A third possibility is that the experiment is
halted, an event denoted by the ‘end of file’ symbol, ‘!’. Because the coin is
bent, we expect that the probabilities of the outcomes a and b are not equal,
though beforehand we don’t know which is the more probable outcome.

Encoding

Let the source string be ‘bbba!’. We pass along the string one symbol at a
time and use our model to compute the probability distribution of the next

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 113

Algorithm 6.3. Arithmetic coding.
Iterative procedure to find the
interval [u, v) for the string
x1x2 . . . xN .

u := 0.0
v := 1.0
p := v − u
for n = 1 to N {

Compute the cumulative probabilities Qn and Rn (6.2, 6.3)
v := u + pRn(xn |x1, . . . , xn−1)
u := u + pQn(xn |x1, . . . , xn−1)
p := v − u

}

Formulae describing arithmetic coding

The process depicted in figure 6.2 can be written explicitly as follows. The
intervals are defined in terms of the lower and upper cumulative probabilities

Qn(ai |x1, . . . , xn−1) ≡
i−1∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1), (6.2)

Rn(ai |x1, . . . , xn−1) ≡
i∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1). (6.3)

As the nth symbol arrives, we subdivide the n−1th interval at the points defined
by Qn and Rn. For example, starting with the first symbol, the intervals ‘a1’,
‘a2’, and ‘aI ’ are

a1 ↔ [Q1(a1), R1(a1)) = [0, P (x1 = a1)), (6.4)

a2 ↔ [Q1(a2), R1(a2)) = [P (x= a1), P (x= a1) + P (x= a2)) , (6.5)

and

aI ↔ [Q1(aI), R1(aI)) = [P (x1 = a1) + . . . + P (x1 = aI−1), 1.0) . (6.6)

Algorithm 6.3 describes the general procedure.

To encode a string x1x2 . . . xN , we locate the interval corresponding to
x1x2 . . . xN , and send a binary string whose interval lies within that interval.
This encoding can be performed on the fly, as we now illustrate.

Example: compressing the tosses of a bent coin

Imagine that we watch as a bent coin is tossed some number of times (cf.
example 2.7 (p.30) and section 3.2 (p.51)). The two outcomes when the coin
is tossed are denoted a and b. A third possibility is that the experiment is
halted, an event denoted by the ‘end of file’ symbol, ‘!’. Because the coin is
bent, we expect that the probabilities of the outcomes a and b are not equal,
though beforehand we don’t know which is the more probable outcome.

Encoding

Let the source string be ‘bbba!’. We pass along the string one symbol at a
time and use our model to compute the probability distribution of the next

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 113

Algorithm 6.3. Arithmetic coding.
Iterative procedure to find the
interval [u, v) for the string
x1x2 . . . xN .

u := 0.0
v := 1.0
p := v − u
for n = 1 to N {

Compute the cumulative probabilities Qn and Rn (6.2, 6.3)
v := u + pRn(xn |x1, . . . , xn−1)
u := u + pQn(xn |x1, . . . , xn−1)
p := v − u

}

Formulae describing arithmetic coding

The process depicted in figure 6.2 can be written explicitly as follows. The
intervals are defined in terms of the lower and upper cumulative probabilities

Qn(ai |x1, . . . , xn−1) ≡
i−1∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1), (6.2)

Rn(ai |x1, . . . , xn−1) ≡
i∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1). (6.3)

As the nth symbol arrives, we subdivide the n−1th interval at the points defined
by Qn and Rn. For example, starting with the first symbol, the intervals ‘a1’,
‘a2’, and ‘aI ’ are

a1 ↔ [Q1(a1), R1(a1)) = [0, P (x1 = a1)), (6.4)

a2 ↔ [Q1(a2), R1(a2)) = [P (x= a1), P (x= a1) + P (x= a2)) , (6.5)

and

aI ↔ [Q1(aI), R1(aI)) = [P (x1 = a1) + . . . + P (x1 = aI−1), 1.0) . (6.6)

Algorithm 6.3 describes the general procedure.

To encode a string x1x2 . . . xN , we locate the interval corresponding to
x1x2 . . . xN , and send a binary string whose interval lies within that interval.
This encoding can be performed on the fly, as we now illustrate.

Example: compressing the tosses of a bent coin

Imagine that we watch as a bent coin is tossed some number of times (cf.
example 2.7 (p.30) and section 3.2 (p.51)). The two outcomes when the coin
is tossed are denoted a and b. A third possibility is that the experiment is
halted, an event denoted by the ‘end of file’ symbol, ‘!’. Because the coin is
bent, we expect that the probabilities of the outcomes a and b are not equal,
though beforehand we don’t know which is the more probable outcome.

Encoding

Let the source string be ‘bbba!’. We pass along the string one symbol at a
time and use our model to compute the probability distribution of the next

Stream Codes -

! Iterative procedure to find the interval [u, v) for the string x1 x2 ...xN

! To encode a string x1 x2 ...xN, we locate the interval corresponding to x1 x2 ...xN , and send a

binary string whose interval lies within that interval.

Arithmetic coding. Iterative procedure

25

Qn(ai | x1,...,xn−1) = P(xn = ai ' | x1,...,xn−1)
i '=1

i−1

∑ Rn(ai | x1,...,xn−1) = P(xn = ai ' | x1,...,xn−1)
i '=1

i

∑

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 113

Algorithm 6.3. Arithmetic coding.
Iterative procedure to find the
interval [u, v) for the string
x1x2 . . . xN .

u := 0.0
v := 1.0
p := v − u
for n = 1 to N {

Compute the cumulative probabilities Qn and Rn (6.2, 6.3)
v := u + pRn(xn |x1, . . . , xn−1)
u := u + pQn(xn |x1, . . . , xn−1)
p := v − u

}

Formulae describing arithmetic coding

The process depicted in figure 6.2 can be written explicitly as follows. The
intervals are defined in terms of the lower and upper cumulative probabilities

Qn(ai |x1, . . . , xn−1) ≡
i−1∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1), (6.2)

Rn(ai |x1, . . . , xn−1) ≡
i∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1). (6.3)

As the nth symbol arrives, we subdivide the n−1th interval at the points defined
by Qn and Rn. For example, starting with the first symbol, the intervals ‘a1’,
‘a2’, and ‘aI ’ are

a1 ↔ [Q1(a1), R1(a1)) = [0, P (x1 = a1)), (6.4)

a2 ↔ [Q1(a2), R1(a2)) = [P (x= a1), P (x= a1) + P (x= a2)) , (6.5)

and

aI ↔ [Q1(aI), R1(aI)) = [P (x1 = a1) + . . . + P (x1 = aI−1), 1.0) . (6.6)

Algorithm 6.3 describes the general procedure.

To encode a string x1x2 . . . xN , we locate the interval corresponding to
x1x2 . . . xN , and send a binary string whose interval lies within that interval.
This encoding can be performed on the fly, as we now illustrate.

Example: compressing the tosses of a bent coin

Imagine that we watch as a bent coin is tossed some number of times (cf.
example 2.7 (p.30) and section 3.2 (p.51)). The two outcomes when the coin
is tossed are denoted a and b. A third possibility is that the experiment is
halted, an event denoted by the ‘end of file’ symbol, ‘!’. Because the coin is
bent, we expect that the probabilities of the outcomes a and b are not equal,
though beforehand we don’t know which is the more probable outcome.

Encoding

Let the source string be ‘bbba!’. We pass along the string one symbol at a
time and use our model to compute the probability distribution of the next

Stream Codes -

! Consider a bent coin !

! The two outcomes when the coin is tossed are denoted a and b. (a ≠ b)

! A third possibility is that the experiment is halted, an event denoted by the ‘end of file’

symbol, ‘◻’

! Encoding

! Source string ‘b b b a◻’

! We pass along the string one symbol at a time and use our model to compute the probability

distribution of the next symbol given the string thus far

! We do not know pa and pb and p◻.		

! We will assume the a priori probabilities are: P(a) = P(b) = 0,425 and P(□) = 0.15

Example: compressing the tosses of a bent coin

26

Stream Codes -

! A bent coin is tossed F times. We observe a sequence s of heads (a) and tails (b)

! We want to know:

! i) the bias of the coin (an unknown parameter)

! ii) predict the probability that the next toss will result in a head, i.e, P(next toss = a))

! We assume that pa = P(a) is uniformly distributed in the interval [0, 1]

! Let's denote our assumptions by H1.

