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! Variable-length symbol codes, 

! Encode one source symbol at a time (instead of encoding huge strings of N source symbols);

! These codes are lossless: they are guaranteed to compress and decompress without any errors; 

! There is a chance that the codes may sometimes produce encoded strings longer than the 

original source string. 

Symbol codes
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The idea is that we can achieve compression, on average, by assigning shorter 

encodings to the more probable outcomes and longer encodings to the less probable 
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! What are the implications if a symbol code is lossless? 

! If some codewords are shortened, by how much do other codewords have to be lengthened? 

! Making compression practical. 

! How can we ensure that a symbol code is easy to decode? 

! Optimal symbol codes.

! How should we assign codelengths to achieve the best compression, 

! What is the best achievable compression? 

Key issues

7

Source coding theorem (symbol codes) 
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! Notation on Alpahabets

! AN . denotes the set of ordered N-tuples of elements from the set A, i.e., all strings of length N.

! A+ will denote the set of all strings of finite length composed of elements from the set A. 

! Examples:

! {0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}. 

! {0, 1}+ = {0, 1, 00, 01, 10, 11, 000, 001, . . .}. 

A (binary) symbol code
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! A (binary) symbol code C for an ensemble X is a mapping from the range of x,  

AX ={a1,..., aI}, to {0,1}+. 

! c(x) will denote the codeword corresponding to x

! l(x) will denote its length, with li = l(ai). 

! The extended code C+ is a mapping from       to {0,1}+ obtained by concatenation, without 

punctuation, of the corresponding codewords: 

! Basic requirements for a useful symbol code 

! Any encoded string must have a unique decoding 

! The symbol code must be easy to decode

! The code should achieve as much compression as possible.

A (binary) symbol code
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AX
+

c+ (x1x2...xN ) = c(x1)c(x2 )...c(xN )
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! A (binary) symbol code C0 for an ensemble X 

AX ={a, b, c, d} 

PX = {1/2, 1/4, 1/8, 1/8}

! c(x) will denote the codeword corresponding to x

! l(x) will denote its length, with li = l(ai).

! Using the extended code, we may encode acdbac as 

c+(acdbac) = 100000100001010010000010

A (binary) symbol code - example

10
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5.1 Symbol codes

A (binary) symbol code C for an ensemble X is a mapping from the range
of x, AX = {a1, . . . , aI}, to {0, 1}+. c(x) will denote the codeword cor-
responding to x, and l(x) will denote its length, with li = l(ai).

The extended code C+ is a mapping from A+
X to {0, 1}+ obtained by

concatenation, without punctuation, of the corresponding codewords:

c+(x1x2 . . . xN ) = c(x1)c(x2) . . . c(xN ). (5.1)

[The term ‘mapping’ here is a synonym for ‘function’.]

Example 5.3. A symbol code for the ensemble X defined by

AX = { a, b, c, d },
PX = { 1/2, 1/4, 1/8, 1/8 }, (5.2)

is C0, shown in the margin. C0:

ai c(ai) li

a 1000 4
b 0100 4
c 0010 4
d 0001 4

Using the extended code, we may encode acdbac as

c+(acdbac) = 100000100001010010000010. (5.3)

There are basic requirements for a useful symbol code. First, any encoded
string must have a unique decoding. Second, the symbol code must be easy to
decode. And third, the code should achieve as much compression as possible.

Any encoded string must have a unique decoding

A code C(X) is uniquely decodeable if, under the extended code C+, no
two distinct strings have the same encoding, i.e.,

∀x,y ∈ A+
X , x #= y ⇒ c+(x) #= c+(y). (5.4)

The code C0 defined above is an example of a uniquely decodeable code.

The symbol code must be easy to decode

A symbol code is easiest to decode if it is possible to identify the end of a
codeword as soon as it arrives, which means that no codeword can be a prefix
of another codeword. [A word c is a prefix of another word d if there exists a
tail string t such that the concatenation ct is identical to d. For example, 1 is
a prefix of 101, and so is 10.]

We will show later that we don’t lose any performance if we constrain our
symbol code to be a prefix code.

A symbol code is called a prefix code if no codeword is a prefix of any
other codeword.

A prefix code is also known as an instantaneous or self-punctuating code,
because an encoded string can be decoded from left to right without
looking ahead to subsequent codewords. The end of a codeword is im-
mediately recognizable. A prefix code is uniquely decodeable.

Prefix codes are also known as ‘prefix-free codes’ or ‘prefix condition codes’.

Prefix codes correspond to trees, as illustrated in the margin of the next page.

a c d b a c
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! A code C(X) is uniquely decodeable  

If, under the extended code C+, no two distinct strings have the same encoding, i.e.,

! The example is a uniquely decodeable code 

c+(acdbac) = 100000100001010010000010

Any encoded string must have a unique decoding  

11

∀x, y ∈AX
+ ,x ≠ y⇒ c+ (x) ≠ c+ ( y)
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5.1 Symbol codes

A (binary) symbol code C for an ensemble X is a mapping from the range
of x, AX = {a1, . . . , aI}, to {0, 1}+. c(x) will denote the codeword cor-
responding to x, and l(x) will denote its length, with li = l(ai).

The extended code C+ is a mapping from A+
X to {0, 1}+ obtained by

concatenation, without punctuation, of the corresponding codewords:

c+(x1x2 . . . xN ) = c(x1)c(x2) . . . c(xN ). (5.1)

[The term ‘mapping’ here is a synonym for ‘function’.]

Example 5.3. A symbol code for the ensemble X defined by

AX = { a, b, c, d },
PX = { 1/2, 1/4, 1/8, 1/8 }, (5.2)

is C0, shown in the margin. C0:

ai c(ai) li

a 1000 4
b 0100 4
c 0010 4
d 0001 4

Using the extended code, we may encode acdbac as

c+(acdbac) = 100000100001010010000010. (5.3)

There are basic requirements for a useful symbol code. First, any encoded
string must have a unique decoding. Second, the symbol code must be easy to
decode. And third, the code should achieve as much compression as possible.

Any encoded string must have a unique decoding

A code C(X) is uniquely decodeable if, under the extended code C+, no
two distinct strings have the same encoding, i.e.,

∀x,y ∈ A+
X , x #= y ⇒ c+(x) #= c+(y). (5.4)

The code C0 defined above is an example of a uniquely decodeable code.

The symbol code must be easy to decode

A symbol code is easiest to decode if it is possible to identify the end of a
codeword as soon as it arrives, which means that no codeword can be a prefix
of another codeword. [A word c is a prefix of another word d if there exists a
tail string t such that the concatenation ct is identical to d. For example, 1 is
a prefix of 101, and so is 10.]

We will show later that we don’t lose any performance if we constrain our
symbol code to be a prefix code.

A symbol code is called a prefix code if no codeword is a prefix of any
other codeword.

A prefix code is also known as an instantaneous or self-punctuating code,
because an encoded string can be decoded from left to right without
looking ahead to subsequent codewords. The end of a codeword is im-
mediately recognizable. A prefix code is uniquely decodeable.

Prefix codes are also known as ‘prefix-free codes’ or ‘prefix condition codes’.

Prefix codes correspond to trees, as illustrated in the margin of the next page.

a c d b a c

How to prove for this example?
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! A symbol code is easiest to decode if it is possible to identify the end of a codeword as 

soon as it arrives, 

! which means that no codeword can be a prefix of another codeword 

! A word c is a prefix of another word d 

! if there exists a tail string t such that the concatenation ct is identical to d. 

! Example

! 1 is prefix of 100

! 10 is prefix of 100

The symbol code must be easy to decode 
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! A symbol code is called a prefix code  

if no codeword is a prefix of any other codeword. 

! A prefix code is also known as an instantaneous or self-punctuating code, because an 

encoded string can be decoded from left to right without looking ahead to subsequent 

codewords. 

! The end of a codeword is immediately recognizable. 

! A prefix code is uniquely decodeable.

The symbol code must be easy to decode 
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! The code C1 = {0, 101} is a prefix code because 0 is not a prefix of 101, nor is 101 a prefix 

of 0. 