! The probability, given pa, that F tosses result in a sequence s that contains {Fa, Fb} counts of

the two outcomes is

Understanding the tosses of a bent coin

27

P(s | pa ,F ,H1) = pa
Fa (1− pa)

Fb

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.2: The bent coin 51

where I denotes the highest assumptions, which we are not questioning.
Fourth, we can take into account our uncertainty regarding such assump-

tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H∗, and working out our predictions about some quantity t,
P (t |D,H∗, I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P (t |D, I) =
∑

H
P (t |D,H, I)P (H |D, I). (3.7)

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’, to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach.

Let’s look at a few more examples of simple inference problems.

3.2 The bent coin

A bent coin is tossed F times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference – or data compression – without making
assumptions.

We give the name H1 to our assumptions. [We’ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given pa, that F
tosses result in a sequence s that contains {Fa, Fb} counts of the two outcomes
is

P (s | pa, F,H1) = pFa
a (1 − pa)Fb . (3.8)

[For example, P (s=aaba | pa, F =4,H1) = papa(1 − pa)pa.] Our first model
assumes a uniform prior distribution for pa,

P (pa |H1) = 1, pa ∈ [0, 1] (3.9)

and pb ≡ 1 − pa.

Inferring unknown parameters

Given a string of length F of which Fa are as and Fb are bs, we are interested
in (a) inferring what pa might be; (b) predicting whether the next character is

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.2: The bent coin 51

where I denotes the highest assumptions, which we are not questioning.
Fourth, we can take into account our uncertainty regarding such assump-

tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H∗, and working out our predictions about some quantity t,
P (t |D,H∗, I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P (t |D, I) =
∑

H
P (t |D,H, I)P (H |D, I). (3.7)

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’, to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach.

Let’s look at a few more examples of simple inference problems.

3.2 The bent coin

A bent coin is tossed F times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference – or data compression – without making
assumptions.

We give the name H1 to our assumptions. [We’ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given pa, that F
tosses result in a sequence s that contains {Fa, Fb} counts of the two outcomes
is

P (s | pa, F,H1) = pFa
a (1 − pa)Fb . (3.8)

[For example, P (s=aaba | pa, F =4,H1) = papa(1 − pa)pa.] Our first model
assumes a uniform prior distribution for pa,

P (pa |H1) = 1, pa ∈ [0, 1] (3.9)

and pb ≡ 1 − pa.

Inferring unknown parameters

Given a string of length F of which Fa are as and Fb are bs, we are interested
in (a) inferring what pa might be; (b) predicting whether the next character is

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.2: The bent coin 51

where I denotes the highest assumptions, which we are not questioning.
Fourth, we can take into account our uncertainty regarding such assump-

tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H∗, and working out our predictions about some quantity t,
P (t |D,H∗, I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P (t |D, I) =
∑

H
P (t |D,H, I)P (H |D, I). (3.7)

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’, to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach.

Let’s look at a few more examples of simple inference problems.

3.2 The bent coin

A bent coin is tossed F times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference – or data compression – without making
assumptions.

We give the name H1 to our assumptions. [We’ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given pa, that F
tosses result in a sequence s that contains {Fa, Fb} counts of the two outcomes
is

P (s | pa, F,H1) = pFa
a (1 − pa)Fb . (3.8)

[For example, P (s=aaba | pa, F =4,H1) = papa(1 − pa)pa.] Our first model
assumes a uniform prior distribution for pa,

P (pa |H1) = 1, pa ∈ [0, 1] (3.9)

and pb ≡ 1 − pa.

Inferring unknown parameters

Given a string of length F of which Fa are as and Fb are bs, we are interested
in (a) inferring what pa might be; (b) predicting whether the next character is

1

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.2: The bent coin 51

where I denotes the highest assumptions, which we are not questioning.
Fourth, we can take into account our uncertainty regarding such assump-

tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H∗, and working out our predictions about some quantity t,
P (t |D,H∗, I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P (t |D, I) =
∑

H
P (t |D,H, I)P (H |D, I). (3.7)

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’, to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach.

Let’s look at a few more examples of simple inference problems.

3.2 The bent coin

A bent coin is tossed F times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference – or data compression – without making
assumptions.

We give the name H1 to our assumptions. [We’ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given pa, that F
tosses result in a sequence s that contains {Fa, Fb} counts of the two outcomes
is

P (s | pa, F,H1) = pFa
a (1 − pa)Fb . (3.8)

[For example, P (s=aaba | pa, F =4,H1) = papa(1 − pa)pa.] Our first model
assumes a uniform prior distribution for pa,

P (pa |H1) = 1, pa ∈ [0, 1] (3.9)

and pb ≡ 1 − pa.

Inferring unknown parameters

Given a string of length F of which Fa are as and Fb are bs, we are interested
in (a) inferring what pa might be; (b) predicting whether the next character is

1

Stream Codes -

! Assuming H1 to be true, the posterior probability of pa, given a string s of length F that has

counts {Fa, Fb}, is, by Bayes’ theorem,

!

!

! The normalizing constant is given by the beta integral

Understanding the tosses of a bent coin

28

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

P(s | pa ,F ,H1) = pa
Fa (1− pa)

Fb

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.2: The bent coin 51

where I denotes the highest assumptions, which we are not questioning.
Fourth, we can take into account our uncertainty regarding such assump-

tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H∗, and working out our predictions about some quantity t,
P (t |D,H∗, I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P (t |D, I) =
∑

H
P (t |D,H, I)P (H |D, I). (3.7)

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’, to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach.

Let’s look at a few more examples of simple inference problems.

3.2 The bent coin

A bent coin is tossed F times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference – or data compression – without making
assumptions.

We give the name H1 to our assumptions. [We’ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given pa, that F
tosses result in a sequence s that contains {Fa, Fb} counts of the two outcomes
is

P (s | pa, F,H1) = pFa
a (1 − pa)Fb . (3.8)

[For example, P (s=aaba | pa, F =4,H1) = papa(1 − pa)pa.] Our first model
assumes a uniform prior distribution for pa,

P (pa |H1) = 1, pa ∈ [0, 1] (3.9)

and pb ≡ 1 − pa.

Inferring unknown parameters

Given a string of length F of which Fa are as and Fb are bs, we are interested
in (a) inferring what pa might be; (b) predicting whether the next character is

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Stream Codes -

! Assuming H1 to be true, the posterior probability of pa, given a string s of length F that has

counts {Fa, Fb}, is, by Bayes’ theorem,

! The normalizing constant is given by the beta integral

Understanding the tosses of a bent coin

29

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.6: Solutions 59

points to a coin and says ‘look, that coin’s a head, I’ve won’. What is
the probability that the other coin is a head?

! Exercise 3.15.[2, p.63] A statistical statement appeared in The Guardian on
Friday January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin came
up heads 140 times and tails 110. ‘It looks very suspicious
to me’, said Barry Blight, a statistics lecturer at the London
School of Economics. ‘If the coin were unbiased the chance of
getting a result as extreme as that would be less than 7%’.

But do these data give evidence that the coin is biased rather than fair?
[Hint: see equation (3.22).]

3.6 Solutions

Solution to exercise 3.1 (p.47). Let the data be D. Assuming equal prior
probabilities,

P (A |D)
P (B |D)

=
1
2

3
2

1
1

3
2

1
2

2
2

1
2

=
9
32

(3.31)

and P (A |D) = 9/41.

Solution to exercise 3.2 (p.47). The probability of the data given each hy-
pothesis is:

P (D |A) =
3
20

1
20

2
20

1
20

3
20

1
20

1
20

=
18
207

; (3.32)

P (D |B) =
2
20

2
20

2
20

2
20

2
20

1
20

2
20

=
64
207

; (3.33)

P (D |C) =
1
20

1
20

1
20

1
20

1
20

1
20

1
20

=
1

207
. (3.34)

So

P (A |D) =
18

18 + 64 + 1
=

18
83

; P (B |D) =
64
83

; P (C |D) =
1
83

.

(3.35)

(a) 0 0.2 0.4 0.6 0.8 1 (b) 0 0.2 0.4 0.6 0.8 1
P (pa | s= aba, F = 3) ∝ p2

a(1 − pa) P (pa | s= bbb, F = 3) ∝ (1 − pa)
3

Figure 3.7. Posterior probability
for the bias pa of a bent coin
given two different data sets.

Solution to exercise 3.5 (p.52).

(a) P (pa | s=aba, F =3) ∝ p2
a(1 − pa). The most probable value of pa (i.e.,

the value that maximizes the posterior probability density) is 2/3. The
mean value of pa is 3/5.

See figure 3.7a.

For s = aba, the most probable value
of pa (i.e., the value that maximizes
the posterior probability density) is
2/3.

The mean value of pa is 3/5.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.6: Solutions 59

points to a coin and says ‘look, that coin’s a head, I’ve won’. What is
the probability that the other coin is a head?

! Exercise 3.15.[2, p.63] A statistical statement appeared in The Guardian on
Friday January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin came
up heads 140 times and tails 110. ‘It looks very suspicious
to me’, said Barry Blight, a statistics lecturer at the London
School of Economics. ‘If the coin were unbiased the chance of
getting a result as extreme as that would be less than 7%’.

But do these data give evidence that the coin is biased rather than fair?
[Hint: see equation (3.22).]

3.6 Solutions

Solution to exercise 3.1 (p.47). Let the data be D. Assuming equal prior
probabilities,

P (A |D)
P (B |D)

=
1
2

3
2

1
1

3
2

1
2

2
2

1
2

=
9
32

(3.31)

and P (A |D) = 9/41.

Solution to exercise 3.2 (p.47). The probability of the data given each hy-
pothesis is:

P (D |A) =
3
20

1
20

2
20

1
20

3
20

1
20

1
20

=
18
207

; (3.32)

P (D |B) =
2
20

2
20

2
20

2
20

2
20

1
20

2
20

=
64
207

; (3.33)

P (D |C) =
1
20

1
20

1
20

1
20

1
20

1
20

1
20

=
1

207
. (3.34)

So

P (A |D) =
18

18 + 64 + 1
=

18
83

; P (B |D) =
64
83

; P (C |D) =
1
83

.

(3.35)

(a) 0 0.2 0.4 0.6 0.8 1 (b) 0 0.2 0.4 0.6 0.8 1
P (pa | s= aba, F = 3) ∝ p2

a(1 − pa) P (pa | s= bbb, F = 3) ∝ (1 − pa)
3

Figure 3.7. Posterior probability
for the bias pa of a bent coin
given two different data sets.

Solution to exercise 3.5 (p.52).

(a) P (pa | s=aba, F =3) ∝ p2
a(1 − pa). The most probable value of pa (i.e.,

the value that maximizes the posterior probability density) is 2/3. The
mean value of pa is 3/5.

See figure 3.7a.

Stream Codes -

! A bent coin is tossed F times. We observe a sequence s of heads (a) and tails (b)

! We want to know:

! i) the bias of the coin (an unknown parameter)

! ii) predict the probability that the next toss will result in a head, i.e, P(next toss = a))

! The probability that the next toss is an a, is obtained by integrating over pa. This has the

effect of taking into account our uncertainty about pa when making predictions. By the sum

rule.

! The probability of an a given pa is simply pa, so P(a | pa) = pa

Understanding the tosses of a bent coin

30

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.6: Solutions 59

points to a coin and says ‘look, that coin’s a head, I’ve won’. What is
the probability that the other coin is a head?

! Exercise 3.15.[2, p.63] A statistical statement appeared in The Guardian on
Friday January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin came
up heads 140 times and tails 110. ‘It looks very suspicious
to me’, said Barry Blight, a statistics lecturer at the London
School of Economics. ‘If the coin were unbiased the chance of
getting a result as extreme as that would be less than 7%’.

But do these data give evidence that the coin is biased rather than fair?
[Hint: see equation (3.22).]

3.6 Solutions

Solution to exercise 3.1 (p.47). Let the data be D. Assuming equal prior
probabilities,

P (A |D)
P (B |D)

=
1
2

3
2

1
1

3
2

1
2

2
2

1
2

=
9
32

(3.31)

and P (A |D) = 9/41.

Solution to exercise 3.2 (p.47). The probability of the data given each hy-
pothesis is:

P (D |A) =
3
20

1
20

2
20

1
20

3
20

1
20

1
20

=
18
207

; (3.32)

P (D |B) =
2
20

2
20

2
20

2
20

2
20

1
20

2
20

=
64
207

; (3.33)

P (D |C) =
1
20

1
20

1
20

1
20

1
20

1
20

1
20

=
1

207
. (3.34)

So

P (A |D) =
18

18 + 64 + 1
=

18
83

; P (B |D) =
64
83

; P (C |D) =
1
83

.

(3.35)

(a) 0 0.2 0.4 0.6 0.8 1 (b) 0 0.2 0.4 0.6 0.8 1
P (pa | s= aba, F = 3) ∝ p2

a(1 − pa) P (pa | s= bbb, F = 3) ∝ (1 − pa)
3

Figure 3.7. Posterior probability
for the bias pa of a bent coin
given two different data sets.

Solution to exercise 3.5 (p.52).

(a) P (pa | s=aba, F =3) ∝ p2
a(1 − pa). The most probable value of pa (i.e.,

the value that maximizes the posterior probability density) is 2/3. The
mean value of pa is 3/5.

See figure 3.7a.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Stream Codes -

! The probability that the next toss is an a, is obtained by integrating over pa. This has the

effect of taking into account our uncertainty about pa when making predictions. By the sum

rule.

Understanding the tosses of a bent coin

31

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s
of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa
a (1 − pa)Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =
∫ 1

0
dpa pFa

a (1 − pa)Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!
(Fa + Fb + 1)!

.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?
Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F) =
∫

dpa P (a | pa)P (pa | s, F). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F) =
∫

dpa pa
pFa
a (1 − pa)Fb

P (s |F)
(3.14)

=
∫

dpa
pFa+1
a (1 − pa)Fb

P (s |F)
(3.15)

=
[

(Fa + 1)!Fb!
(Fa + Fb + 2)!

]/[
Fa!Fb!

(Fa + Fb + 1)!

]
=

Fa + 1
Fa + Fb + 2

, (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.

Stream Codes -

! The two outcomes when the coin is tossed are denoted a and b. (a ≠ b)

! A third possibility is that the experiment is halted, an event denoted by the ‘end of file’

symbol, ‘◻’

! Encoding

! Source string ‘b b b a◻’

! We pass along the string one symbol at a time and use our model to compute the probability

distribution of the next symbol given the string thus far

! We do not know pa and pb and p◻.		

! We will assume the a priori probabilities are: P(a) = P(b) = 0,425 and P(□) = 0.15

Example: compressing the tosses of a bent coin

32

Stream Codes -

! We pass along the string one symbol at a time and use our model to compute the probability

distribution of the next symbol given the string thus far.

! We will assume the a priori probabilities are: P(a) = P(b) = 0,425 and P(□) = 0.15	

! And	a	simple	model	that:		

! always	assigns	a	probability	of	0.15	to	◻	

! assigns the remaining 0.85 to a and b, divided in proportion to probabilities given by

Laplace’s rule,

Example: compressing the tosses of a bent coin

33

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

116 6 — Stream Codes

a

b

!

aa

ab

a!

aaa

aab

aa!

aaaa

aaab

aaba
aabb

aba

abb
ab!

abaa
abab
abba
abbb

ba

bb

b!

baa

bab
ba!

baaa
baab
baba
babb

bba

bbb

bb!

bbaa
bbab
bbba

bbbb

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

Figure 6.5. Illustration of the
intervals defined by a simple
Bayesian probabilistic model. The
size of an intervals is proportional
to the probability of the string.
This model anticipates that the
source is likely to be biased
towards one of a and b, so
sequences having lots of as or lots
of bs have larger intervals than
sequences of the same length that
are 50:50 as and bs.

naturally be produced by a Bayesian model.
Figure 6.4 was generated using a simple model that always assigns a prob-

ability of 0.15 to !, and assigns the remaining 0.85 to a and b, divided in
proportion to probabilities given by Laplace’s rule,

PL(a |x1, . . . , xn−1) =
Fa + 1

Fa + Fb + 2
, (6.7)

where Fa(x1, . . . , xn−1) is the number of times that a has occurred so far, and
Fb is the count of bs. These predictions correspond to a simple Bayesian model
that expects and adapts to a non-equal frequency of use of the source symbols
a and b within a file.

Figure 6.5 displays the intervals corresponding to a number of strings of
length up to five. Note that if the string so far has contained a large number of
bs then the probability of b relative to a is increased, and conversely if many
as occur then as are made more probable. Larger intervals, remember, require
fewer bits to encode.

Details of the Bayesian model

Having emphasized that any model could be used – arithmetic coding is not
wedded to any particular set of probabilities – let me explain the simple adaptive

Stream Codes -

! We pass along the string one symbol at a time and use our model to compute the probability

distribution of the next symbol given the string thus far.

Example: compressing the tosses of a bent coin

34

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

Stream Codes -

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

! When the first symbol ‘b’ is observed, the

encoder knows that the encoded string will start

‘01’, ‘10’, or ‘11’, but does not know which.

! Then examines the next symbol, which is ‘b’.

The interval ‘bb’ lies wholly within interval ‘1’,

so the encoder can write the first bit: ‘1’

Example: compressing the tosses of a bent coin

35

0.425

0.425

0.15

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

Stream Codes -

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

! When the first symbol ‘b’ is observed, the

encoder knows that the encoded string will start

‘01’, ‘10’, or ‘11’, but does not know which.