! The code C2 = {1, 101} is not a prefix code because 1 is a prefix of 101. 

! The code C3 = {0, 10, 110, 111} is a prefix code 

! The code C4 = {00, 01, 10, 11} is a prefix code. 

! C4 is said to be complete, because the 

corresponding binary tree has 

no unused branch

Prefix codes - examples 

14
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C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).
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Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.
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Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).
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Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0
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Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).

C1 is an incomplete code
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li = hi = log2(1/ pi )

! The expected length L(C, X) of a symbol code C for an ensemble X is

! A (binary) symbol code C3 for an ensemble X 

AX ={a, b, c, d} 

PX = {1/2, 1/4, 1/8, 1/8}

The code should achieve as much compression as possible 

15

L(C,X ) = P(x)l(x)
x∈AX

∑

L(C,X ) = pili
i=1

I

∑ I = AXwhere
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Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0
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1
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0 110
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0
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Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).
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Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.
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C4
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Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).

a

b
c
d

H (X ) = 1.75bits

C3 is prefix code
L(C,X ) = 1.75bits
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! A (binary) symbol code C6 for an ensemble X 

AX ={a, b, c, d}; PX = {1/2, 1/4, 1/8, 1/8}

The code should achieve as much compression as possible 
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H (X ) = 1.75bits

L(C,X ) = 1.75bits
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C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).

Is C6 a prefix code?

Is C6 a uniquely decodeable?

Certainly isn’t easy to decode 

No

Yes
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! A (binary) symbol code C6 for an ensemble X 

AX ={a, b, c, d}; PX = {1/2, 1/4, 1/8, 1/8}

The code should achieve as much compression as possible 
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H (X ) = 1.75bits
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C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.1: Symbol codes 93

C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).

the codewords of C6 are the reverse of C3 
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Information Theory

What limit is imposed by unique decodeability?

18



Symbol Codes -

! Given a list of positive integers {li}, does there exist a uniquely decodeable code with those 

integers as its codeword lengths? 

! We have observed that if we take a code such as {00, 01, 10, 11}, 

! shorten one of its codewords, for example 00 → 0, 

! then we can retain unique decodeability only if we lengthen other codewords !

! Thus there seems to be a constrained budget that we can spend on codewords, with shorter 

codewords being more expensive. 

! In general for a code with l (constant bits) we have 2l possible codewords.

! So the “cost” of a codeword of length l is 1/2l 

What limit is imposed by unique decodeability?

19



Symbol Codes -

! Kraft inequality. For any uniquely decodeable code C(X) over the binary alphabet {0, 1}, 

the codeword lengths must satisfy: 

! Completeness. If a uniquely dcodeable codes satisfies the Kraft inequality with equality 

then the code it is called complete code.

Kraft inequality

20

2− li
i=1

I

∑ ≤1 I = AXwhere
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C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).

1
21
+ 1
22
+ 1
23
+ 1
23
= 1
2 + 1

4 + 1
4 = 1
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! The “cost” of 2-l of each codeword with length l is indicated by the size of the box is written 

in.

The symbol coding budget 
 

21

2− li
i=1

I

∑ ≤1
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Figure 5.1. The symbol coding
budget. The ‘cost’ 2−l of each
codeword (with length l) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.
You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.
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Figure 5.2. Selections of
codewords made by codes
C0, C3, C4 and C6 from section
5.1.

The total budget available when 
making a uniquely decodeable code is 1.

If the cost of the codewords that you 
take exceeds the budget then your code 

will not be uniquely decodeable.



Symbol Codes -

! Code C0

The symbol coding budget - Code C0 
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Figure 5.1. The symbol coding
budget. The ‘cost’ 2−l of each
codeword (with length l) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.
You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.
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Figure 5.2. Selections of
codewords made by codes
C0, C3, C4 and C6 from section
5.1.
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5.1 Symbol codes

A (binary) symbol code C for an ensemble X is a mapping from the range
of x, AX = {a1, . . . , aI}, to {0, 1}+. c(x) will denote the codeword cor-
responding to x, and l(x) will denote its length, with li = l(ai).

The extended code C+ is a mapping from A+
X to {0, 1}+ obtained by

concatenation, without punctuation, of the corresponding codewords:

c+(x1x2 . . . xN ) = c(x1)c(x2) . . . c(xN ). (5.1)

[The term ‘mapping’ here is a synonym for ‘function’.]

Example 5.3. A symbol code for the ensemble X defined by

AX = { a, b, c, d },
PX = { 1/2, 1/4, 1/8, 1/8 }, (5.2)

is C0, shown in the margin. C0:

ai c(ai) li

a 1000 4
b 0100 4
c 0010 4
d 0001 4

Using the extended code, we may encode acdbac as

c+(acdbac) = 100000100001010010000010. (5.3)

There are basic requirements for a useful symbol code. First, any encoded
string must have a unique decoding. Second, the symbol code must be easy to
decode. And third, the code should achieve as much compression as possible.

Any encoded string must have a unique decoding

A code C(X) is uniquely decodeable if, under the extended code C+, no
two distinct strings have the same encoding, i.e.,

∀x,y ∈ A+
X , x #= y ⇒ c+(x) #= c+(y). (5.4)

The code C0 defined above is an example of a uniquely decodeable code.

The symbol code must be easy to decode

A symbol code is easiest to decode if it is possible to identify the end of a
codeword as soon as it arrives, which means that no codeword can be a prefix
of another codeword. [A word c is a prefix of another word d if there exists a
tail string t such that the concatenation ct is identical to d. For example, 1 is
a prefix of 101, and so is 10.]

We will show later that we don’t lose any performance if we constrain our
symbol code to be a prefix code.

A symbol code is called a prefix code if no codeword is a prefix of any
other codeword.

A prefix code is also known as an instantaneous or self-punctuating code,
because an encoded string can be decoded from left to right without
looking ahead to subsequent codewords. The end of a codeword is im-
mediately recognizable. A prefix code is uniquely decodeable.

Prefix codes are also known as ‘prefix-free codes’ or ‘prefix condition codes’.

Prefix codes correspond to trees, as illustrated in the margin of the next page.

2− li
i=1

I

∑ = 4 1
24

= 4 1
16

= 1
4
≤1

a

b

c
d
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! Code C3

The symbol coding budget - Code C3 
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2− li
i=1

I

∑ = 1
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Figure 5.1. The symbol coding
budget. The ‘cost’ 2−l of each
codeword (with length l) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.
You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.
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Figure 5.2. Selections of
codewords made by codes
C0, C3, C4 and C6 from section
5.1.
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C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).

a

b

c

d
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! Code C4

The symbol coding budget - Code C4 
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Figure 5.1. The symbol coding
budget. The ‘cost’ 2−l of each
codeword (with length l) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.
You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.
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codewords made by codes
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C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).
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The symbol coding budget - Code C6 
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Figure 5.1. The symbol coding
budget. The ‘cost’ 2−l of each
codeword (with length l) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.
You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.
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C1

0

1

0

0
1 101

Example 5.4. The code C1 = {0, 101} is a prefix code because 0 is not a prefix
of 101, nor is 101 a prefix of 0.

Example 5.5. Let C2 = {1, 101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0, 10, 110, 111} is a prefix code.

C3

0

1

0

100

1
1 111

0 110

C4

0

1

0

1

00

0
1

01
10
11

Prefix codes can be represented
on binary trees. Complete prefix
codes correspond to binary trees
with no unused branches. C1 is an
incomplete code.

Example 5.7. The code C4 = {00, 01, 10, 11} is a prefix code.

Exercise 5.8.[1, p.104] Is C2 uniquely decodeable?

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can
be viewed as assigning a ternary code to each of the 24 possible states.
This code is a prefix code.