! Then examines the next symbol, which is ‘b’.

The interval ‘bb’ lies wholly within interval ‘1’,

so the encoder can write the first bit: ‘1’

! The third symbol ‘b’ narrows down the

interval a little.

Example: compressing the tosses of a bent coin

36

0.425

0.425

0.15

Stream Codes -

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

! When the first symbol ‘b’ is observed, the encoder

knows that the encoded string will start ‘01’, ‘10’,

or ‘11’, but does not know which.

! Then examines the next symbol, which is ‘b’. The

interval ‘bb’ lies wholly within interval ‘1’, so the

encoder can write the first bit: ‘1’

! The third symbol ‘b’ narrows down the interval a

little, to lie wholly within interval ‘10’.

! When the next ‘a’ is read from the source can we

transmit some more bits.

Example: compressing the tosses of a bent coin

37

0.425

0.425

0.15

Stream Codes -

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

! When the next ‘a’ is read from the source can we

transmit some more bits.

! Interval ‘bbba’ lies wholly within the interval

‘1001’, so the encoder adds ‘01’ to the ’10’ it has

written.

Example: compressing the tosses of a bent coin

38

0.425

0.425

0.15

Stream Codes -

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

! When the next ‘a’ is read from the source can we

transmit some more bits.

! Interval ‘bbba’ lies wholly within the interval

‘1001’, so the encoder adds ‘01’ to the ’10’ it has

written.

! Finally when the ‘◻’ arrives, we need a procedure

for terminating the encoding.

Example: compressing the tosses of a bent coin

39

0.425

0.425

0.15

Stream Codes -

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

Example: compressing the tosses of a bent coin

40

0.425

0.425

0.15

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

! Finally when the ‘◻’ arrives, we need a procedure

for terminating the encoding.

! ‘100111101’ is wholly contained by bbba◻, so the

encoding can be completed by appending ‘11101’.

Stream Codes -

! The overhead required to terminate a message is never more than 2 bits, relative to the

ideal message length given the probabilistic model

! The message length is always within two bits of the Shannon information content of the

entire source string,

! The expected message length is within two bits of the entropy of the entire message

Overhead to terminate a message is never more than 2 bits

41

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 115

Exercise 6.1.[2, p.127] Show that the overhead required to terminate a message
is never more than 2 bits, relative to the ideal message length given the
probabilistic model H, h(x |H) = log[1/P (x |H)].

This is an important result. Arithmetic coding is very nearly optimal. The
message length is always within two bits of the Shannon information content
of the entire source string, so the expected message length is within two bits
of the entropy of the entire message.

Decoding

The decoder receives the string ‘100111101’ and passes along it one symbol
at a time. First, the probabilities P (a), P (b), P (!) are computed using the
identical program that the encoder used and the intervals ‘a’, ‘b’ and ‘!’ are
deduced. Once the first two bits ‘10’ have been examined, it is certain that
the original string must have been started with a ‘b’, since the interval ‘10’ lies
wholly within interval ‘b’. The decoder can then use the model to compute
P (a | b), P (b | b), P (! | b) and deduce the boundaries of the intervals ‘ba’, ‘bb’
and ‘b!’. Continuing, we decode the second b once we reach ‘1001’, the third
b once we reach ‘100111’, and so forth, with the unambiguous identification
of ‘bbba!’ once the whole binary string has been read. With the convention
that ‘!’ denotes the end of the message, the decoder knows to stop decoding.

Transmission of multiple files

How might one use arithmetic coding to communicate several distinct files over
the binary channel? Once the ! character has been transmitted, we imagine
that the decoder is reset into its initial state. There is no transfer of the learnt
statistics of the first file to the second file. If, however, we did believe that
there is a relationship among the files that we are going to compress, we could
define our alphabet differently, introducing a second end-of-file character that
marks the end of the file but instructs the encoder and decoder to continue
using the same probabilistic model.

The big picture

Notice that to communicate a string of N letters both the encoder and the
decoder needed to compute only N |A| conditional probabilities – the proba-
bilities of each possible letter in each context actually encountered – just as in
the guessing game. This cost can be contrasted with the alternative of using
a Huffman code with a large block size (in order to reduce the possible one-
bit-per-symbol overhead discussed in section 5.6), where all block sequences
that could occur must be considered and their probabilities evaluated.

Notice how flexible arithmetic coding is: it can be used with any source
alphabet and any encoded alphabet. The size of the source alphabet and the
encoded alphabet can change with time. Arithmetic coding can be used with
any probability distribution, which can change utterly from context to context.

Furthermore, if we would like the symbols of the encoding alphabet (say,
0 and 1) to be used with unequal frequency, that can easily be arranged by
subdividing the right-hand interval in proportion to the required frequencies.

How the probabilistic model might make its predictions

The technique of arithmetic coding does not force one to produce the predic-
tive probability in any particular way, but the predictive distributions might

Stream Codes -

! The decoder receives the string ‘100111101’ and passes along it one symbol at a time.

! First, the probabilities P(a), P(b), P(◻) are computed using the identical program that the

encoder used and the intervals ‘a’, ‘b’ and ‘◻’ are deduced.

! Once the first two bits ‘10’ have been examined,

it is certain that the original string must have

been started with a ‘b’, since the interval ‘10’ lies

wholly within interval ‘b’.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

0.425

0.425

0.15

Decoding

42

Stream Codes -

! The decoder receives the string ‘100111101’ and passes along it one symbol at a time.

! The decoder can then use the model to compute P(a | b), P(b | b), P(◻| b) and deduce the

boundaries of the intervals ‘ba’, ‘bb’ and ‘b◻’.

! Continuing, we decode the second b once we reach ‘1001’

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

0.425

0.425

0.15

Decoding

43

Stream Codes -

! The decoder receives the string ‘100111101’ and passes along it one symbol at a time.

! The decoder can then use the model to compute P(a | b), P(b | b), P(◻| b) and deduce the

boundaries of the intervals ‘ba’, ‘bb’ and ‘b◻’.

! Continuing, we decode the second b once we reach ‘1001’

! The third b once we reach ‘100111’,

! and so forth, with the unambiguous identification of ‘bbba◻’.

! With the convention that ‘◻’ denotes the end of the message,

the decoder knows to stop decoding.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (!)=0.15
b P (a | b)=0.28 P (b | b)=0.57 P (! | b)=0.15
bb P (a | bb)=0.21 P (b | bb)=0.64 P (! | bb)=0.15
bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (! | bbb)=0.15
bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (! | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

!

ba

bb

b!

bba

bbb

bb!

bbba

bbbb

bbb!

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

!
!
!
!

"
"
"
"

100111101
#
#
##$

bbba

bbbaa

bbbab

bbba!

10011

10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba! is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘!’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba!’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba!, so the encoding
can be completed by appending ‘11101’.

0.425

0.425

0.15

Decoding

44

Stream Codes -

! How might one use arithmetic coding to communicate several distinct files over the binary

channel?

! Once the ◻ character has been transmitted, the decoder is reset into its initial state.

! There is no transfer of the learnt statistics of the first file to the second file.

! If, however, we did believe that there is a relationship among the files that we are going to

compress, we could define our alphabet differently, introducing a second end-of-file

character that marks the end of the file but instructs the encoder and decoder to

continue using the same probabilistic model.

Transmission of multiple files

45

Stream Codes -

! With arithmetic codes, notice that to communicate a string of N letters both the encoder and

the decoder needed to compute only N |A| conditional probabilities – the probabilities of each

possible letter in each context actually encountered.

! This cost can be contrasted with the alternative of using a Huffman code with a large block

size (in order to reduce the possible one-bit-per-symbol overhead), where all block

sequences that could occur must be considered and their probabilities evaluated.

! Arithmetic coding is flexible:

! It can be used with any source alphabet and any encoded alphabet

! The size of the source alphabet and the encoded alphabet can change with time.

! Can be used with any probability distribution, which can change from context to context.

Comparing to Huffman - The big picture

46

Stream Codes -

! The model is described using parameters p◻, pa and pb,

! A bent coin labelled a and b is tossed some number of times l, which we don’t know

beforehand.

! The coin’s probability of coming up a when tossed is pa, and pb = 1 − pa; the parameters pa,

pb are not known beforehand.

! The source string s = baaba◻ indicates that l was 5 and the sequence of outcomes was

baaba.

Details of the Bayesian model

47

Stream Codes -

! It is assumed that the length of the string l has an exponential probability distribution

This distribution corresponds to assuming a constant probability p◻ for the termination

symbol ‘◻’ at each character.