The code should achieve as much compression as possible

The expected length L(C,X) of a symbol code C for ensemble X is

L(C,X) =
∑

x∈AX

P (x) l(x). (5.5)

We may also write this quantity as

L(C,X) =
I∑

i=1

pili (5.6)

where I = |AX |.
C3:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 10 1/4 2.0 2
c 110 1/8 3.0 3
d 111 1/8 3.0 3

Example 5.10. Let
AX = { a, b, c, d },

and PX = { 1/2, 1/4, 1/8, 1/8 }, (5.7)

and consider the code C3. The entropy of X is 1.75 bits, and the expected
length L(C3,X) of this code is also 1.75 bits. The sequence of symbols
x=(acdbac) is encoded as c+(x) = 0110111100110. C3 is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy li = log2(1/pi), or equivalently, pi =2−li .

Example 5.11. Consider the fixed length code for the same ensemble X, C4.
The expected length L(C4,X) is 2 bits.

C4 C5

a 00 0
b 01 1
c 10 00
d 11 11Example 5.12. Consider C5. The expected length L(C5,X) is 1.25 bits, which

is less than H(X). But the code is not uniquely decodeable. The se-
quence x=(acdbac) encodes as 000111000, which can also be decoded
as (cabdca).

Example 5.13. Consider the code C6. The expected length L(C6,X) of this

C6:

ai c(ai) pi h(pi) li

a 0 1/2 1.0 1
b 01 1/4 2.0 2
c 011 1/8 3.0 3
d 111 1/8 3.0 3

code is 1.75 bits. The sequence of symbols x=(acdbac) is encoded as
c+(x) = 0011111010011.

Is C6 a prefix code? It is not, because c(a) = 0 is a prefix of both c(b)
and c(c).
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! We want codes that are uniquely decodeable.

! Prefix codes are uniquely decodeable, and are easy to decode. 

! For any source there is an optimal symbol code that is also a prefix code. 

! Kraft inequality and prefix codes. 

! Given a set of codeword lengths that satisfy the Kraft inequality, there exists a uniquely 

decodeable prefix code with these codeword lengths. 

Kraft inequality and prefix codes

26
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Information Theory

What’s the most compression that we can hope for?

27



Symbol Codes -

! We wish to minimize the expected length of a code 

! Lower bound on expected length. The expected length L(C, X) of a uniquely decodeable 

code is bounded below by H(X).

! Let define the implicit probabilities                   , where  

! So 

! Now, consider the relative entropy between P and Q and the Gibb’s inequality

What’s the most compression that we can hope for?

28

L(C,X ) = pili
i
∑

qi ≡ 2
− li / z z = 2− li '

i '
∑

li = log 1
qi
− log z

DKL (P ||Q) = P(x)log P(x)
Q(x)x

∑ DKL (P ||Q) ≥ 0

= P(x) logP(x)− P(x) logQ(x)
x
∑

x
∑

= P(x) log 1
Q(x )

x
∑ − P(x) log 1

P(x )
x
∑

P

Q
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! Let define the implicit probabilities                   , where  

! So 

! Now, consider the relative entropy between P and Q and the Gibb’s inequality

What’s the most compression that we can hope for?

29

L(C,X ) = pili
i
∑qi ≡ 2

− li / z z = 2− li '
i '
∑

li = log 1
qi
− log z

DKL(P ||Q) = P(x) log 1
Q(x )

x
∑ − P(x) log 1

P(x )
x
∑ DKL (P ||Q) ≥ 0

pi log 1
qi

i
∑ ≥ pi log 1

pi
i
∑

L(C,X ) = pili
i
∑ = pi log 1

qi
i
∑ − log z

≥ pi log 1
pi

i
∑ − log z

≥ H (X ) The equality L(C, X ) = H(X) is achieved only if the Kraft equality z = 1 
is satisfied, and if the codelengths satisfy li = log(1/pi). 



Symbol Codes -

! Optimal source codelengths. The expected length is minimized and is equal to H(X) only 

if the codelengths are equal to the Shannon information contents: 

! Implicit probabilities defined by codelengths. Conversely, any choice of codelengths {li} 

implicitly defines a probability distribution {qi},  

 

for which those codelengths would be the optimal codelengths.  

If the code is complete then z = 1 and the implicit probabilities are given by 

What’s the most compression that we can hope for?

30

li = log2(1/ pi )

qi ≡ 2
− li / z

qi = 2
− li
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Information Theory

How much can we compress?

31
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! So, we can’t compress below the entropy. How close can we expect to get to the entropy? 

! Theorem - Source coding theorem for symbol codes. 

For an ensemble X there exists a prefix code C with expected length satisfying

! Proof. 

! Let set the codelengths to integers slightly larger than the optimum 

! We check that there is a prefix code with these lengths by confirming that the Kraft inequality is 

satisfied 

How much can we compress? 

32

H (X ) ≤ L(C,X ) ≤ H (X )+1

li = log2( 1 pi)⎡⎢ ⎤⎥



Symbol Codes -

! Proof. 

! Let set the codelengths to integers slightly larger than the optimum 

! We check that there is a prefix code with these lengths by confirming that the Kraft inequality is 

satisfied 

! Then we can confirm

How much can we compress? 

33

li = log2( 1 pi)⎡⎢ ⎤⎥

2− li
i
∑ = 2

− log2 ( 1 pi )
⎡
⎢⎢

⎤
⎥⎥

i
∑ 2− li

i=1

I

∑ ≤1≤ 2
− log2 ( 1 pi )

i
∑ = pi

i
∑ = 1

2
− log2 ( 1 pi )
⎡
⎢⎢

⎤
⎥⎥

i
∑ ≤1 Then, there is a prefix code with these li

H (X ) ≤ L(C,X ) ≤ H (X )+1

L(C,X ) = pi log2( 1 pi)⎡⎢ ⎤⎥
i
∑ ≤ pi(log2( 1 pi)

i
∑ +1) ≤ H (X )+1

Kraft inequality
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! If we use a code whose lengths are not equal to the optimal codelengths, the average 

message length will be larger than the entropy. 

! Let {pi} the true probabilities;

! If we use a complete code with lengths li, they define an implicit probabilities

! L(C, X) exceeds the entropy by the relative entropy DKL(p || q) 

The cost of using the wrong codelengths 

34

qi = 2
− li

L(C,X ) = pili
i
∑ li = log2( 1qi)= pi log( 1qi)

i
∑

H (X ) = pi log( 1 pi)
i
∑= H (X )+ pi log( 1qi)

i
∑ − H (X )

= H (X )+ pi log( 1qi)
i
∑ − pi log( 1 pi)

i
∑

= H (X )+ pi log(
pi
qi
)

i
∑

L(C,X ) = H (X )+ DKL(p ||q )
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Information Theory

Huffman coding

35
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! Goal: Mminimize the expected length L(C, X). 

! How not to do it?

! One might try to roughly split the set AX in two, and continue bisecting the subsets so as to define 

a binary tree from the root. 

! This construction has the right spirit, as in the weighing problem, but it is not necessarily optimal.

! It achieves L(C, X) ≤ H(X) + 2. 

! The Huffman coding algorithm 

! It is a simple algorithm for finding an optimal prefix code. 

! The ideas is to construct the code backwards starting from the tails of the codewords

! The algorithm builds the binary tree from its leaves.

Optimal source coding with symbol codes 

36
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! The Huffman coding algorithm 

! It is a simple algorithm for finding an optimal prefix code. 

! The ideas is to construct the code backwards starting from the tails of the codewords

! The algorithm builds the binary tree from its leaves

! Since each step reduces the size of the alphabet by one, this algorithm will have assigned 

strings to all the symbols after |AX | − 1 steps.

Huffman coding  

37
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5.5: Optimal source coding with symbol codes: Huffman coding 99

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX |− 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.

0.25
0.25
0.2
0.15
0.15

0.25
0.25
0.2
0.3

0.25
0.45

0.3

0.55
0.45

1.0a

b

c

d

e

0

1

0

1

0

1

0

1

!
!

!
!

"
"
"
"
"

!
!

x step 1 step 2 step 3 step 4

The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00
b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.
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!  

Huffman coding - Example  

38
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5.5: Optimal source coding with symbol codes: Huffman coding 99

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX |− 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
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The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00
b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.
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In previous chapters we studied weighing problems in which we built ternary
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to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.