! It is assumed that the non-terminal characters in the string are selected independently at

random from an ensemble with probabilities P = {pa, pb}.

! The probability pa is fixed throughout the string to some unknown value that could be

anywhere between 0 and 1.

! The probability of an a occurring as the next symbol, given pa, is (1 − p◻)pa

Details of the Bayesian model

48

P(l) = (1− p!)
l p!

Stream Codes -

! The probability, given pa, that an unterminated string of length F is a given string s that contains {Fa,

Fb} counts of the two outcomes is the Bernoulli distribution

! We assume a uniform prior distribution for pa,

! The probability that the next character is a or b (assuming that it is not ‘◻’) is the Laplace’s rule

Details of the Bayesian model

49

P(s | pa ,F) = pa
Fa (1− pa)

Fb

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 117

probabilistic model used in the preceding example; we first encountered this
model in exercise 2.8 (p.30).

Assumptions

The model will be described using parameters p!, pa and pb, defined below,
which should not be confused with the predictive probabilities in a particular
context , for example, P (a | s=baa). A bent coin labelled a and b is tossed some
number of times l, which we don’t know beforehand. The coin’s probability of
coming up a when tossed is pa, and pb = 1− pa; the parameters pa, pb are not
known beforehand. The source string s = baaba! indicates that l was 5 and
the sequence of outcomes was baaba.

1. It is assumed that the length of the string l has an exponential probability
distribution

P (l) = (1− p!)lp!. (6.8)

This distribution corresponds to assuming a constant probability p! for
the termination symbol ‘!’ at each character.

2. It is assumed that the non-terminal characters in the string are selected in-
dependently at random from an ensemble with probabilities P = {pa, pb};
the probability pa is fixed throughout the string to some unknown value
that could be anywhere between 0 and 1. The probability of an a occur-
ring as the next symbol, given pa (if only we knew it), is (1− p!)pa. The
probability, given pa, that an unterminated string of length F is a given
string s that contains {Fa, Fb} counts of the two outcomes is the Bernoulli
distribution

P (s | pa, F) = pFa
a (1− pa)Fb . (6.9)

3. We assume a uniform prior distribution for pa,

P (pa) = 1, pa ∈ [0, 1], (6.10)

and define pb ≡ 1 − pa. It would be easy to assume other priors on pa,
with beta distributions being the most convenient to handle.

This model was studied in section 3.2. The key result we require is the predictive
distribution for the next symbol, given the string so far, s. This probability
that the next character is a or b (assuming that it is not ‘!’) was derived in
equation (3.16) and is precisely Laplace’s rule (6.7).

! Exercise 6.2.[3] Compare the expected message length when an ASCII file is
compressed by the following three methods.

Huffman-with-header. Read the whole file, find the empirical fre-
quency of each symbol, construct a Huffman code for those frequen-
cies, transmit the code by transmitting the lengths of the Huffman
codewords, then transmit the file using the Huffman code. (The
actual codewords don’t need to be transmitted, since we can use a
deterministic method for building the tree given the codelengths.)

Arithmetic code using the Laplace model.

PL(a |x1, . . . , xn−1) =
Fa + 1∑
a′(Fa′ + 1)

. (6.11)

Arithmetic code using a Dirichlet model. This model’s predic-
tions are:

PD(a |x1, . . . , xn−1) =
Fa + α∑
a′(Fa′ + α)

, (6.12)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

116 6 — Stream Codes

a

b

!

aa

ab

a!

aaa

aab

aa!

aaaa

aaab

aaba
aabb

aba

abb
ab!

abaa
abab
abba
abbb

ba

bb

b!

baa

bab
ba!

baaa
baab
baba
babb

bba

bbb

bb!

bbaa
bbab
bbba

bbbb

0

1

00

01

000

001

0000

0001

00000
00001
00010
00011

0010

0011

00100
00101
00110
00111

010

011

0100

0101

01000
01001
01010
01011

0110

0111

01100
01101
01110
01111

10

11

100

101

1000

1001

10000
10001
10010
10011

1010

1011

10100
10101
10110
10111

110

111

1100

1101

11000
11001
11010
11011

1110

1111

11100
11101
11110
11111

Figure 6.5. Illustration of the
intervals defined by a simple
Bayesian probabilistic model. The
size of an intervals is proportional
to the probability of the string.
This model anticipates that the
source is likely to be biased
towards one of a and b, so
sequences having lots of as or lots
of bs have larger intervals than
sequences of the same length that
are 50:50 as and bs.

naturally be produced by a Bayesian model.
Figure 6.4 was generated using a simple model that always assigns a prob-

ability of 0.15 to !, and assigns the remaining 0.85 to a and b, divided in
proportion to probabilities given by Laplace’s rule,

PL(a |x1, . . . , xn−1) =
Fa + 1

Fa + Fb + 2
, (6.7)

where Fa(x1, . . . , xn−1) is the number of times that a has occurred so far, and
Fb is the count of bs. These predictions correspond to a simple Bayesian model
that expects and adapts to a non-equal frequency of use of the source symbols
a and b within a file.

Figure 6.5 displays the intervals corresponding to a number of strings of
length up to five. Note that if the string so far has contained a large number of
bs then the probability of b relative to a is increased, and conversely if many
as occur then as are made more probable. Larger intervals, remember, require
fewer bits to encode.

Details of the Bayesian model

Having emphasized that any model could be used – arithmetic coding is not
wedded to any particular set of probabilities – let me explain the simple adaptive

Stream Codes -

Information Theory

Further applications of arithmetic coding

50

Stream Codes -

! Arithmetic code also offers a way to generate random strings from a model.

! Imagine sticking a pin into the unit interval at random, that line having been divided into

subintervals in proportion to probabilities pi; the probability that your pin will lie in interval i

is pi.

! So to generate a sample from a model, all we need to do is feed ordinary random bits into

an arithmetic decoder for that model.

! An infinite random bit sequence corresponds to the selection of a point at random from the line

[0,1),

! So the decoder will then select a string at random from the assumed distribution.

Efficient generation of random samples

51

Take a look on random numbers generators

https://en.wikipedia.org/wiki/Random_number_generation

Stream Codes -

! When we enter text into a computer, we make gestures of some sort – maybe we tap a

keyboard, or scribble with a pointer, or click with a mouse;

! an efficient text entry system is one where the number of gestures required to enter a

given text string is small.

! Writing can be viewed as an inverse process to data compression.

! In data compression, the aim is to map a given text string into a small number of bits.

! In text entry, we want a small sequence of gestures to produce our intended text.

! By inverting an arithmetic coder, we can obtain an information-efficient text entry device

that is driven by continuous pointing gestures

Efficient data-entry devices

52

http://www.inference.org.uk/dasher/
https://www.youtube.com/watch?v=0d6yIquOKQ0

Stream Codes -

! By inverting an arithmetic coder, we can obtain an information-efficient text entry device

that is driven by continuous pointing gestures (Ward et al. 2000)

! In this system, called Dasher, the user zooms in

on the unit interval to locate the interval

corresponding to their intended string,

! A language model (exactly as used in text

compression) controls the sizes of the intervals.

Efficient data-entry devices

53

More about Dasher

See this video

And the impact

http://www.inference.org.uk/dasher/
https://www.youtube.com/watch?v=0d6yIquOKQ0
https://www.youtube.com/watch?v=QxFEUk3J89Q

https://www.youtube.com/watch?v=0d6yIquOKQ0

Dasher’s Impact

https://www.youtube.com/watch?v=QxFEUk3J89Q

Stream Codes -

Information Theory

Basic Lempel–Ziv algorithm

56

Stream Codes -

! The method of compression is to replace a substring with a pointer to an earlier

occurrence of the same substring.

! For example if the string is 1011010100010..., we parse it into an ordered dictionary of

substrings that have not appeared before:

! λ - empty substring; λ as the first substring in the dictionary

! 1,

! 0,

! 11,

! 01,

! 010, 00, 10, . . .

Basic Lempel–Ziv algorithm

57

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

https://en.wikipedia.org/wiki/Random_number_generation

Stream Codes -

! For example if the string is 1011010100010..., we parse it into an ordered dictionary of

substrings that have not appeared before:

! λ - empty substring λ as the first substring in the dictionary

! 1,

! 0,

! 11,

! 01,

! 010,

! 00,

! 10, . . .

Basic Lempel–Ziv algorithm

58

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

..read a substring that has not been marked off
before. This substring is longer by one bit
than a substring that has occurred earlier in
the dictionary

Stream Codes -

! For example if the string is 1011010100010..., we parse it into an ordered dictionary of

substrings that have not appeared before:

! λ - empty substring λ as the first substring in the dictionary

! 1,

! 0,

! 11,

! 01,

! 010,

! 00,

! 10, . . .