Symbol Codes -

!  

Huffman coding - Example  

39

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.5: Optimal source coding with symbol codes: Huffman coding 99

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX |− 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.

0.25
0.25
0.2
0.15
0.15

0.25
0.25
0.2
0.3

0.25
0.45

0.3

0.55
0.45

1.0a

b

c

d

e

0

1

0

1

0

1

0

1

!
!

!
!

"
"
"
"
"

!
!

x step 1 step 2 step 3 step 4

The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00
b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
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Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
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Example 5.17. We can make a Huffman code for the probability distribution
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ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
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Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
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In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.



Symbol Codes -

!  

Huffman coding - Example  

42

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.5: Optimal source coding with symbol codes: Huffman coding 99

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX |− 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.

0.25
0.25
0.2
0.15
0.15

0.25
0.25
0.2
0.3

0.25
0.45

0.3

0.55
0.45

1.0a

b

c

d

e

0

1

0

1

0

1

0

1

!
!

!
!

"
"
"
"
"

!
!

x step 1 step 2 step 3 step 4

The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00
b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.5: Optimal source coding with symbol codes: Huffman coding 99

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX |− 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.
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The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00
b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.
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The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)
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b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. !

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.

H(X) = 2.2855 bits

L(C, X) = 2.30 bits
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100 5 — Symbol Codes

ai pi log2
1
pi

li c(ai)

a 0.0575 4.1 4 0000
b 0.0128 6.3 6 001000
c 0.0263 5.2 5 00101
d 0.0285 5.1 5 10000
e 0.0913 3.5 4 1100
f 0.0173 5.9 6 111000
g 0.0133 6.2 6 001001
h 0.0313 5.0 5 10001
i 0.0599 4.1 4 1001
j 0.0006 10.7 10 1101000000
k 0.0084 6.9 7 1010000
l 0.0335 4.9 5 11101
m 0.0235 5.4 6 110101
n 0.0596 4.1 4 0001
o 0.0689 3.9 4 1011
p 0.0192 5.7 6 111001
q 0.0008 10.3 9 110100001
r 0.0508 4.3 5 11011
s 0.0567 4.1 4 0011
t 0.0706 3.8 4 1111
u 0.0334 4.9 5 10101
v 0.0069 7.2 8 11010001
w 0.0119 6.4 7 1101001
x 0.0073 7.1 7 1010001
y 0.0164 5.9 6 101001
z 0.0007 10.4 10 1101000001
– 0.1928 2.4 2 01
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Figure 5.6. Huffman code for the
English language ensemble
(monogram statistics).

It is not the case, however, that optimal codes can always be constructed
by a greedy top-down method in which the alphabet is successively divided
into subsets that are as near as possible to equiprobable.

Example 5.18. Find the optimal binary symbol code for the ensemble:

AX = { a, b, c, d, e, f, g }
PX = { 0.01, 0.24, 0.05, 0.20, 0.47, 0.01, 0.02 } . (5.24)

Notice that a greedy top-down method can split this set into two sub-
sets {a, b, c, d} and {e, f, g} which both have probability 1/2, and that
{a, b, c, d} can be divided into subsets {a, b} and {c, d}, which have prob-
ability 1/4; so a greedy top-down method gives the code shown in the
third column of table 5.7, which has expected length 2.53. The Huffman

ai pi Greedy Huffman

a .01 000 000000
b .24 001 01
c .05 010 0001
d .20 011 001
e .47 10 1
f .01 110 000001
g .02 111 00001

Table 5.7. A greedily-constructed
code compared with the Huffman
code.

coding algorithm yields the code shown in the fourth column, which has
expected length 1.97. !

5.6 Disadvantages of the Huffman code

The Huffman algorithm produces an optimal symbol code for an ensemble,
but this is not the end of the story. Both the word ‘ensemble’ and the phrase
‘symbol code’ need careful attention.

Changing ensemble

If we wish to communicate a sequence of outcomes from one unchanging en-
semble, then a Huffman code may be convenient. But often the appropriate
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It is not the case, however, that optimal codes can always be constructed
by a greedy top-down method in which the alphabet is successively divided
into subsets that are as near as possible to equiprobable.

Example 5.18. Find the optimal binary symbol code for the ensemble:

AX = { a, b, c, d, e, f, g }
PX = { 0.01, 0.24, 0.05, 0.20, 0.47, 0.01, 0.02 } . (5.24)

Notice that a greedy top-down method can split this set into two sub-
sets {a, b, c, d} and {e, f, g} which both have probability 1/2, and that
{a, b, c, d} can be divided into subsets {a, b} and {c, d}, which have prob-
ability 1/4; so a greedy top-down method gives the code shown in the
third column of table 5.7, which has expected length 2.53. The Huffman

ai pi Greedy Huffman

a .01 000 000000
b .24 001 01
c .05 010 0001
d .20 011 001
e .47 10 1
f .01 110 000001
g .02 111 00001

Table 5.7. A greedily-constructed
code compared with the Huffman
code.

coding algorithm yields the code shown in the fourth column, which has
expected length 1.97. !

5.6 Disadvantages of the Huffman code

The Huffman algorithm produces an optimal symbol code for an ensemble,
but this is not the end of the story. Both the word ‘ensemble’ and the phrase
‘symbol code’ need careful attention.

Changing ensemble

If we wish to communicate a sequence of outcomes from one unchanging en-
semble, then a Huffman code may be convenient. But often the appropriate

H(X) = 4.11 bits L(C, X) = 4.15 bits
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! The Huffman algorithm produces an optimal symbol code for an ensemble, but this is not the 

end of the story. Both the word ‘ensemble’ and the phrase ‘symbol code’ need careful 

attention. 

! Changing ensemble 

! Huffman codes do not handle changing ensemble probabilities with any elegance. One brute-force 

approach would be to recompute the Huffman code every time the probability over symbols 

changes.

! Or, run through the entire file in advance and compute a good probability distribution, which will 

then remain fixed throughout transmission. The code itself must also be communicated in this 

scenario

Disadvantages of the Huffman code 
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! The extra  bit

! Huffman code thus incurs an overhead of between 0 and 1 bits per symbol. 

! If H(X) were large, then this overhead would be an unimportant fractional increase. But for many 

applications, the entropy may be as low as one bit per symbol, or even smaller, so the 

overhead L(C, X) − H(X) may dominate the encoded file length.

! A traditional patch-up of Huffman codes uses them to compress blocks of symbols. The overhead 

per block is at most 1 bit so the overhead per symbol is at most 1/N bits. 

! losing the elegant instantaneous decodeability of simple Huffman coding; 

! having to compute the probabilities of all relevant strings and build the associated Huffman 

tree

Disadvantages of the Huffman code 
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! Kraft inequality. If a code is uniquely decodable its lengths must satisfy  

 

For any lengths satisfying the Kraft inequality, there exists a prefix code with those 

lengths. 

! Optimal source code lengths for an ensemble are equal to the Shannon information 

contents                        , 

and conversely, any choice of code lengths defines implicit probabilities

Summary 

48
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! The relative entropy DKL(p || q) measures how many bits per symbol are wasted by using 

a code whose implicit probabilities are q, when the ensemble’s true probability distribution is 

p. 

! Source coding theorem for symbol codes.   For an ensemble X, there exists a prefix code 

whose expected length satisfies 

! The Huffman coding algorithm generates an optimal symbol code iteratively. At each 

iteration, the two least probable symbols are combined. 

Summary 
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H (X ) ≤ L(C,X ) ≤ H (X )+1
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Further Reading
! Recommend Readings 

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, 

pages 91 - 102. 

! Supplemental readings:
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What you should know
! What are variable-length symbol codes and what it is the main idea 

! What are the implications if a symbol code is lossless? 

! What is the meaning of a code being uniquely decodeable? 

! What are prefix code?  

! What is the relation of prefix codes and Kraft inequality? 

! What is the the “cost” of 2-l of each codeword? 

! What are the compression limits? 

! The Huffman coding algorithm 

! What the Disadvantages of the Huffman code?
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