Basic Lempel–Ziv algorithm

59

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

Stream Codes -

! For example if the string is 1011010100010..., we parse it into an ordered dictionary of

substrings that have not appeared before:

! λ - empty substring λ as the first substring in the dictionary

! 1,

! 0,

! 11,

! 01,

! 010,

! 00,

! 10, . . .

Basic Lempel–Ziv algorithm

60

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

Stream Codes -

! For example if the string is 1011010100010..., we parse it into an ordered dictionary of

substrings that have not appeared before:

! λ - empty substring λ as the first substring in the dictionary

! 1,

! 0,

! 11,

! 01,

! 010,

! 00,

! 10, . . .

Basic Lempel–Ziv algorithm

61

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

Stream Codes -

! For example if the string is 1011010100010..., we parse it into an ordered dictionary of

substrings that have not appeared before:

! λ - empty substring λ as the first substring in the dictionary

! 1,

! 0,

! 11,

! 01,

! 010,

! 00,

! 10, . . .

Basic Lempel–Ziv algorithm

62

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

Stream Codes -

! For example if the string is 1011010100010..., we parse it into an ordered dictionary of

substrings that have not appeared before:

! λ - empty substring λ as the first substring in the dictionary

! 1,

! 0,

! 11,

! 01,

! 010,

! 00,

! 10, . . .

Basic Lempel–Ziv algorithm

63

..read a substring that has not been marked off
before. This substring is longer by one bit
than a substring that has occurred earlier in
the dictionary

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

Stream Codes -

! … read a substring that has not been marked off before. This substring is longer by one bit

than a substring that has occurred earlier in the dictionary

! We can encode each substring by

! giving a pointer to the earlier occurrence of that prefix and

! then sending the extra bit by which the new substring in the dictionary differs from the earlier

substring.

! If, at the nth bit, we have enumerated s(n) substrings, then we can give the value of the

pointer in ⌈log2 s(n)⌉ bits.

Basic Lempel–Ziv algorithm

64

Stream Codes -

Basic Lempel–Ziv algorithm

Source Substring λ 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7

s(n)binary 0 01 10 11 100 101 110 111

(Pointer, bit) (, 1) (0, 0) (01, 1)

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

1011010100010

Stream Codes -

Basic Lempel–Ziv algorithm

Source Substring λ 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7

s(n)binary 000 001 010 011 100 101 110 111

(Pointer, bit) (, 1) (0, 0) (01, 1)

Stream Codes -

Basic Lempel–Ziv algorithm

Source Substring λ 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7

s(n)binary 000 001 010 011 100 101 110 111

(Pointer, bit) (, 1) (0, 0) (01, 1) (10, 1) (100, 0) (010, 0) (001, 0)

1
100
100011

100011101
1000111011000
10001110110000100

100011101100001000010

The encoding, in this simple case, is actually a

longer string than the source string. Why ?

1011010100010

Stream Codes -

! The encoding, in this simple case, is actually a longer string than the source string. Why ?

! It transmits unnecessary bits

! Once a substring in the dictionary has been joined there by both of its children, then we can be

sure that it will not be needed (except possibly as part of our protocol for terminating a message)

! At that point we could drop it from our dictionary of substrings and shuffle them all along

one, thereby reducing the length of subsequent pointer messages.

! Equivalently, we could write the second prefix into the dictionary at the point previously

occupied by the parent

! The transmission of the new bit when the second time a prefix is used, we can be sure of the

identity of the next bit

Basic Lempel–Ziv algorithm

68

Stream Codes -

Basic Lempel–Ziv algorithm

Source Substring λ 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7

s(n)binary 000 001 010 011 100 101 110 111

(Pointer, bit) (, 1) (0, 0) (01, 1) (10, 1) (100, 0) (010, 0) (001, 0)

1
100
100011

100011101
1000111011000
10001110110000100

100011101100001000010

The encoding, in this simple case, is actually a

longer string than the source string. Why ?

1011010100010

Stream Codes -

Basic Lempel–Ziv algorithm

Source Substring λ 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7

s(n)binary 000 001 010 011 100 101 110 111

(Pointer, bit) (, 1) (0, 0) (01, 1) (10, 1) (100, 0) (010, 0) (001, 0)

1
100
100011

100011101
1000111011000
10001110110000100

100011101100001000010

The encoding, in this simple case, is actually a

longer string than the source string. Why ?

1011010100010

Stream Codes -

! The decoder again involves an identical twin at the decoding end who constructs the

dictionary of substrings as the data are decoded.

!

! There are many variations on the Lempel–Ziv algorithm, all exploiting the same idea but

using different procedures for dictionary management, etc.

! The resulting programs are fast, but their performance on compression of English text,

although useful, does not match the standards set in the arithmetic coding literature.

Basic Lempel–Ziv algorithm

71

100011101100001000010

1 (0,0) (01,1) (10,1) (100,0) (010,0) (001,0)

Stream Codes -

! The Lempel–Ziv algorithm is defined without making any mention of a probabilistic model

for the source

! Yet, given any ergodic source (i.e., one that is memoryless on sufficiently long timescales),

the Lempel–Ziv algorithm can be proven asymptotically to compress down to the entropy

of the source.

! This is why it is called a ‘universal’ compression algorithm

! It achieves its compression, however, only by memorizing substrings that have happened so that it has

a short name for them the next time they occur. The asymptotic timescale on which this universal

performance is achieved may, for many sources, be unfeasibly long, because the number of typical

substrings that need memorizing may be enormous.

Basic Lempel–Ziv: Theoretical properties

72

Stream Codes -

! The Lempel–Ziv algorithm is defined without making any mention of a probabilistic model

for the source

! The useful performance of the algorithm in practice is a reflection of the fact that many

files contain multiple repetitions of particular short sequences of characters, a form of

redundancy to which the algorithm is well suited.

! In principle, one can design adaptive probabilistic models, and thence arithmetic codes,

that are ‘universal’, that is, models that will asymptotically compress any source in some

class to within some factor (preferably 1) of its entropy. However, for practical purposes

such universal models can only be constructed if the class of sources is severely restricted.

Basic Lempel–Ziv: Theoretical properties

73

Stream Codes -

! In principle, one can design adaptive probabilistic models, and thence arithmetic codes,

that are ‘universal’, that is, models that will asymptotically compress any source in some

class to within some factor (preferably 1) of its entropy. However, for practical purposes

such universal models can only be constructed if the class of sources is severely restricted.

! A general purpose compressor that can discover the probability distribution of any

source would be a general purpose artificial intelligence!

Basic Lempel–Ziv: Theoretical properties

74

Stream Codes -

Information Theory

Demonstration

75

Stream Codes -

! An interactive aid for exploring arithmetic coding, dasher.tcl (in TCL)

! A demonstration arithmetic-coding software package written by Radford Neal consists of

encoding and decoding modules to which the user adds a module defining the probabilistic

model.

! Radford Neal’s package includes a simple adaptive model similar to the Bayesian model

! A state-of-the-art compressor for documents containing text and images, DjVu, uses

arithmetic coding

! It uses an approximate arithmetic coder for binary alphabets called the Z-coder (Bottou et al.,

1998), which is much faster. The adaptive model adapts only occasionally, with the decision

about when to adapt being pseudo-randomly controlled. (see also https://www.cuminas.jp/en/)

Check some resources

76

http://www.inference.phy.cam.ac.uk/mackay/itprnn/softwareI.html
https://www.tcl.tk/about/language.html
http://www.cs.toronto.edu/~radford/ac.software.html
http://djvu.org
https://www.cuminas.jp/en/

Stream Codes -

! The JBIG image compression standard for binary images uses arithmetic coding with a

context-dependent model, which adapts using a rule similar to Laplace’s rule

! PPM (Teahan, 1995) is a leading method for text compression, and it uses arithmetic coding

! There are many Lempel–Ziv-based programs.

! gzip is based on a version of Lempel–Ziv called ‘LZ77’ (Ziv and Lempel, 1977).

! compress is based on ‘LZW’ (Welch, 1984).

! bzip is a block-sorting file compressor (Burrows and Wheeler, 1994). This method is not based on

an explicit probabilistic model, and it only works well for files larger than several thousand

characters; but in practice it is a very effective compressor for files in which the context of a

character is a good predictor for that character.

Check some resources

77

Stream Codes -

! Compression achieved when these programs are applied to the LATEX file containing a text

file, of size 20,942 bytes

Compression of a text file

78

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

122 6 — Stream Codes

Compression of a text file

Table 6.6 gives the computer time in seconds taken and the compression
achieved when these programs are applied to the LATEX file containing the
text of this chapter, of size 20,942 bytes.

Method Compression Compressed size Uncompression
time / sec (%age of 20,942) time / sec

Laplace model 0.28 12 974 (61%) 0.32
gzip 0.10 8 177 (39%) 0.01
compress 0.05 10 816 (51%) 0.05

bzip 7 495 (36%)
bzip2 7 640 (36%)
ppmz 6800 (32%)

Table 6.6. Comparison of
compression algorithms applied to
a text file.

Compression of a sparse file

Interestingly, gzip does not always do so well. Table 6.7 gives the compres-
sion achieved when these programs are applied to a text file containing 106

characters, each of which is either 0 and 1 with probabilities 0.99 and 0.01.
The Laplace model is quite well matched to this source, and the benchmark
arithmetic coder gives good performance, followed closely by compress; gzip
is worst. An ideal model for this source would compress the file into about
106H2(0.01)/8 ! 10 100 bytes. The Laplace-model compressor falls short of
this performance because it is implemented using only eight-bit precision. The
ppmz compressor compresses the best of all, but takes much more computer
time.

Method Compression Compressed size Uncompression
time / sec /bytes time / sec

Laplace model 0.45 14 143 (1.4%) 0.57
gzip 0.22 20 646 (2.1%) 0.04
gzip --best+ 1.63 15 553 (1.6%) 0.05
compress 0.13 14 785 (1.5%) 0.03

bzip 0.30 10 903 (1.09%) 0.17
bzip2 0.19 11 260 (1.12%) 0.05
ppmz 533 10447 (1.04%) 535

Table 6.7. Comparison of
compression algorithms applied to
a random file of 106 characters,
99% 0s and 1% 1s.

6.6 Summary

In the last three chapters we have studied three classes of data compression
codes.

Fixed-length block codes (Chapter 4). These are mappings from a fixed
number of source symbols to a fixed-length binary message. Only a tiny
fraction of the source strings are given an encoding. These codes were
fun for identifying the entropy as the measure of compressibility but they
are of little practical use.

Stream Codes -

! Compression achieved when these programs are applied to a text file containing 106

characters, each of which is either 0 and 1 with probabilities 0.99 and 0.01.

! An ideal model for this source would compress the file into about

106 H2(0.01)/8 ≃ 10 100 bytes.

Compression of a sparse file

79

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

122 6 — Stream Codes

Compression of a text file

Table 6.6 gives the computer time in seconds taken and the compression
achieved when these programs are applied to the LATEX file containing the
text of this chapter, of size 20,942 bytes.

Method Compression Compressed size Uncompression
time / sec (%age of 20,942) time / sec

Laplace model 0.28 12 974 (61%) 0.32
gzip 0.10 8 177 (39%) 0.01
compress 0.05 10 816 (51%) 0.05

bzip 7 495 (36%)
bzip2 7 640 (36%)
ppmz 6800 (32%)

Table 6.6. Comparison of
compression algorithms applied to
a text file.

Compression of a sparse file

Interestingly, gzip does not always do so well. Table 6.7 gives the compres-
sion achieved when these programs are applied to a text file containing 106

characters, each of which is either 0 and 1 with probabilities 0.99 and 0.01.
The Laplace model is quite well matched to this source, and the benchmark
arithmetic coder gives good performance, followed closely by compress; gzip
is worst. An ideal model for this source would compress the file into about
106H2(0.01)/8 ! 10 100 bytes. The Laplace-model compressor falls short of
this performance because it is implemented using only eight-bit precision. The
ppmz compressor compresses the best of all, but takes much more computer
time.

Method Compression Compressed size Uncompression
time / sec /bytes time / sec

Laplace model 0.45 14 143 (1.4%) 0.57
gzip 0.22 20 646 (2.1%) 0.04
gzip --best+ 1.63 15 553 (1.6%) 0.05
compress 0.13 14 785 (1.5%) 0.03

bzip 0.30 10 903 (1.09%) 0.17
bzip2 0.19 11 260 (1.12%) 0.05
ppmz 533 10447 (1.04%) 535

Table 6.7. Comparison of
compression algorithms applied to
a random file of 106 characters,
99% 0s and 1% 1s.

6.6 Summary

In the last three chapters we have studied three classes of data compression
codes.

Fixed-length block codes (Chapter 4). These are mappings from a fixed
number of source symbols to a fixed-length binary message. Only a tiny
fraction of the source strings are given an encoding. These codes were
fun for identifying the entropy as the measure of compressibility but they
are of little practical use.

Stream Codes -

Information Theory

Summary

80

Stream Codes -

Summary

81

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

122 6 — Stream Codes

Compression of a text file

Table 6.6 gives the computer time in seconds taken and the compression
achieved when these programs are applied to the LATEX file containing the
text of this chapter, of size 20,942 bytes.

Method Compression Compressed size Uncompression
time / sec (%age of 20,942) time / sec

Laplace model 0.28 12 974 (61%) 0.32
gzip 0.10 8 177 (39%) 0.01
compress 0.05 10 816 (51%) 0.05

bzip 7 495 (36%)
bzip2 7 640 (36%)
ppmz 6800 (32%)

Table 6.6. Comparison of
compression algorithms applied to
a text file.

Compression of a sparse file

Interestingly, gzip does not always do so well. Table 6.7 gives the compres-
sion achieved when these programs are applied to a text file containing 106

characters, each of which is either 0 and 1 with probabilities 0.99 and 0.01.
The Laplace model is quite well matched to this source, and the benchmark
arithmetic coder gives good performance, followed closely by compress; gzip
is worst. An ideal model for this source would compress the file into about
106H2(0.01)/8 ! 10 100 bytes. The Laplace-model compressor falls short of
this performance because it is implemented using only eight-bit precision. The
ppmz compressor compresses the best of all, but takes much more computer
time.

Method Compression Compressed size Uncompression
time / sec /bytes time / sec

Laplace model 0.45 14 143 (1.4%) 0.57
gzip 0.22 20 646 (2.1%) 0.04
gzip --best+ 1.63 15 553 (1.6%) 0.05
compress 0.13 14 785 (1.5%) 0.03

bzip 0.30 10 903 (1.09%) 0.17
bzip2 0.19 11 260 (1.12%) 0.05
ppmz 533 10447 (1.04%) 535

Table 6.7. Comparison of
compression algorithms applied to
a random file of 106 characters,
99% 0s and 1% 1s.

6.6 Summary

In the last three chapters we have studied three classes of data compression
codes.

Fixed-length block codes (Chapter 4). These are mappings from a fixed
number of source symbols to a fixed-length binary message. Only a tiny
fraction of the source strings are given an encoding. These codes were
fun for identifying the entropy as the measure of compressibility but they
are of little practical use.

Stream Codes -

Summary

82

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.7: Exercises on stream codes 123

Symbol codes (Chapter 5). Symbol codes employ a variable-length code for
each symbol in the source alphabet, the codelengths being integer lengths
determined by the probabilities of the symbols. Huffman’s algorithm
constructs an optimal symbol code for a given set of symbol probabilities.

Every source string has a uniquely decodeable encoding, and if the source
symbols come from the assumed distribution then the symbol code will
compress to an expected length per character L lying in the interval
[H,H +1). Statistical fluctuations in the source may make the actual
length longer or shorter than this mean length.

If the source is not well matched to the assumed distribution then the
mean length is increased by the relative entropy DKL between the source
distribution and the code’s implicit distribution. For sources with small
entropy, the symbol has to emit at least one bit per source symbol;
compression below one bit per source symbol can be achieved only by
the cumbersome procedure of putting the source data into blocks.

Stream codes. The distinctive property of stream codes, compared with
symbol codes, is that they are not constrained to emit at least one bit for
every symbol read from the source stream. So large numbers of source
symbols may be coded into a smaller number of bits. This property
could be obtained using a symbol code only if the source stream were
somehow chopped into blocks.

• Arithmetic codes combine a probabilistic model with an encoding
algorithm that identifies each string with a sub-interval of [0, 1) of
size equal to the probability of that string under the model. This
code is almost optimal in the sense that the compressed length of a
string x closely matches the Shannon information content of x given
the probabilistic model. Arithmetic codes fit with the philosophy
that good compression requires data modelling, in the form of an
adaptive Bayesian model.

• Lempel–Ziv codes are adaptive in the sense that they memorize
strings that have already occurred. They are built on the philoso-
phy that we don’t know anything at all about what the probability
distribution of the source will be, and we want a compression algo-
rithm that will perform reasonably well whatever that distribution
is.

Both arithmetic codes and Lempel–Ziv codes will fail to decode correctly
if any of the bits of the compressed file are altered. So if compressed files are
to be stored or transmitted over noisy media, error-correcting codes will be
essential. Reliable communication over unreliable channels is the topic of Part
II.

6.7 Exercises on stream codes

Exercise 6.7.[2] Describe an arithmetic coding algorithm to encode random bit
strings of length N and weight K (i.e., K ones and N −K zeroes) where
N and K are given.

For the case N =5, K =2, show in detail the intervals corresponding to
all source substrings of lengths 1–5.

! Exercise 6.8.[2, p.128] How many bits are needed to specify a selection of K
objects from N objects? (N and K are assumed to be known and the

Stream Codes -

Summary

83

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.7: Exercises on stream codes 123

Symbol codes (Chapter 5). Symbol codes employ a variable-length code for
each symbol in the source alphabet, the codelengths being integer lengths
determined by the probabilities of the symbols. Huffman’s algorithm
constructs an optimal symbol code for a given set of symbol probabilities.

Every source string has a uniquely decodeable encoding, and if the source
symbols come from the assumed distribution then the symbol code will
compress to an expected length per character L lying in the interval
[H,H +1). Statistical fluctuations in the source may make the actual
length longer or shorter than this mean length.

If the source is not well matched to the assumed distribution then the
mean length is increased by the relative entropy DKL between the source
distribution and the code’s implicit distribution. For sources with small
entropy, the symbol has to emit at least one bit per source symbol;
compression below one bit per source symbol can be achieved only by
the cumbersome procedure of putting the source data into blocks.

Stream codes. The distinctive property of stream codes, compared with
symbol codes, is that they are not constrained to emit at least one bit for
every symbol read from the source stream. So large numbers of source
symbols may be coded into a smaller number of bits. This property
could be obtained using a symbol code only if the source stream were
somehow chopped into blocks.

• Arithmetic codes combine a probabilistic model with an encoding
algorithm that identifies each string with a sub-interval of [0, 1) of
size equal to the probability of that string under the model. This
code is almost optimal in the sense that the compressed length of a
string x closely matches the Shannon information content of x given
the probabilistic model. Arithmetic codes fit with the philosophy
that good compression requires data modelling, in the form of an
adaptive Bayesian model.

• Lempel–Ziv codes are adaptive in the sense that they memorize
strings that have already occurred. They are built on the philoso-
phy that we don’t know anything at all about what the probability
distribution of the source will be, and we want a compression algo-
rithm that will perform reasonably well whatever that distribution
is.

Both arithmetic codes and Lempel–Ziv codes will fail to decode correctly
if any of the bits of the compressed file are altered. So if compressed files are
to be stored or transmitted over noisy media, error-correcting codes will be
essential. Reliable communication over unreliable channels is the topic of Part
II.

6.7 Exercises on stream codes

Exercise 6.7.[2] Describe an arithmetic coding algorithm to encode random bit
strings of length N and weight K (i.e., K ones and N −K zeroes) where
N and K are given.

For the case N =5, K =2, show in detail the intervals corresponding to
all source substrings of lengths 1–5.

! Exercise 6.8.[2, p.128] How many bits are needed to specify a selection of K
objects from N objects? (N and K are assumed to be known and the

Stream Codes -

Summary

84

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.7: Exercises on stream codes 123

Symbol codes (Chapter 5). Symbol codes employ a variable-length code for
each symbol in the source alphabet, the codelengths being integer lengths
determined by the probabilities of the symbols. Huffman’s algorithm
constructs an optimal symbol code for a given set of symbol probabilities.

Every source string has a uniquely decodeable encoding, and if the source
symbols come from the assumed distribution then the symbol code will
compress to an expected length per character L lying in the interval
[H,H +1). Statistical fluctuations in the source may make the actual
length longer or shorter than this mean length.

If the source is not well matched to the assumed distribution then the
mean length is increased by the relative entropy DKL between the source
distribution and the code’s implicit distribution. For sources with small
entropy, the symbol has to emit at least one bit per source symbol;
compression below one bit per source symbol can be achieved only by
the cumbersome procedure of putting the source data into blocks.

Stream codes. The distinctive property of stream codes, compared with
symbol codes, is that they are not constrained to emit at least one bit for
every symbol read from the source stream. So large numbers of source
symbols may be coded into a smaller number of bits. This property
could be obtained using a symbol code only if the source stream were
somehow chopped into blocks.

• Arithmetic codes combine a probabilistic model with an encoding
algorithm that identifies each string with a sub-interval of [0, 1) of
size equal to the probability of that string under the model. This
code is almost optimal in the sense that the compressed length of a
string x closely matches the Shannon information content of x given
the probabilistic model. Arithmetic codes fit with the philosophy
that good compression requires data modelling, in the form of an
adaptive Bayesian model.

• Lempel–Ziv codes are adaptive in the sense that they memorize
strings that have already occurred. They are built on the philoso-
phy that we don’t know anything at all about what the probability
distribution of the source will be, and we want a compression algo-
rithm that will perform reasonably well whatever that distribution
is.

Both arithmetic codes and Lempel–Ziv codes will fail to decode correctly
if any of the bits of the compressed file are altered. So if compressed files are
to be stored or transmitted over noisy media, error-correcting codes will be
essential. Reliable communication over unreliable channels is the topic of Part
II.

6.7 Exercises on stream codes

Exercise 6.7.[2] Describe an arithmetic coding algorithm to encode random bit
strings of length N and weight K (i.e., K ones and N −K zeroes) where
N and K are given.

For the case N =5, K =2, show in detail the intervals corresponding to
all source substrings of lengths 1–5.

! Exercise 6.8.[2, p.128] How many bits are needed to specify a selection of K
objects from N objects? (N and K are assumed to be known and the

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.7: Exercises on stream codes 123

Symbol codes (Chapter 5). Symbol codes employ a variable-length code for
each symbol in the source alphabet, the codelengths being integer lengths
determined by the probabilities of the symbols. Huffman’s algorithm
constructs an optimal symbol code for a given set of symbol probabilities.

Every source string has a uniquely decodeable encoding, and if the source
symbols come from the assumed distribution then the symbol code will
compress to an expected length per character L lying in the interval
[H,H +1). Statistical fluctuations in the source may make the actual
length longer or shorter than this mean length.

If the source is not well matched to the assumed distribution then the
mean length is increased by the relative entropy DKL between the source
distribution and the code’s implicit distribution. For sources with small
entropy, the symbol has to emit at least one bit per source symbol;
compression below one bit per source symbol can be achieved only by
the cumbersome procedure of putting the source data into blocks.

Stream codes. The distinctive property of stream codes, compared with
symbol codes, is that they are not constrained to emit at least one bit for
every symbol read from the source stream. So large numbers of source
symbols may be coded into a smaller number of bits. This property
could be obtained using a symbol code only if the source stream were
somehow chopped into blocks.

• Arithmetic codes combine a probabilistic model with an encoding
algorithm that identifies each string with a sub-interval of [0, 1) of
size equal to the probability of that string under the model. This
code is almost optimal in the sense that the compressed length of a
string x closely matches the Shannon information content of x given
the probabilistic model. Arithmetic codes fit with the philosophy
that good compression requires data modelling, in the form of an
adaptive Bayesian model.

• Lempel–Ziv codes are adaptive in the sense that they memorize
strings that have already occurred. They are built on the philoso-
phy that we don’t know anything at all about what the probability
distribution of the source will be, and we want a compression algo-
rithm that will perform reasonably well whatever that distribution
is.

Both arithmetic codes and Lempel–Ziv codes will fail to decode correctly
if any of the bits of the compressed file are altered. So if compressed files are
to be stored or transmitted over noisy media, error-correcting codes will be
essential. Reliable communication over unreliable channels is the topic of Part
II.

6.7 Exercises on stream codes

Exercise 6.7.[2] Describe an arithmetic coding algorithm to encode random bit
strings of length N and weight K (i.e., K ones and N −K zeroes) where
N and K are given.

For the case N =5, K =2, show in detail the intervals corresponding to
all source substrings of lengths 1–5.

! Exercise 6.8.[2, p.128] How many bits are needed to specify a selection of K
objects from N objects? (N and K are assumed to be known and the

Stream Codes -

Information Theory

Further Reading and Summary

85

Q&A

Stream Codes -

Further Reading
! Recommend Readings

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015,

pages 102 - 124.

! Supplemental readings:

86

Stream Codes -

What you should know
! The main ideia of arithmetic codes IS BASED ON predictive distribution over all possible

values of the next symbol.

! The relation with the guessing (the next symbol) game

! Given a model and a source string how to code and decode.

! Given a model, how to compute the probability intervals.

! Understand the simple Bayesian model and its assumptions.

! Other applications of arithmetic coding

87

 Stream Codes -

Further Reading and Summary

88

Q&A

